scirs2_series/advanced_fusion_intelligence/
meta_learning.rs

1//! Meta-Learning Components for Advanced Fusion Intelligence
2//!
3//! This module contains all meta-learning related structures and implementations
4//! for the advanced fusion intelligence system, including optimization models,
5//! learning strategies, adaptation mechanisms, and knowledge transfer systems.
6
7use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14/// Meta-optimization model for learning algorithms
15#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct MetaOptimizationModel<F: Float + Debug> {
18    model_parameters: Vec<F>,
19    optimization_strategy: OptimizationStrategy,
20    adaptation_rate: F,
21}
22
23/// Available optimization strategies for meta-learning
24#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub enum OptimizationStrategy {
27    /// Gradient-based optimization
28    GradientBased,
29    /// Evolutionary algorithm optimization
30    EvolutionaryBased,
31    /// Bayesian optimization approach
32    BayesianOptimization,
33    /// Reinforcement learning optimization
34    ReinforcementLearning,
35}
36
37/// Library of available learning strategies
38#[allow(dead_code)]
39#[derive(Debug, Clone)]
40pub struct LearningStrategyLibrary<F: Float + Debug> {
41    strategies: Vec<LearningStrategy<F>>,
42    performance_history: HashMap<String, F>,
43}
44
45/// Individual learning strategy configuration
46#[allow(dead_code)]
47#[derive(Debug, Clone)]
48pub struct LearningStrategy<F: Float + Debug> {
49    name: String,
50    parameters: Vec<F>,
51    applicability_score: F,
52}
53
54/// System for evaluating learning performance
55#[allow(dead_code)]
56#[derive(Debug, Clone)]
57pub struct LearningEvaluationSystem<F: Float + Debug> {
58    evaluation_metrics: Vec<EvaluationMetric>,
59    performance_threshold: F,
60    validation_protocol: ValidationMethod,
61}
62
63/// Metrics for evaluating learning performance
64#[allow(dead_code)]
65#[derive(Debug, Clone)]
66pub enum EvaluationMetric {
67    /// Accuracy metric
68    Accuracy,
69    /// Speed metric
70    Speed,
71    /// Efficiency metric
72    Efficiency,
73    /// Robustness metric
74    Robustness,
75    /// Interpretability metric
76    Interpretability,
77}
78
79/// Methods for validating learning performance
80#[allow(dead_code)]
81#[derive(Debug, Clone)]
82pub enum ValidationMethod {
83    /// Cross-validation method
84    CrossValidation,
85    /// Hold-out validation method
86    HoldOut,
87    /// Leave-one-out validation
88    LeaveOneOut,
89    /// Bootstrap validation
90    Bootstrap,
91}
92
93/// Mechanism for meta-adaptation of learning strategies
94#[allow(dead_code)]
95#[derive(Debug, Clone)]
96pub struct MetaAdaptationMechanism<F: Float + Debug> {
97    adaptation_rules: Vec<AdaptationRule<F>>,
98    trigger_conditions: Vec<TriggerCondition<F>>,
99    adaptation_history: HashMap<String, Vec<F>>,
100}
101
102/// Rule for adaptive behavior modification
103#[allow(dead_code)]
104#[derive(Debug, Clone)]
105pub struct AdaptationRule<F: Float + Debug> {
106    rule_id: String,
107    condition: String,
108    action: String,
109    priority: F,
110}
111
112/// Condition that triggers adaptive behavior
113#[allow(dead_code)]
114#[derive(Debug, Clone)]
115pub struct TriggerCondition<F: Float + Debug> {
116    metric_name: String,
117    threshold: F,
118    comparison: ComparisonDirection,
119}
120
121/// Direction for threshold comparisons
122#[allow(dead_code)]
123#[derive(Debug, Clone)]
124pub enum ComparisonDirection {
125    /// Greater than threshold
126    GreaterThan,
127    /// Less than threshold
128    LessThan,
129    /// Equal to threshold
130    EqualTo,
131    /// Within range of threshold
132    WithinRange,
133}
134
135/// System for transferring knowledge between tasks
136#[allow(dead_code)]
137#[derive(Debug, Clone)]
138pub struct KnowledgeTransferSystem<F: Float + Debug> {
139    knowledge_base: Vec<KnowledgeItem<F>>,
140    transfer_mechanisms: Vec<TransferMechanism>,
141    similarity_metrics: HashMap<String, F>,
142    transfer_efficiency: F,
143}
144
145/// Individual knowledge item for transfer
146#[allow(dead_code)]
147#[derive(Debug, Clone)]
148pub struct KnowledgeItem<F: Float + Debug> {
149    item_id: String,
150    knowledge_type: String,
151    parameters: Vec<F>,
