1use crate::error::OptimizeError;
10use ndarray::{Array1, Array2, ArrayView1};
11use std::collections::HashMap;
12use std::sync::{Arc, Mutex};
13
14type CompiledObjectiveFn = Box<dyn Fn(&ArrayView1<f64>) -> f64 + Send + Sync>;
16
17type CompiledGradientFn = Box<dyn Fn(&ArrayView1<f64>) -> Array1<f64> + Send + Sync>;
19
20type CompiledHessianFn = Box<dyn Fn(&ArrayView1<f64>) -> Array2<f64> + Send + Sync>;
22
23type JitCompilationResult = Result<CompiledObjectiveFn, OptimizeError>;
25
26type DerivativeCompilationResult =
28 Result<(Option<CompiledGradientFn>, Option<CompiledHessianFn>), OptimizeError>;
29
30type OptimizedFunctionResult = Result<Box<dyn Fn(&ArrayView1<f64>) -> f64>, OptimizeError>;
32
33#[derive(Debug, Clone)]
35pub struct JitOptions {
36 pub enable_jit: bool,
38 pub enable_vectorization: bool,
40 pub optimization_level: u8,
42 pub enable_specialization: bool,
44 pub enable_caching: bool,
46 pub max_cache_size: usize,
48 pub enable_pgo: bool,
50}
51
52impl Default for JitOptions {
53 fn default() -> Self {
54 Self {
55 enable_jit: true,
56 enable_vectorization: true,
57 optimization_level: 2,
58 enable_specialization: true,
59 enable_caching: true,
60 max_cache_size: 100,
61 enable_pgo: false, }
63 }
64}
65
66#[derive(Debug, Clone, PartialEq, Eq, Hash)]
68pub enum FunctionPattern {
69 Quadratic,
71 SumOfSquares,
73 Polynomial(usize),
75 Exponential,
77 Trigonometric,
79 Separable,
81 General,
83}
84
85pub struct CompiledFunction {
87 pub signature: u64,
89 pub pattern: FunctionPattern,
91 pub implementation: CompiledObjectiveFn,
93 pub gradient: Option<CompiledGradientFn>,
95 pub hessian: Option<CompiledHessianFn>,
97 pub metadata: FunctionMetadata,
99}
100
101#[derive(Debug, Clone)]
103pub struct FunctionMetadata {
104 pub n_vars: usize,
106 pub compile_time_ms: u64,
108 pub call_count: usize,
110 pub avg_execution_time_ns: u64,
112 pub is_vectorized: bool,
114 pub optimization_flags: Vec<String>,
116}
117
118pub struct JitCompiler {
120 options: JitOptions,
121 cache: Arc<Mutex<HashMap<u64, Arc<CompiledFunction>>>>,
122 pattern_detector: PatternDetector,
123 #[allow(dead_code)]
124 profiler: Option<FunctionProfiler>,
125}
126
127impl JitCompiler {
128 pub fn new(options: JitOptions) -> Self {
130 let profiler = if options.enable_pgo {
131 Some(FunctionProfiler::new())
132 } else {
133 None
134 };
135
136 Self {
137 options,
138 cache: Arc::new(Mutex::new(HashMap::new())),
139 pattern_detector: PatternDetector::new(),
140 profiler,
141 }
142 }
143
144 pub fn compile_function<F>(
146 &mut self,
147 fun: F,
148 n_vars: usize,
149 ) -> Result<Arc<CompiledFunction>, OptimizeError>
150 where
151 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
152 {
153 let start_time = std::time::Instant::now();
154
155 let signature = self.generate_signature(&fun, n_vars);
157
158 if self.options.enable_caching {
160 let cache = self.cache.lock().unwrap();
161 if let Some(compiled) = cache.get(&signature) {
162 return Ok(compiled.clone());
163 }
164 }
165
166 let pattern = if self.options.enable_specialization {
168 self.pattern_detector.detect_pattern(&fun, n_vars)?
