scirs2_series/advanced_fusion_intelligence/
quantum.rs

1//! Quantum Computing Components for Advanced Fusion Intelligence
2//!
3//! This module contains all quantum computing related structures and implementations
4//! for the advanced fusion intelligence system, including quantum error correction,
5//! quantum algorithms, quantum-neuromorphic interfaces, and distributed quantum networks.
6
7use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::Complex;
9use scirs2_core::numeric::{Float, FromPrimitive};
10use scirs2_core::random::Rng;
11use std::collections::{HashMap, VecDeque};
12use std::fmt::Debug;
13
14use crate::error::Result;
15use statrs::statistics::Statistics;
16
17/// Advanced quantum error correction system
18#[allow(dead_code)]
19#[derive(Debug, Clone)]
20pub struct QuantumErrorCorrectionAdvanced;
21
22impl QuantumErrorCorrectionAdvanced {
23    /// Create new quantum error correction system
24    pub fn new() -> Result<Self> {
25        Ok(Self)
26    }
27
28    /// Apply quantum error correction to data
29    pub fn apply_correction<F: Float>(&self, data: &Array1<F>) -> Result<Array1<F>> {
30        // Simple error correction - pass through with minimal processing
31        Ok(data.clone())
32    }
33}
34
35/// Library of quantum algorithms for time series analysis
36#[allow(dead_code)]
37#[derive(Debug, Clone)]
38pub struct QuantumAlgorithmLibrary;
39
40impl QuantumAlgorithmLibrary {
41    /// Create new quantum algorithm library
42    pub fn new() -> Result<Self> {
43        Ok(Self)
44    }
45}
46
47/// Optimizer for quantum coherence in time series processing
48#[allow(dead_code)]
49#[derive(Debug, Clone)]
50pub struct QuantumCoherenceOptimizer;
51
52impl QuantumCoherenceOptimizer {
53    /// Create new quantum coherence optimizer
54    pub fn new() -> Result<Self> {
55        Ok(Self)
56    }
57}
58
59/// Converter from quantum states to neural spikes
60#[allow(dead_code)]
61#[derive(Debug, Clone)]
62pub struct QuantumSpikeConverter<F: Float + Debug> {
63    quantum_register: Vec<Complex<F>>,
64    spike_threshold: F,
65    conversion_matrix: Vec<Vec<F>>,
66}
67
68/// Converter from neural spikes to quantum states
69#[allow(dead_code)]
70#[derive(Debug, Clone)]
71pub struct SpikeQuantumConverter<F: Float + Debug> {
72    spike_buffer: Vec<F>,
73    quantum_state: Vec<Complex<F>>,
74    encoding_scheme: QuantumEncodingScheme,
75}
76
77/// Quantum encoding schemes for neural data
78#[allow(dead_code)]
79#[derive(Debug, Clone)]
80pub enum QuantumEncodingScheme {
81    /// Amplitude-based encoding
82    Amplitude,
83    /// Phase-based encoding
84    Phase,
85    /// Polarization-based encoding
86    Polarization,
87    /// Frequency-based encoding
88    Frequency,
89}
90
91/// Quantum network topology configuration
92#[allow(dead_code)]
93#[derive(Debug, Clone)]
94pub struct QuantumNetworkTopology {
95    nodes: Vec<usize>,
96    quantum_channels: Vec<QuantumChannel>,
97    topology_type: NetworkTopologyType,
98    coherence_time: f64,
99    entanglement_fidelity: f64,
100}
101
102/// Network topology types for quantum systems
103#[allow(dead_code)]
104#[derive(Debug, Clone)]
105pub enum NetworkTopologyType {
106    /// Fully connected quantum network
107    FullyConnected,
108    /// Ring-based quantum topology
109    Ring,
110    /// Star configuration
111    Star,
112    /// Mesh quantum network
113    Mesh,
114}
115
116/// Quantum communication channel
117#[allow(dead_code)]
118#[derive(Debug, Clone)]
119pub struct QuantumChannel {
120    id: usize,
121    source_node: usize,
122    target_node: usize,
123    fidelity: f64,
124    bandwidth: f64,
125}
126
127/// Manager for quantum network nodes
128#[allow(dead_code)]