152    source_task: String,
153    applicability_score: F,
154}
155
156/// Mechanisms for knowledge transfer
157#[allow(dead_code)]
158#[derive(Debug, Clone)]
159pub enum TransferMechanism {
160    /// Parameter transfer
161    ParameterTransfer,
162    /// Feature transfer
163    FeatureTransfer,
164    /// Model transfer
165    ModelTransfer,
166    /// Representation transfer
167    RepresentationTransfer,
168    /// Meta-transfer
169    MetaTransfer,
170}
171
172impl<F: Float + Debug + Clone + FromPrimitive> MetaOptimizationModel<F> {
173    /// Create new meta-optimization model
174    pub fn new(strategy: OptimizationStrategy) -> Self {
175        MetaOptimizationModel {
176            model_parameters: vec![F::from_f64(0.1).unwrap(); 10],
177            optimization_strategy: strategy,
178            adaptation_rate: F::from_f64(0.01).unwrap(),
179        }
180    }
181
182    /// Optimize model parameters based on performance feedback
183    pub fn optimize_parameters(&mut self, performance_data: &Array1<F>) -> Result<()> {
184        match self.optimization_strategy {
185            OptimizationStrategy::GradientBased => {
186                self.gradient_based_optimization(performance_data)?;
187            }
188            OptimizationStrategy::EvolutionaryBased => {
189                self.evolutionary_optimization(performance_data)?;
190            }
191            OptimizationStrategy::BayesianOptimization => {
192                self.bayesian_optimization(performance_data)?;
193            }
194            OptimizationStrategy::ReinforcementLearning => {
195                self.reinforcement_learning_optimization(performance_data)?;
196            }
197        }
198        Ok(())
199    }
200
201    /// Gradient-based parameter optimization
202    fn gradient_based_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
203        if performance_data.is_empty() {
204            return Ok(());
205        }
206
207        let performance_mean = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
208            / F::from_usize(performance_data.len()).unwrap();
209
210        // Simple gradient approximation
211        for param in &mut self.model_parameters {
212            let gradient = performance_mean - F::from_f64(0.5).unwrap();
213            *param = *param + self.adaptation_rate * gradient;
214        }
215        Ok(())
216    }
217
218    /// Evolutionary algorithm optimization
219    fn evolutionary_optimization(&mut self, _performance_data: &Array1<F>) -> Result<()> {
220        // Simple mutation-based evolution
221        for param in &mut self.model_parameters {
222            let mutation = F::from_f64(0.01).unwrap()
223                * (F::from_f64(scirs2_core::random::random::<f64>()).unwrap()
224                    - F::from_f64(0.5).unwrap());
225            *param = *param + mutation;
226        }
227        Ok(())
228    }
229
230    /// Bayesian optimization approach
231    fn bayesian_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
232        // Simplified Bayesian update
233        if performance_data.is_empty() {
234            return Ok(());
235        }
236
237        let performance_variance = {
238            let mean = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
239                / F::from_usize(performance_data.len()).unwrap();
240            performance_data
241                .iter()
242                .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
243                / F::from_usize(performance_data.len()).unwrap()
244        };
245
246        let uncertainty_factor =
247            F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + performance_variance);
248
249        for param in &mut self.model_parameters {
250            *param = *param * uncertainty_factor;
251        }
252        Ok(())
253    }
254
255    /// Reinforcement learning optimization
256    fn reinforcement_learning_optimization(&mut self, performance_data: &Array1<F>) -> Result<()> {
257        if performance_data.is_empty() {
258            return Ok(());
259        }
260
261        // Simple Q-learning inspired update
262        let reward = performance_data.iter().fold(F::zero(), |acc, &x| acc + x)
263            / F::from_usize(performance_data.len()).unwrap();
264
265        let learning_rate = F::from_f64(0.1).unwrap();