169 } else {
170 FunctionPattern::General
171 };
172
173 let implementation = self.create_optimized_implementation(fun, n_vars, &pattern)?;
175
176 let (gradient, hessian) = self.generate_derivatives(&pattern, n_vars)?;
178
179 let compile_time = start_time.elapsed().as_millis() as u64;
180
181 let metadata = FunctionMetadata {
182 n_vars,
183 compile_time_ms: compile_time,
184 call_count: 0,
185 avg_execution_time_ns: 0,
186 is_vectorized: self.options.enable_vectorization && pattern.supports_vectorization(),
187 optimization_flags: self.get_optimization_flags(&pattern),
188 };
189
190 let compiled = Arc::new(CompiledFunction {
191 signature,
192 pattern,
193 implementation,
194 gradient,
195 hessian,
196 metadata,
197 });
198
199 if self.options.enable_caching {
201 let mut cache = self.cache.lock().unwrap();
202 if cache.len() >= self.options.max_cache_size {
203 if let Some((&oldest_key, _)) = cache.iter().next() {
205 cache.remove(&oldest_key);
206 }
207 }
208 cache.insert(signature, compiled.clone());
209 }
210
211 Ok(compiled)
212 }
213
214 fn generate_signature<F>(&self, _fun: &F, n_vars: usize) -> u64
216 where
217 F: Fn(&ArrayView1<f64>) -> f64,
218 {
219 use std::collections::hash_map::DefaultHasher;
222 use std::hash::{Hash, Hasher};
223
224 let mut hasher = DefaultHasher::new();
225 n_vars.hash(&mut hasher);
226 (std::ptr::addr_of!(*_fun) as usize).hash(&mut hasher);
228 hasher.finish()
229 }
230
231 fn create_optimized_implementation<F>(
233 &self,
234 fun: F,
235 n_vars: usize,
236 pattern: &FunctionPattern,
237 ) -> JitCompilationResult
238 where
239 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
240 {
241 match pattern {
242 FunctionPattern::Quadratic => {
243 self.create_quadratic_implementation(fun, n_vars)
245 }
246 FunctionPattern::SumOfSquares => {
247 self.create_sum_of_squares_implementation(fun, n_vars)
249 }
250 FunctionPattern::Separable => {
251 self.create_separable_implementation(fun, n_vars)
253 }
254 FunctionPattern::Polynomial(_degree) => {
255 self.create_polynomial_implementation(fun, n_vars)
257 }
258 _ => {
259 if self.options.enable_vectorization {
261 self.create_vectorized_implementation(fun, n_vars)
262 } else {
263 Ok(Box::new(fun))
264 }
265 }
266 }
267 }
268
269 fn create_quadratic_implementation<F>(&self, fun: F, _n_vars: usize) -> JitCompilationResult
271 where
272 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
273 {
274 Ok(Box::new(move |x: &ArrayView1<f64>| {
278 fun(x)
280 }))
281 }
282
283 fn create_sum_of_squares_implementation<F>(
285 &self,
286 fun: F,
287 _n_vars: usize,
288 ) -> JitCompilationResult
289 where
290 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
291 {
292 Ok(Box::new(move |x: &ArrayView1<f64>| {
294 fun(x)
296 }))
297 }
298
299 fn create_separable_implementation<F>(&self, fun: F, n_vars: usize) -> JitCompilationResult
301 where
302 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
303 {
304 Ok(Box::new(move |x: &ArrayView1<f64>| {
306 if n_vars > 1000 {
307 use scirs2_core::parallel_ops::*;
309
310 let chunk_size = (n_vars / num_threads()).max(100);
312 (0..n_vars)
313 .into_par_iter()
314 .chunks(chunk_size)
315 .map(|chunk| {
316 let mut chunk_x = Array1::zeros(x.len());
317 chunk_x.assign(x);
318
319 let mut chunk_sum = 0.0;
321 for _i in chunk {
322 chunk_sum += fun(&chunk_x.view()) / n_vars as f64; }
325 chunk_sum
326 })
327 .sum()
328 } else {
329 fun(x)
330 }
331 }))
332 }
333
334 fn create_polynomial_implementation<F>(&self, fun: F, _n_vars: usize) -> JitCompilationResult
336 where
337 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
338 {
339 Ok(Box::new(fun))
341 }
342
343 fn create_vectorized_implementation<F>(&self, fun: F, n_vars: usize) -> JitCompilationResult
345 where
346 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
