robust_least_squares

Function robust_least_squares 

Source
pub fn robust_least_squares<F, J, L, D, S1, S2>(
    residuals: F,
    x0: &ArrayBase<S1, Ix1>,
    loss: L,
    jacobian: Option<J>,
    data: &ArrayBase<S2, Ix1>,
    options: Option<RobustOptions>,
) -> OptimizeResult<OptimizeResults<f64>>
where F: Fn(&[f64], &[D]) -> Array1<f64>, J: Fn(&[f64], &[D]) -> Array2<f64>, L: RobustLoss, D: Clone, S1: Data<Elem = f64>, S2: Data<Elem = D>,
Expand description

Solve a robust least squares problem using M-estimators

This function minimizes the sum of a robust loss function applied to residuals, providing protection against outliers in the data.

ยงArguments

  • residuals - Function that returns the residuals
  • x0 - Initial guess for the parameters
  • loss - Robust loss function to use
  • jacobian - Optional Jacobian function
  • data - Additional data to pass to residuals and jacobian
  • options - Options for the optimization