266        let discount_factor = F::from_f64(0.9).unwrap();
267
268        for param in &mut self.model_parameters {
269            *param = *param + learning_rate * reward * discount_factor;
270        }
271        Ok(())
272    }
273}
274
275impl<F: Float + Debug + Clone + FromPrimitive> Default for LearningStrategyLibrary<F> {
276    fn default() -> Self {
277        Self::new()
278    }
279}
280
281impl<F: Float + Debug + Clone + FromPrimitive> LearningStrategyLibrary<F> {
282    /// Create new learning strategy library
283    pub fn new() -> Self {
284        LearningStrategyLibrary {
285            strategies: Vec::new(),
286            performance_history: HashMap::new(),
287        }
288    }
289
290    /// Add a new learning strategy
291    pub fn add_strategy(&mut self, strategy: LearningStrategy<F>) {
292        self.strategies.push(strategy);
293    }
294
295    /// Select best strategy based on performance history
296    pub fn select_best_strategy(
297        &self,
298        taskcharacteristics: &Array1<F>,
299    ) -> Option<&LearningStrategy<F>> {
300        if self.strategies.is_empty() {
301            return None;
302        }
303
304        // Find strategy with highest applicability score for given task
305        self.strategies.iter().max_by(|a, b| {
306            a.applicability_score
307                .partial_cmp(&b.applicability_score)
308                .unwrap()
309        })
310    }
311
312    /// Update strategy performance
313    pub fn update_performance(&mut self, strategy_name: &str, performance: F) {
314        self.performance_history
315            .insert(strategy_name.to_string(), performance);
316    }
317
318    /// Recommend strategy adaptation
319    pub fn recommend_adaptation(&self, current_performance: F) -> Vec<String> {
320        let mut recommendations = Vec::new();
321
322        let performance_threshold = F::from_f64(0.7).unwrap();
323        if current_performance < performance_threshold {
324            recommendations.push("Consider increasing learning rate".to_string());
325            recommendations.push("Try different optimization strategy".to_string());
326            recommendations.push("Add regularization".to_string());
327        }
328
329        recommendations
330    }
331}
332
333impl<F: Float + Debug + Clone + FromPrimitive> LearningEvaluationSystem<F> {
334    /// Create new learning evaluation system
335    pub fn new(threshold: F) -> Self {
336        LearningEvaluationSystem {
337            evaluation_metrics: vec![
338                EvaluationMetric::Accuracy,
339                EvaluationMetric::Speed,
340                EvaluationMetric::Efficiency,
341            ],
342            performance_threshold: threshold,
343            validation_protocol: ValidationMethod::CrossValidation,
344        }
345    }
346
347    /// Evaluate learning performance
348    pub fn evaluate_performance(
349        &self,
350        predictions: &Array1<F>,
351        ground_truth: &Array1<F>,
352    ) -> Result<HashMap<String, F>> {
353        let mut results = HashMap::new();
354
355        for metric in &self.evaluation_metrics {
356            let score = match metric {
357                EvaluationMetric::Accuracy => self.calculate_accuracy(predictions, ground_truth)?,
358                EvaluationMetric::Speed => {
359                    // Placeholder for speed measurement
360                    F::from_f64(0.8).unwrap()
361                }
362                EvaluationMetric::Efficiency => self.calculate_efficiency(predictions)?,
363                EvaluationMetric::Robustness => self.calculate_robustness(predictions)?,
364                EvaluationMetric::Interpretability => {
365                    // Placeholder for interpretability measurement
366                    F::from_f64(0.6).unwrap()
367                }
368            };
369
370            results.insert(format!("{:?}", metric), score);
371        }
372
373        Ok(results)
374    }
375
376    /// Calculate accuracy metric
377    fn calculate_accuracy(&self, predictions: &Array1<F>, ground_truth: &Array1<F>) -> Result<F> {
378        if predictions.len() != ground_truth.len() {
379            return Ok(F::zero());
380        }
381
382        let mut correct = 0;
383        let threshold = F::from_f64(0.5).unwrap();
