scirs2_series/advanced_fusion_intelligence/
meta_learning.rs1use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct MetaOptimizationModel<F: Float + Debug> {
18 model_parameters: Vec<F>,
19 optimization_strategy: OptimizationStrategy,
20 adaptation_rate: F,
21}
22
23#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub enum OptimizationStrategy {
27 GradientBased,
29 EvolutionaryBased,
31 BayesianOptimization,
33 ReinforcementLearning,
35}
36
37#[allow(dead_code)]
39#[derive(Debug, Clone)]
40pub struct LearningStrategyLibrary<F: Float + Debug> {
41 strategies: Vec<LearningStrategy<F>>,
42 performance_history: HashMap<String, F>,
43}
44
45#[allow(dead_code)]
47#[derive(Debug, Clone)]
48pub struct LearningStrategy<F: Float + Debug> {
49 name: String,
50 parameters: Vec<F>,
51 applicability_score: F,
52}
53
54#[allow(dead_code)]
56#[derive(Debug, Clone)]
57pub struct LearningEvaluationSystem<F: Float + Debug> {
58 evaluation_metrics: Vec<EvaluationMetric>,
59 performance_threshold: F,
60 validation_protocol: ValidationMethod,
61}
62
63#[allow(dead_code)]
65#[derive(Debug, Clone)]
66pub enum EvaluationMetric {
67 Accuracy,
69 Speed,
71 Efficiency,
73 Robustness,
75 Interpretability,
77}
78
79#[allow(dead_code)]
81#[derive(Debug, Clone)]
82pub enum ValidationMethod {
83 CrossValidation,
85 HoldOut,
87 LeaveOneOut,
89 Bootstrap,
91}
92
93#[allow(dead_code)]
95#[derive(Debug, Clone)]
96pub struct MetaAdaptationMechanism<F: Float + Debug> {
97 adaptation_rules: Vec<AdaptationRule<F>>,
98 trigger_conditions: Vec<TriggerCondition<F>>,
99 adaptation_history: HashMap<String, Vec<F>>,
100}
101
102#[allow(dead_code)]
104#[derive(Debug, Clone)]
105pub struct AdaptationRule<F: Float + Debug> {
106 rule_id: String,
107 condition: String,
108 action: String,
109 priority: F,
110}
111
112#[allow(dead_code)]
114#[derive(Debug, Clone)]
115pub struct TriggerCondition<F: Float + Debug> {
116 metric_name: String,
117 threshold: F,
118 comparison: ComparisonDirection,
119}
120
121#[allow(dead_code)]
123#[derive(Debug, Clone)]
124pub enum ComparisonDirection {
125 GreaterThan,
127 LessThan,
129 EqualTo,
131 WithinRange,
133}
134
135#[allow(dead_code)]
137#[derive(Debug, Clone)]
138pub struct KnowledgeTransferSystem<F: Float + Debug> {
139 knowledge_base: Vec<KnowledgeItem<F>>,
140 transfer_mechanisms: Vec<TransferMechanism>,
141 similarity_metrics: HashMap<String, F>,
142 transfer_efficiency: F,
143}
144
145#[allow(dead_code)]
147#[derive(Debug, Clone)]
148pub struct KnowledgeItem<F: Float + Debug> {
149 item_id: String,
150 knowledge_type: String,
151 parameters: Vec<F>,
152 source_task: String,
153 applicability_score: F,
154}
155
156#[allow(dead_code)]
158#[derive(Debug, Clone)]
159pub enum TransferMechanism {
160 ParameterTransfer,
162 FeatureTransfer,
164 ModelTransfer,
166 RepresentationTransfer,
168 MetaTransfer,
170}
171
172impl<F: Float + Debug + Clone + FromPrimitive> MetaOptimizationModel<F> {
173 pub fn new(strategy: OptimizationStrategy) -> Self {
175 MetaOptimizationModel {
176 model_parameters: vec![F::from_f64(0.1).unwrap(); 10],
177 optimization_strategy: strategy,
178 adaptation_rate: F::from_f64(0.01).unwrap(),
179 }
180 }
181
182 pub fn optimize_parameters(&mut self, performance_data: &Array1<F>) -> Result<()> {
184 match self.optimization_strategy {
185 OptimizationStrategy::GradientBased => {
186 self.gradient_based_optimization(performance_data)?;
187 }
188 OptimizationStrategy::EvolutionaryBased => {
189 self.evolutionary_optimization(performance_data)?;
190 }
191 OptimizationStrategy::BayesianOptimization => {