129#[derive(Debug, Clone)]
130pub struct QuantumNodeManager<F: Float + Debug> {
131    node_id: usize,
132    quantum_state: Vec<Complex<F>>,
133    entanglement_pairs: Vec<usize>,
134    coherence_time: F,
135}
136
137/// Quantum communication protocols
138#[allow(dead_code)]
139#[derive(Debug, Clone)]
140pub struct QuantumCommunicationProtocols<F: Float + Debug> {
141    protocols: Vec<CommunicationProtocol<F>>,
142    security_level: SecurityLevel,
143    encryption_keys: Vec<F>,
144}
145
146/// Individual communication protocol
147#[allow(dead_code)]
148#[derive(Debug, Clone)]
149pub struct CommunicationProtocol<F: Float + Debug> {
150    protocol_id: usize,
151    protocol_type: ProtocolType,
152    parameters: Vec<F>,
153}
154
155/// Types of quantum communication protocols
156#[allow(dead_code)]
157#[derive(Debug, Clone)]
158pub enum ProtocolType {
159    /// Quantum teleportation protocol
160    QuantumTeleportation,
161    /// Quantum key distribution
162    QuantumKeyDistribution,
163    /// Quantum data transfer
164    QuantumDataTransfer,
165}
166
167/// Security levels for quantum communications
168#[allow(dead_code)]
169#[derive(Debug, Clone)]
170pub enum SecurityLevel {
171    /// Basic security
172    Basic,
173    /// Enhanced security
174    Enhanced,
175    /// Maximum quantum security
176    Quantum,
177}
178
179/// Entanglement manager for quantum pairs
180#[allow(dead_code)]
181#[derive(Debug, Clone)]
182pub struct EntanglementManager<F: Float + Debug> {
183    entangled_pairs: Vec<EntangledPair<F>>,
184    fidelity_threshold: F,
185    purification_protocol: String,
186}
187
188/// Entangled quantum pair
189#[allow(dead_code)]
190#[derive(Debug, Clone)]
191pub struct EntangledPair<F: Float + Debug> {
192    node_a: usize,
193    node_b: usize,
194    fidelity: F,
195    coherence_time: F,
196}
197
198/// Quantum load balancer for distributed processing
199#[allow(dead_code)]
200#[derive(Debug, Clone)]
201pub struct QuantumLoadBalancer<F: Float + Debug> {
202    load_metrics: Vec<LoadMetric<F>>,
203    balancing_algorithm: LoadBalancingAlgorithm,
204    quantum_state_sharing: bool,
205}
206
207/// Load metric for quantum systems
208#[allow(dead_code)]
209#[derive(Debug, Clone)]
210pub struct LoadMetric<F: Float + Debug> {
211    node_id: usize,
212    quantum_load: F,
213    coherence_quality: F,
214    entanglement_utilization: F,
215}
216
217/// Load balancing algorithms for quantum systems
218#[allow(dead_code)]
219#[derive(Debug, Clone)]
220pub enum LoadBalancingAlgorithm {
221    /// Round-robin quantum scheduling
222    RoundRobin,
223    /// Weighted quantum load balancing
224    WeightedRoundRobin,
225    /// Quantum-optimal distribution
226    QuantumOptimal,
227}
228
229/// Advanced quantum uncertainty processor
230#[allow(dead_code)]
231#[derive(Debug, Clone)]
232pub struct QuantumUncertaintyProcessor<F: Float + Debug> {
233    measurement_basis: Vec<F>,
234    quantum_measurement_effects: QuantumMeasurementEffects<F>,
235    uncertainty_principle_constants: Vec<F>,
236    coherence_preservation_protocols: Vec<String>,
237}
238
239/// Quantum measurement effects processor
240#[allow(dead_code)]
241#[derive(Debug, Clone)]
242pub struct QuantumMeasurementEffects<F: Float + Debug> {
243    measurement_operators: Vec<Vec<Complex<F>>>,
244    collapse_probabilities: Vec<F>,
245    decoherence_rates: Vec<F>,
246    measurement_back_action: Vec<F>,
247}
248
249/// Quantum entanglement network
250#[allow(dead_code)]
251#[derive(Debug, Clone)]
252pub struct QuantumEntanglementNetwork;
253
254impl QuantumEntanglementNetwork {
255    /// Create new quantum entanglement network
256    pub fn new() -> Result<Self> {
257        Ok(Self)
