pub fn robust_least_squares<F, J, L, D, S1, S2>(
residuals: F,
x0: &ArrayBase<S1, Ix1>,
loss: L,
jacobian: Option<J>,
data: &ArrayBase<S2, Ix1>,
options: Option<RobustOptions>,
) -> OptimizeResult<OptimizeResults<f64>>Expand description
Solve a robust least squares problem using M-estimators
This function minimizes the sum of a robust loss function applied to residuals, providing protection against outliers in the data.
ยงArguments
residuals- Function that returns the residualsx0- Initial guess for the parametersloss- Robust loss function to usejacobian- Optional Jacobian functiondata- Additional data to pass to residuals and jacobianoptions- Options for the optimization