192 self.bayesian_optimization(performance_data)?;
193 }
194 OptimizationStrategy::ReinforcementLearning => {
195 self.reinforcement_learning_optimization(performance_data)?;
196 }
197 }
198 Ok(())
199 }
200
201 fn gradient_based_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
203 if performance_data.is_empty() {
204 return Ok(());
205 }
206
207 let performance_mean = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
208 / F::from_usize(performance_data.len()).unwrap();
209
210 for param in &mut self.model_parameters {
212 let gradient = performance_mean - F::from_f64(0.5).unwrap();
213 *param = *param + self.adaptation_rate * gradient;
214 }
215 Ok(())
216 }
217
218 fn evolutionary_optimization(&mut self, _performance_data: &Array1<F>) -> Result<()> {
220 for param in &mut self.model_parameters {
222 let mutation = F::from_f64(0.01).unwrap()
223 * (F::from_f64(scirs2_core::random::random::<f64>()).unwrap()
224 - F::from_f64(0.5).unwrap());
225 *param = *param + mutation;
226 }
227 Ok(())
228 }
229
230 fn bayesian_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
232 if performance_data.is_empty() {
234 return Ok(());
235 }
236
237 let performance_variance = {
238 let mean = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
239 / F::from_usize(performance_data.len()).unwrap();
240 performance_data
241 .iter()
242 .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
243 / F::from_usize(performance_data.len()).unwrap()
244 };
245
246 let uncertainty_factor =
247 F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + performance_variance);
248
249 for param in &mut self.model_parameters {
250 *param = *param * uncertainty_factor;
251 }
252 Ok(())
253 }
254
255 fn reinforcement_learning_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
257 if performance_data.is_empty() {
258 return Ok(());
259 }
260
261 let reward = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
263 / F::from_usize(performance_data.len()).unwrap();
264
265 let learning_rate = F::from_f64(0.1).unwrap();
266 let discount_factor = F::from_f64(0.9).unwrap();
267
268 for param in &mut self.model_parameters {
269 *param = *param + learning_rate * reward * discount_factor;
270 }
271 Ok(())
272 }
273}
274
275impl<F: Float + Debug + Clone + FromPrimitive> Default for LearningStrategyLibrary<F> {
276 fn default() -> Self {
277 Self::new()
278 }
279}
280
281impl<F: Float + Debug + Clone + FromPrimitive> LearningStrategyLibrary<F> {
282 pub fn new() -> Self {
284 LearningStrategyLibrary {
285 strategies: Vec::new(),
286 performance_history: HashMap::new(),
287 }
288 }
289
290 pub fn add_strategy(&mut self, strategy: LearningStrategy<F>) {
292 self.strategies.push(strategy);
293 }
294
295 pub fn select_best_strategy(
297 &self,
298 taskcharacteristics: &Array1<F>,
299 ) -> Option<&LearningStrategy<F>> {
300 if self.strategies.is_empty() {
301 return None;
302 }
303
304 self.strategies.iter().max_by(|a, b| {
306 a.applicability_score
307 .partial_cmp(&b.applicability_score)
308 .unwrap()
309 })
310 }
311
312 pub fn update_performance(&mut self, strategy_name: &str, performance: F) {
314 self.performance_history
315 .insert(strategy_name.to_string(), performance);
316 }
317
318 pub fn recommend_adaptation(&self, current_performance: F) -> Vec<String> {
320 let mut recommendations = Vec::new();
321
322 let performance_threshold = F::from_f64(0.7).unwrap();
323 if current_performance < performance_threshold {
324 recommendations.push("Consider increasing learning rate".to_string());
325 recommendations.push("Try different optimization strategy".to_string());