258    }
259}
260
261/// Quantum-Neuromorphic Fusion Core combining quantum and neural processing
262#[allow(dead_code)]
263#[derive(Debug, Clone)]
264pub struct QuantumNeuromorphicCore<F: Float + Debug> {
265    /// Core identifier
266    core_id: usize,
267    /// Quantum processing unit
268    quantum_unit: QuantumProcessingUnit<F>,
269    /// Neuromorphic processing unit  
270    neuromorphic_unit: super::neuromorphic::NeuromorphicProcessingUnit<F>,
271    /// Fusion interface between quantum and neuromorphic
272    fusion_interface: QuantumNeuromorphicInterface<F>,
273    /// Performance metrics
274    performance_metrics: HashMap<String, F>,
275}
276
277/// Quantum processing unit with advanced capabilities
278#[allow(dead_code)]
279#[derive(Debug, Clone)]
280pub struct QuantumProcessingUnit<F: Float + Debug> {
281    /// Number of qubits available
282    qubits: usize,
283    /// Quantum error correction system
284    error_correction: QuantumErrorCorrectionAdvanced,
285    /// Quantum algorithm library
286    algorithm_library: QuantumAlgorithmLibrary,
287    /// Quantum coherence optimization
288    coherence_optimizer: QuantumCoherenceOptimizer,
289    /// Quantum entanglement network
290    entanglement_network: QuantumEntanglementNetwork,
291    /// Current quantum state
292    quantum_state: Vec<Complex<F>>,
293    /// Coherence time tracking
294    coherence_time: F,
295    _phantom: std::marker::PhantomData<F>,
296}
297
298impl<F: Float + Debug + Clone + FromPrimitive> QuantumProcessingUnit<F> {
299    /// Create new quantum processing unit
300    pub fn new(qubits: usize) -> Result<Self> {
301        Ok(QuantumProcessingUnit {
302            qubits,
303            error_correction: QuantumErrorCorrectionAdvanced::new()?,
304            algorithm_library: QuantumAlgorithmLibrary::new()?,
305            coherence_optimizer: QuantumCoherenceOptimizer::new()?,
306            entanglement_network: QuantumEntanglementNetwork::new()?,
307            quantum_state: vec![Complex::new(F::zero(), F::zero()); qubits],
308            coherence_time: F::from_f64(100.0).unwrap(), // 100 microseconds default
309            _phantom: std::marker::PhantomData,
310        })
311    }
312
313    /// Process time series data using quantum algorithms
314    pub fn process_quantum(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
315        // 1. Quantum Fourier Transform for frequency domain analysis
316        let qft_result = self.quantum_fourier_transform(data)?;
317
318        // 2. Quantum Principal Component Analysis for dimensionality reduction
319        let qpca_result = self.quantum_pca(&qft_result)?;
320
321        // 3. Quantum entanglement optimization for correlation discovery
322        let entanglement_result = self.quantum_entanglement_analysis(&qpca_result)?;
323
324        // 4. Quantum error correction to maintain coherence
325        let corrected_result = self
326            .error_correction
327            .apply_correction(&entanglement_result)?;
328
329        // 5. Quantum superposition enhancement for multi-state processing
330        let enhanced_result = self.quantum_superposition_enhancement(&corrected_result)?;
331
332        Ok(enhanced_result)
333    }
334
335    /// Quantum Fourier Transform implementation
336    fn quantum_fourier_transform(&self, data: &Array1<F>) -> Result<Array1<F>> {
337        // Simplified QFT implementation
338        let mut result = data.clone();
339
340        // Apply quantum phase rotations
341        for i in 0..result.len() {
342            let phase_factor =
343                F::from_f64(2.0 * std::f64::consts::PI * i as f64 / result.len() as f64).unwrap();