384
385        for (pred, truth) in predictions.iter().zip(ground_truth.iter()) {
386            let pred_binary = if *pred > threshold {
387                F::from_f64(1.0).unwrap()
388            } else {
389                F::zero()
390            };
391            let truth_binary = if *truth > threshold {
392                F::from_f64(1.0).unwrap()
393            } else {
394                F::zero()
395            };
396
397            if (pred_binary - truth_binary).abs() < F::from_f64(0.1).unwrap() {
398                correct += 1;
399            }
400        }
401
402        let accuracy = F::from_usize(correct).unwrap() / F::from_usize(predictions.len()).unwrap();
403        Ok(accuracy)
404    }
405
406    /// Calculate efficiency metric
407    fn calculate_efficiency(&self, predictions: &Array1<F>) -> Result<F> {
408        if predictions.is_empty() {
409            return Ok(F::zero());
410        }
411
412        // Simple efficiency based on prediction confidence
413        let confidence_sum = predictions.iter().fold(F::zero(), |acc, &x| acc + x.abs());
414        let efficiency = confidence_sum / F::from_usize(predictions.len()).unwrap();
415
416        Ok(efficiency)
417    }
418
419    /// Calculate robustness metric
420    fn calculate_robustness(&self, predictions: &Array1<F>) -> Result<F> {
421        if predictions.len() < 2 {
422            return Ok(F::zero());
423        }
424
425        // Robustness based on prediction stability
426        let mean = predictions.iter().fold(F::zero(), |acc, &x| acc + x)
427            / F::from_usize(predictions.len()).unwrap();
428        let variance = predictions
429            .iter()
430            .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
431            / F::from_usize(predictions.len()).unwrap();
432
433        // Lower variance indicates higher robustness
434        let robustness = F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + variance);
435        Ok(robustness)
436    }
437}
438
439impl<F: Float + Debug + Clone + FromPrimitive> Default for MetaAdaptationMechanism<F> {
440    fn default() -> Self {
441        Self::new()
442    }
443}
444
445impl<F: Float + Debug + Clone + FromPrimitive> MetaAdaptationMechanism<F> {
446    /// Create new meta-adaptation mechanism
447    pub fn new() -> Self {
448        MetaAdaptationMechanism {
449            adaptation_rules: Vec::new(),
450            trigger_conditions: Vec::new(),
451            adaptation_history: HashMap::new(),
452        }
453    }
454
455    /// Add adaptation rule
456    pub fn add_rule(&mut self, rule: AdaptationRule<F>) {
457        self.adaptation_rules.push(rule);
458    }
459
460    /// Add trigger condition
461    pub fn add_trigger(&mut self, condition: TriggerCondition<F>) {
462        self.trigger_conditions.push(condition);
463    }
464
465    /// Check if adaptation should be triggered
466    pub fn should_adapt(&self, current_metrics: &HashMap<String, F>) -> bool {
467        for condition in &self.trigger_conditions {
468            if let Some(&metric_value) = current_metrics.get(&condition.metric_name) {
469                let triggered = match condition.comparison {
470                    ComparisonDirection::GreaterThan => metric_value > condition.threshold,
471                    ComparisonDirection::LessThan => metric_value < condition.threshold,
472                    ComparisonDirection::EqualTo => {
473                        (metric_value - condition.threshold).abs() < F::from_f64(0.01).unwrap()
474                    }
475                    ComparisonDirection::WithinRange => {
476                        let range = F::from_f64(0.1).unwrap();
477                        (metric_value - condition.threshold).abs() <= range
478                    }
479                };
480
481                if triggered {
482                    return true;
483                }
484            }
485        }
486        false
487    }
488
489    /// Apply adaptation rules
490    pub fn apply_adaptation(&mut self, current_metrics: &HashMap<String, F>) -> Vec<String> {
491        let mut applied_actions = Vec::new();
492
493        if self.should_adapt(current_metrics) {
494            for rule in &self.adaptation_rules {
495                // Simple rule application - in practice would be more sophisticated