326 recommendations.push("Add regularization".to_string());
327 }
328
329 recommendations
330 }
331}
332
333impl<F: Float + Debug + Clone + FromPrimitive> LearningEvaluationSystem<F> {
334 pub fn new(threshold: F) -> Self {
336 LearningEvaluationSystem {
337 evaluation_metrics: vec![
338 EvaluationMetric::Accuracy,
339 EvaluationMetric::Speed,
340 EvaluationMetric::Efficiency,
341 ],
342 performance_threshold: threshold,
343 validation_protocol: ValidationMethod::CrossValidation,
344 }
345 }
346
347 pub fn evaluate_performance(
349 &self,
350 predictions: &Array1<F>,
351 ground_truth: &Array1<F>,
352 ) -> Result<HashMap<String, F>> {
353 let mut results = HashMap::new();
354
355 for metric in &self.evaluation_metrics {
356 let score = match metric {
357 EvaluationMetric::Accuracy => self.calculate_accuracy(predictions, ground_truth)?,
358 EvaluationMetric::Speed => {
359 F::from_f64(0.8).unwrap()
361 }
362 EvaluationMetric::Efficiency => self.calculate_efficiency(predictions)?,
363 EvaluationMetric::Robustness => self.calculate_robustness(predictions)?,
364 EvaluationMetric::Interpretability => {
365 F::from_f64(0.6).unwrap()
367 }
368 };
369
370 results.insert(format!("{:?}", metric), score);
371 }
372
373 Ok(results)
374 }
375
376 fn calculate_accuracy(&self, predictions: &Array1<F>, ground_truth: &Array1<F>) -> Result<F> {
378 if predictions.len() != ground_truth.len() {
379 return Ok(F::zero());
380 }
381
382 let mut correct = 0;
383 let threshold = F::from_f64(0.5).unwrap();
384
385 for (pred, truth) in predictions.iter().zip(ground_truth.iter()) {
386 let pred_binary = if *pred > threshold {
387 F::from_f64(1.0).unwrap()
388 } else {
389 F::zero()
390 };
391 let truth_binary = if *truth > threshold {
392 F::from_f64(1.0).unwrap()
393 } else {
394 F::zero()
395 };
396
397 if (pred_binary - truth_binary).abs() < F::from_f64(0.1).unwrap() {
398 correct += 1;
399 }
400 }
401
402 let accuracy = F::from_usize(correct).unwrap() / F::from_usize(predictions.len()).unwrap();
403 Ok(accuracy)
404 }
405
406 fn calculate_efficiency(&self, predictions: &Array1<F>) -> Result<F> {
408 if predictions.is_empty() {
409 return Ok(F::zero());
410 }
411
412 let confidence_sum = predictions.iter().fold(F::zero(), |acc, &x| acc + x.abs());
414 let efficiency = confidence_sum / F::from_usize(predictions.len()).unwrap();
415
416 Ok(efficiency)
417 }
418
419 fn calculate_robustness(&self, predictions: &Array1<F>) -> Result<F> {
421 if predictions.len() < 2 {
422 return Ok(F::zero());
423 }
424
425 let mean = predictions.iter().fold(F::zero(), |acc, &x| acc + x)
427 / F::from_usize(predictions.len()).unwrap();
428 let variance = predictions
429 .iter()
430 .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
431 / F::from_usize(predictions.len()).unwrap();
432
433 let robustness = F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + variance);
435 Ok(robustness)
436 }
437}
438
439impl<F: Float + Debug + Clone + FromPrimitive> Default for MetaAdaptationMechanism<F> {
440 fn default() -> Self {
441 Self::new()
442 }
443}
444
445impl<F: Float + Debug + Clone + FromPrimitive> MetaAdaptationMechanism<F> {
446 pub fn new() -> Self {
448 MetaAdaptationMechanism {
449 adaptation_rules: Vec::new(),
450 trigger_conditions: Vec::new(),
451 adaptation_history: HashMap::new(),
452 }
453 }
454
455 pub fn add_rule(&mut self, rule: AdaptationRule<F>) {
457 self.adaptation_rules.push(rule);
458 }
459
460 pub fn add_trigger(&mut self, condition: TriggerCondition<F>) {
462 self.trigger_conditions.push(condition);
463 }
464
465 pub fn should_adapt(&self, current_metrics: &HashMap<String, F>) -> bool {