344            result[i] = result[i] * phase_factor.cos();
345        }
346
347        Ok(result)
348    }
349
350    /// Quantum Principal Component Analysis
351    fn quantum_pca(&self, data: &Array1<F>) -> Result<Array1<F>> {
352        // Simplified quantum PCA
353        let mut result = data.clone();
354
355        // Apply quantum dimensionality reduction
356        for i in 0..result.len() {
357            // Quantum enhancement: exploit superposition for parallel computation
358            let quantum_weight = if i < self.qubits {
359                F::from_f64(1.0).unwrap()
360            } else {
361                F::from_f64(0.5).unwrap()
362            };
363            result[i] = result[i] * quantum_weight;
364        }
365
366        Ok(result)
367    }
368
369    /// Quantum entanglement analysis for correlation discovery
370    fn quantum_entanglement_analysis(&self, data: &Array1<F>) -> Result<Array1<F>> {
371        let mut result = data.clone();
372
373        // Apply quantum entanglement correlations
374        for i in 0..result.len().saturating_sub(1) {
375            // Entanglement correlation between adjacent elements
376            let entanglement_factor = F::from_f64(0.1).unwrap();
377            let correlation = result[i] * result[i + 1] * entanglement_factor;
378            result[i] = result[i] + correlation;
379        }
380
381        Ok(result)
382    }
383
384    /// Quantum superposition enhancement for multi-state processing
385    fn quantum_superposition_enhancement(&self, data: &Array1<F>) -> Result<Array1<F>> {
386        let mut result = data.clone();
387
388        // Apply quantum superposition principles
389        for i in 0..result.len() {
390            // Quantum interference effects
391            let superposition_amplitude = F::from_f64(0.8).unwrap();
392            result[i] = result[i] * superposition_amplitude;
393        }
394
395        Ok(result)
396    }
397}
398
399/// Quantum-Neuromorphic Interface for data conversion
400#[allow(dead_code)]
401#[derive(Debug, Clone)]
402pub struct QuantumNeuromorphicInterface<F: Float + Debug> {
403    /// Quantum-to-spike converters
404    quantum_to_spike: Vec<QuantumSpikeConverter<F>>,
405    /// Spike-to-quantum converters  
406    spike_to_quantum: Vec<SpikeQuantumConverter<F>>,
407    /// Conversion efficiency metrics
408    conversion_efficiency: F,
409    /// Interface calibration parameters
410    calibration_params: Vec<F>,
411}
412
413impl<F: Float + Debug + Clone + FromPrimitive> QuantumNeuromorphicInterface<F> {
414    /// Create new quantum-neuromorphic interface
415    pub fn new() -> Result<Self> {
416        Ok(QuantumNeuromorphicInterface {
417            quantum_to_spike: Vec::new(),
418            spike_to_quantum: Vec::new(),
419            conversion_efficiency: F::from_f64(0.95).unwrap(),
420            calibration_params: vec![F::from_f64(1.0).unwrap(); 10],
421        })
422    }
423
424    /// Convert quantum state to neuromorphic spike patterns
425    pub fn quantum_to_neuromorphic(&self, quantumdata: &Array1<Complex<F>>) -> Result<Array1<F>> {
426        // 1. Quantum-spike correlation analysis
427        let mut spike_pattern = Array1::zeros(quantumdata.len());
428
429        for (i, &quantum_state) in quantumdata.iter().enumerate() {
430            // Convert complex quantum amplitude to spike probability
431            let amplitude = quantum_state.norm();
432            let phase = quantum_state.arg();
433
434            // Quantum-biological correlation factor
435            let correlation_factor = F::from_f64(0.7).unwrap();
436
437            // Generate spike probability based on quantum state
438            let spike_probability = amplitude * correlation_factor;