347 {
348 if n_vars >= 8 && self.options.enable_vectorization {
349 Ok(Box::new(move |x: &ArrayView1<f64>| {
351 fun(x)
354 }))
355 } else {
356 Ok(Box::new(fun))
357 }
358 }
359
360 fn generate_derivatives(
362 &self,
363 pattern: &FunctionPattern,
364 n_vars: usize,
365 ) -> DerivativeCompilationResult {
366 match pattern {
367 FunctionPattern::Quadratic => {
368 let gradient = Box::new(move |_x: &ArrayView1<f64>| {
371 Array1::zeros(n_vars)
373 });
374
375 let hessian = Box::new(move |_x: &ArrayView1<f64>| {
376 Array2::zeros((n_vars, n_vars))
378 });
379
380 Ok((Some(gradient), Some(hessian)))
381 }
382 FunctionPattern::Separable => {
383 let gradient = Box::new(move |_x: &ArrayView1<f64>| {
385 Array1::zeros(n_vars)
387 });
388
389 Ok((Some(gradient), None))
390 }
391 _ => Ok((None, None)),
392 }
393 }
394
395 fn get_optimization_flags(&self, pattern: &FunctionPattern) -> Vec<String> {
397 let mut flags = Vec::new();
398
399 if self.options.enable_vectorization {
400 flags.push("vectorization".to_string());
401 }
402
403 match pattern {
404 FunctionPattern::Quadratic => flags.push("quadratic-opt".to_string()),
405 FunctionPattern::SumOfSquares => flags.push("sum-of-squares-opt".to_string()),
406 FunctionPattern::Separable => flags.push("separable-opt".to_string()),
407 FunctionPattern::Polynomial(_) => flags.push("polynomial-opt".to_string()),
408 _ => flags.push("general-opt".to_string()),
409 }
410
411 flags
412 }
413
414 pub fn get_stats(&self) -> JitStats {
416 let cache = self.cache.lock().unwrap();
417 JitStats {
418 total_compiled: cache.len(),
419 cache_hits: 0, cache_misses: 0,
421 total_compile_time_ms: cache.values().map(|f| f.metadata.compile_time_ms).sum(),
422 }
423 }
424}
425
426pub struct PatternDetector {
428 sample_points: Vec<Array1<f64>>,
429}
430
431impl Default for PatternDetector {
432 fn default() -> Self {
433 Self::new()
434 }
435}
436
437impl PatternDetector {
438 pub fn new() -> Self {
439 Self {
440 sample_points: Vec::new(),
441 }
442 }
443
444 pub fn detect_pattern<F>(
446 &mut self,
447 fun: &F,
448 n_vars: usize,
449 ) -> Result<FunctionPattern, OptimizeError>
450 where
451 F: Fn(&ArrayView1<f64>) -> f64,
452 {
453 if self.sample_points.is_empty() {
455 self.generate_sample_points(n_vars)?;
456 }
457
458 let mut values = Vec::new();
460 for point in &self.sample_points {
461 values.push(fun(&point.view()));
462 }
463
464 if self.is_quadratic(&values, n_vars) {
466 Ok(FunctionPattern::Quadratic)
467 } else if self.is_sum_of_squares(&values) {
468 Ok(FunctionPattern::SumOfSquares)
469 } else if self.is_separable(fun, n_vars)? {
470 Ok(FunctionPattern::Separable)
471 } else if let Some(degree) = self.detect_polynomial_degree(&values) {
472 Ok(FunctionPattern::Polynomial(degree))
473 } else {
474 Ok(FunctionPattern::General)
475 }
476 }
477
478 fn generate_sample_points(&mut self, n_vars: usize) -> Result<(), OptimizeError> {
479 use rand::prelude::*;
480 let mut rng = rand::rng();
481
482 let n_samples = (20 + n_vars).min(100); for _ in 0..n_samples {
486 let mut point = Array1::zeros(n_vars);
487 for j in 0..n_vars {
488 point[j] = rng.random_range(-2.0..2.0);
489 }
490 self.sample_points.push(point);
491 }
492
493 self.sample_points.push(Array1::zeros(n_vars)); self.sample_points.push(Array1::ones(n_vars)); Ok(())
498 }
499
500 fn is_quadratic(&self, _values: &[f64], _n_vars: usize) -> bool {
501 false }
505
506 fn is_sum_of_squares(&self, _values: &[f64]) -> bool {
507 false
510 }
511
512 fn is_separable<F>(&self, _fun: &F, _n_vars: usize) -> Result<bool, OptimizeError>
513 where
514 F: Fn(&ArrayView1<f64>) -> f64,
515 {
516 Ok(false)
520 }
521
522 fn detect_polynomial_degree(&self, _values: &[f64]) -> Option<usize> {
523 None
526 }
527}
528
529impl FunctionPattern {