467 for condition in &self.trigger_conditions {
468 if let Some(&metric_value) = current_metrics.get(&condition.metric_name) {
469 let triggered = match condition.comparison {
470 ComparisonDirection::GreaterThan => metric_value > condition.threshold,
471 ComparisonDirection::LessThan => metric_value < condition.threshold,
472 ComparisonDirection::EqualTo => {
473 (metric_value - condition.threshold).abs() < F::from_f64(0.01).unwrap()
474 }
475 ComparisonDirection::WithinRange => {
476 let range = F::from_f64(0.1).unwrap();
477 (metric_value - condition.threshold).abs() <= range
478 }
479 };
480
481 if triggered {
482 return true;
483 }
484 }
485 }
486 false
487 }
488
489 pub fn apply_adaptation(&mut self, current_metrics: &HashMap<String, F>) -> Vec<String> {
491 let mut applied_actions = Vec::new();
492
493 if self.should_adapt(current_metrics) {
494 for rule in &self.adaptation_rules {
495 applied_actions.push(rule.action.clone());
497
498 let history_key = format!("rule_{}", rule.rule_id);
500 let history_entry = self.adaptation_history.entry(history_key).or_default();
501 history_entry.push(rule.priority);
502 }
503 }
504
505 applied_actions
506 }
507}
508
509impl<F: Float + Debug + Clone + FromPrimitive> Default for KnowledgeTransferSystem<F> {
510 fn default() -> Self {
511 Self::new()
512 }
513}
514
515impl<F: Float + Debug + Clone + FromPrimitive> KnowledgeTransferSystem<F> {
516 pub fn new() -> Self {
518 KnowledgeTransferSystem {
519 knowledge_base: Vec::new(),
520 transfer_mechanisms: vec![
521 TransferMechanism::ParameterTransfer,
522 TransferMechanism::FeatureTransfer,
523 ],
524 similarity_metrics: HashMap::new(),
525 transfer_efficiency: F::from_f64(0.8).unwrap(),
526 }
527 }
528
529 pub fn add_knowledge(&mut self, item: KnowledgeItem<F>) {
531 self.knowledge_base.push(item);
532 }
533
534 pub fn transfer_knowledge(
536 &self,
537 source_task: &str,
538 target_task: &str,
539 task_similarity: F,
540 ) -> Result<Vec<KnowledgeItem<F>>> {
541 let mut transferred_knowledge = Vec::new();
542
543 for item in &self.knowledge_base {
545 if item.source_task == source_task {
546 let mut adapted_item = item.clone();
548 adapted_item.source_task = target_task.to_string();
549
550 adapted_item.applicability_score =
552 adapted_item.applicability_score * task_similarity * self.transfer_efficiency;
553
554 for mechanism in &self.transfer_mechanisms {
556 match mechanism {
557 TransferMechanism::ParameterTransfer => {
558 for param in &mut adapted_item.parameters {
560 *param = *param * task_similarity;
561 }
562 }
563 TransferMechanism::FeatureTransfer => {
564 adapted_item.applicability_score =
566 adapted_item.applicability_score * F::from_f64(0.9).unwrap();
567 }
568 _ => {
569 }
571 }
572 }
573
574 transferred_knowledge.push(adapted_item);
575 }
576 }
577
578 Ok(transferred_knowledge)
579 }
580
581 pub fn calculate_similarity(
583 &self,
584 task1_features: &Array1<F>,
585 task2_features: &Array1<F>,
586 ) -> Result<F> {
587 if task1_features.len() != task2_features.len() {
588 return Ok(F::zero());
589 }
590
591 let dot_product = task1_features
593 .iter()
594 .zip(task2_features.iter())
595 .fold(F::zero(), |acc, (&a, &b)| acc + a * b);
596
597 let norm1 = task1_features
598 .iter()
599 .fold(F::zero(), |acc, &x| acc + x * x)
600 .sqrt();
601
602 let norm2 = task2_features
603 .iter()
604 .fold(F::zero(), |acc, &x| acc + x * x)
605 .sqrt();
606
607 if norm1 == F::zero() || norm2 == F::zero() {
608 return Ok(F::zero());
609 }
610
611 let similarity = dot_product / (norm1 * norm2);
612 Ok(similarity)
613 }
614}