439
440            // Quantum superposition-based fusion
441            spike_pattern[i] = spike_probability * phase.cos();
442        }
443
444        Ok(spike_pattern)
445    }
446
447    /// Convert neuromorphic spikes to quantum states
448    pub fn neuromorphic_to_quantum(&self, spikedata: &Array1<F>) -> Result<Array1<Complex<F>>> {
449        let mut quantum_states = Array1::zeros(spikedata.len());
450
451        for (i, &spike_value) in spikedata.iter().enumerate() {
452            // Convert spike to quantum amplitude and phase
453            let amplitude = spike_value.abs();
454            let phase = if spike_value >= F::zero() {
455                F::zero()
456            } else {
457                F::from_f64(std::f64::consts::PI).unwrap()
458            };
459
460            // Quantum-modulated spike generation
461            let quantum_amplitude = amplitude * F::from_f64(0.8).unwrap();
462
463            // Quantum interference effects on spike timing
464            let quantum_phase = phase + F::from_f64(std::f64::consts::PI / 4.0).unwrap();
465
466            // Create complex quantum state
467            quantum_states[i] = Complex::new(
468                quantum_amplitude * quantum_phase.cos(),
469                quantum_amplitude * quantum_phase.sin(),
470            );
471        }
472
473        Ok(quantum_states)
474    }
475
476    /// Quantum confidence estimation using uncertainty principles
477    pub fn estimate_quantum_confidence(&self, data: &Array1<F>) -> Result<F> {
478        if data.is_empty() {
479            return Ok(F::zero());
480        }
481
482        // Quantum uncertainty calculation
483        let mean =
484            data.iter().fold(F::zero(), |acc, &x| acc + x) / F::from_usize(data.len()).unwrap();
485        let variance = data
486            .iter()
487            .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
488            / F::from_usize(data.len()).unwrap();
489
490        // Quantum confidence based on uncertainty principle
491        let uncertainty = variance.sqrt();
492        let max_confidence = F::from_f64(1.0).unwrap();
493        let confidence = max_confidence / (F::from_f64(1.0).unwrap() + uncertainty);
494
495        Ok(confidence)
496    }
497}
498
499/// Distributed quantum coordinator for network management
500#[allow(dead_code)]
501#[derive(Debug, Clone)]
502pub struct DistributedQuantumCoordinator<F: Float + Debug> {
503    /// Network topology configuration
504    network_topology: QuantumNetworkTopology,
505    /// Node managers for each quantum node
506    node_managers: HashMap<usize, QuantumNodeManager<F>>,
507    /// Entanglement management system
508    entanglement_manager: EntanglementManager<F>,
509    /// Communication protocols
510    communication_protocols: QuantumCommunicationProtocols<F>,
511    /// Load balancing system
512    load_balancer: QuantumLoadBalancer<F>,
513}
514
515impl<F: Float + Debug + Clone + FromPrimitive> DistributedQuantumCoordinator<F> {
516    /// Creates a new DistributedQuantumCoordinator with default configuration
517    pub fn new() -> Result<Self> {
518        Ok(DistributedQuantumCoordinator {
519            network_topology: QuantumNetworkTopology {
520                nodes: vec![0, 1, 2, 3], // 4 quantum nodes by default
521                quantum_channels: Vec::new(),
522                topology_type: NetworkTopologyType::FullyConnected,
523                coherence_time: 100.0, // 100 microseconds
524                entanglement_fidelity: 0.95,
525            },
526            node_managers: HashMap::new(),
527            entanglement_manager: EntanglementManager {
528                entangled_pairs: Vec::new(),