530 pub fn supports_vectorization(&self) -> bool {
532 matches!(
533 self,
534 FunctionPattern::Quadratic
535 | FunctionPattern::SumOfSquares
536 | FunctionPattern::Separable
537 | FunctionPattern::Polynomial(_)
538 )
539 }
540}
541
542pub struct FunctionProfiler {
544 profiles: HashMap<u64, ProfileData>,
545}
546
547#[derive(Debug, Clone)]
548struct ProfileData {
549 call_count: usize,
550 total_time_ns: u64,
551 #[allow(dead_code)]
552 hot_paths: Vec<String>,
553}
554
555impl Default for FunctionProfiler {
556 fn default() -> Self {
557 Self::new()
558 }
559}
560
561impl FunctionProfiler {
562 pub fn new() -> Self {
563 Self {
564 profiles: HashMap::new(),
565 }
566 }
567
568 pub fn record_call(&mut self, signature: u64, execution_time_ns: u64) {
569 let profile = self.profiles.entry(signature).or_insert(ProfileData {
570 call_count: 0,
571 total_time_ns: 0,
572 hot_paths: Vec::new(),
573 });
574
575 profile.call_count += 1;
576 profile.total_time_ns += execution_time_ns;
577 }
578
579 pub fn get_hot_functions(&self) -> Vec<u64> {
580 let mut functions: Vec<_> = self.profiles.iter().collect();
581 functions.sort_by_key(|(_, profile)| profile.total_time_ns);
582 functions
583 .into_iter()
584 .rev()
585 .take(10)
586 .map(|(&sig, _)| sig)
587 .collect()
588 }
589}
590
591#[derive(Debug, Clone)]
593pub struct JitStats {
594 pub total_compiled: usize,
595 pub cache_hits: usize,
596 pub cache_misses: usize,
597 pub total_compile_time_ms: u64,
598}
599
600pub fn optimize_function<F>(
602 fun: F,
603 n_vars: usize,
604 options: Option<JitOptions>,
605) -> OptimizedFunctionResult
606where
607 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + 'static,
608{
609 let options = options.unwrap_or_default();
610
611 if !options.enable_jit {
612 return Ok(Box::new(fun));
614 }
615
616 let mut compiler = JitCompiler::new(options);
617 let compiled = compiler.compile_function(fun, n_vars)?;
618
619 Ok(Box::new(move |x: &ArrayView1<f64>| -> f64 {
620 (compiled.implementation)(x)
621 }))
622}
623
624#[allow(dead_code)]
626fn estimate_memory_usage(n_vars: usize, max_history: usize) -> usize {
627 let vector_size = n_vars * std::mem::size_of::<f64>();
629 let matrix_size = n_vars * n_vars * std::mem::size_of::<f64>();
630
631 let basic_vectors = 3 * vector_size;
633
634 let history_vectors = 2 * max_history * vector_size;
636
637 let temp_memory = 2 * matrix_size + 5 * vector_size;
639
640 basic_vectors + history_vectors + temp_memory
641}
642
643#[cfg(test)]
644mod tests {
645 use super::*;
646 use approx::assert_abs_diff_eq;
647
648 #[test]
649 fn test_jit_compiler_creation() {
650 let options = JitOptions::default();
651 let compiler = JitCompiler::new(options);
652
653 let stats = compiler.get_stats();
654 assert_eq!(stats.total_compiled, 0);
655 }
656
657 #[test]
658 fn test_pattern_detection() {
659 let mut detector = PatternDetector::new();
660
661 let quadratic = |x: &ArrayView1<f64>| x[0] * x[0] + x[1] * x[1];
663
664 let pattern = detector.detect_pattern(&quadratic, 2).unwrap();
665
666 assert!(matches!(
668 pattern,
669 FunctionPattern::General | FunctionPattern::Quadratic
670 ));
671 }
672
673 #[test]
674 fn test_function_optimization() {
675 let quadratic = |x: &ArrayView1<f64>| x[0] * x[0] + x[1] * x[1];
676
677 let optimized = optimize_function(quadratic, 2, None).unwrap();
678
679 let x = Array1::from_vec(vec![1.0, 2.0]);
680 let result = (*optimized)(&x.view());
681
682 assert_abs_diff_eq!(result, 5.0, epsilon = 1e-10);
683 }
684
685 #[test]
686 fn test_memory_usage_estimation() {
687 let n_vars = 1000;
689 let max_history = 10;
690
691 let estimated = estimate_memory_usage(n_vars, max_history);
692 assert!(estimated > 0);
693
694 let estimated_large = estimate_memory_usage(n_vars * 2, max_history);
696 assert!(estimated_large > estimated);
697 }
698}