496                applied_actions.push(rule.action.clone());
497
498                // Update adaptation history
499                let history_key = format!("rule_{}", rule.rule_id);
500                let history_entry = self.adaptation_history.entry(history_key).or_default();
501                history_entry.push(rule.priority);
502            }
503        }
504
505        applied_actions
506    }
507}
508
509impl<F: Float + Debug + Clone + FromPrimitive> Default for KnowledgeTransferSystem<F> {
510    fn default() -> Self {
511        Self::new()
512    }
513}
514
515impl<F: Float + Debug + Clone + FromPrimitive> KnowledgeTransferSystem<F> {
516    /// Create new knowledge transfer system
517    pub fn new() -> Self {
518        KnowledgeTransferSystem {
519            knowledge_base: Vec::new(),
520            transfer_mechanisms: vec![
521                TransferMechanism::ParameterTransfer,
522                TransferMechanism::FeatureTransfer,
523            ],
524            similarity_metrics: HashMap::new(),
525            transfer_efficiency: F::from_f64(0.8).unwrap(),
526        }
527    }
528
529    /// Add knowledge item to the base
530    pub fn add_knowledge(&mut self, item: KnowledgeItem<F>) {
531        self.knowledge_base.push(item);
532    }
533
534    /// Transfer knowledge from source to target task
535    pub fn transfer_knowledge(
536        &self,
537        source_task: &str,
538        target_task: &str,
539        task_similarity: F,
540    ) -> Result<Vec<KnowledgeItem<F>>> {
541        let mut transferred_knowledge = Vec::new();
542
543        // Find relevant knowledge from source task
544        for item in &self.knowledge_base {
545            if item.source_task == source_task {
546                // Create adapted knowledge item for target task
547                let mut adapted_item = item.clone();
548                adapted_item.source_task = target_task.to_string();
549
550                // Adjust applicability based on task similarity
551                adapted_item.applicability_score =
552                    adapted_item.applicability_score * task_similarity * self.transfer_efficiency;
553
554                // Apply transfer mechanism adaptations
555                for mechanism in &self.transfer_mechanisms {
556                    match mechanism {
557                        TransferMechanism::ParameterTransfer => {
558                            // Scale parameters based on similarity
559                            for param in &mut adapted_item.parameters {
560                                *param = *param * task_similarity;
561                            }
562                        }
563                        TransferMechanism::FeatureTransfer => {
564                            // Feature-based adaptation
565                            adapted_item.applicability_score =
566                                adapted_item.applicability_score * F::from_f64(0.9).unwrap();
567                        }
568                        _ => {
569                            // Other transfer mechanisms
570                        }
571                    }
572                }
573
574                transferred_knowledge.push(adapted_item);
575            }
576        }
577
578        Ok(transferred_knowledge)
579    }
580
581    /// Calculate task similarity
582    pub fn calculate_similarity(
583        &self,
584        task1_features: &Array1<F>,
585        task2_features: &Array1<F>,
586    ) -> Result<F> {
587        if task1_features.len() != task2_features.len() {
588            return Ok(F::zero());
589        }
590
591        // Cosine similarity
592        let dot_product = task1_features
593            .iter()
594            .zip(task2_features.iter())
595            .fold(F::zero(), |acc, (&a, &b)| acc + a * b);
596
597        let norm1 = task1_features
598            .iter()
599            .fold(F::zero(), |acc, &x| acc + x * x)
600            .sqrt();
601
602        let norm2 = task2_features
603            .iter()
604            .fold(F::zero(), |acc, &x| acc + x * x)
605            .sqrt();
606
607        if norm1 == F::zero() || norm2 == F::zero() {
608            return Ok(F::zero());
609        }
610
611        let similarity = dot_product / (norm1 * norm2);
612        Ok(similarity)
613    }
614}