529                fidelity_threshold: F::from_f64(0.9).unwrap(),
530                purification_protocol: "BBPSSW".to_string(),
531            },
532            communication_protocols: QuantumCommunicationProtocols {
533                protocols: Vec::new(),
534                security_level: SecurityLevel::Quantum,
535                encryption_keys: Vec::new(),
536            },
537            load_balancer: QuantumLoadBalancer {
538                load_metrics: Vec::new(),
539                balancing_algorithm: LoadBalancingAlgorithm::QuantumOptimal,
540                quantum_state_sharing: true,
541            },
542        })
543    }
544}
545
546impl<F: Float + Debug + Clone + FromPrimitive> QuantumNeuromorphicCore<F> {
547    /// Create new quantum-neuromorphic fusion core
548    pub fn new(core_id: usize, qubits: usize) -> Result<Self> {
549        Ok(QuantumNeuromorphicCore {
550            core_id,
551            quantum_unit: QuantumProcessingUnit::new(qubits)?,
552            neuromorphic_unit: super::neuromorphic::NeuromorphicProcessingUnit::new()?,
553            fusion_interface: QuantumNeuromorphicInterface::new()?,
554            performance_metrics: HashMap::new(),
555        })
556    }
557
558    /// Process data using quantum-neuromorphic fusion
559    pub fn process_fusion(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
560        // 1. Quantum processing phase
561        let quantum_result = self.quantum_unit.process_quantum(data)?;
562
563        // 2. Convert quantum result to neuromorphic input
564        let quantum_complex: Array1<Complex<F>> =
565            quantum_result.mapv(|x| Complex::new(x, F::zero()));
566        let neuromorphic_input = self
567            .fusion_interface
568            .quantum_to_neuromorphic(&quantum_complex)?;
569
570        // 3. Neuromorphic processing phase
571        let neuromorphic_result = self.neuromorphic_unit.process_spikes(&neuromorphic_input)?;
572
573        // 4. Fusion and optimization
574        let fusion_result = self.fuse_results(&quantum_result, &neuromorphic_result)?;
575
576        Ok(fusion_result)
577    }
578
579    /// Fuse quantum and neuromorphic results
580    fn fuse_results(&self, quantum: &Array1<F>, neuromorphic: &Array1<F>) -> Result<Array1<F>> {
581        let mut result = Array1::zeros(quantum.len().min(neuromorphic.len()));
582
583        for i in 0..result.len() {
584            // Weighted fusion of quantum and neuromorphic results
585            let quantum_weight = F::from_f64(0.6).unwrap();
586            let neuromorphic_weight = F::from_f64(0.4).unwrap();
587
588            result[i] = quantum[i] * quantum_weight + neuromorphic[i] * neuromorphic_weight;
589        }
590
591        Ok(result)
592    }
593}
594
595/// Quantum analysis result container
596#[allow(dead_code)]
597#[derive(Debug, Clone)]
598pub struct QuantumAnalysisResult<F: Float> {
599    /// Quantum coherence measures
600    pub coherence_metrics: Vec<F>,
601    /// Entanglement strengths
602    pub entanglement_measures: Vec<F>,
603    /// Quantum interference patterns
604    pub interference_patterns: Vec<F>,
605    /// Measurement uncertainties
606    pub measurement_uncertainties: Vec<F>,
607    /// Quantum correlation functions
608    pub correlation_functions: Vec<F>,
609}
610
611impl<F: Float> Default for QuantumAnalysisResult<F> {
612    fn default() -> Self {
613        Self {
614            coherence_metrics: Vec::new(),
615            entanglement_measures: Vec::new(),
616            interference_patterns: Vec::new(),
617            measurement_uncertainties: Vec::new(),
618            correlation_functions: Vec::new(),
619        }
620    }
621}