scirs2_optimize/
distributed.rs

1//! Distributed optimization using MPI for large-scale parallel computation
2//!
3//! This module provides distributed optimization algorithms that can scale across
4//! multiple nodes using Message Passing Interface (MPI), enabling optimization
5//! of computationally expensive problems across compute clusters.
6
7use crate::error::{ScirsError, ScirsResult};
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
9use scirs2_core::Rng;
10use statrs::statistics::Statistics;
11
12/// MPI interface abstraction for distributed optimization
13pub trait MPIInterface {
14    /// Get the rank of this process
15    fn rank(&self) -> i32;
16
17    /// Get the total number of processes
18    fn size(&self) -> i32;
19
20    /// Broadcast data from root to all processes
21    fn broadcast<T>(&self, data: &mut [T], root: i32) -> ScirsResult<()>
22    where
23        T: Clone + Send + Sync;
24
25    /// Gather data from all processes to root
26    fn gather<T>(&self, send_data: &[T], recv_data: Option<&mut [T]>, root: i32) -> ScirsResult<()>
27    where
28        T: Clone + Send + Sync;
29
30    /// All-to-all reduction operation
31    fn allreduce<T>(
32        &self,
33        send_data: &[T],
34        recv_data: &mut [T],
35        op: ReductionOp,
36    ) -> ScirsResult<()>
37    where
38        T: Clone + Send + Sync + std::ops::Add<Output = T> + PartialOrd;
39
40    /// Barrier synchronization
41    fn barrier(&self) -> ScirsResult<()>;
42
43    /// Send data to specific process
44    fn send<T>(&self, data: &[T], dest: i32, tag: i32) -> ScirsResult<()>
45    where
46        T: Clone + Send + Sync;
47
48    /// Receive data from specific process
49    fn recv<T>(&self, data: &mut [T], source: i32, tag: i32) -> ScirsResult<()>
50    where
51        T: Clone + Send + Sync;
52}
53
54/// Reduction operations for MPI
55#[derive(Debug, Clone, Copy)]
56pub enum ReductionOp {
57    Sum,
58    Min,
59    Max,
60    Prod,
61}
62
63/// Configuration for distributed optimization
64#[derive(Debug, Clone)]
65pub struct DistributedConfig {
66    /// Strategy for distributing work
67    pub distribution_strategy: DistributionStrategy,
68    /// Load balancing configuration
69    pub load_balancing: LoadBalancingConfig,
70    /// Communication optimization settings
71    pub communication: CommunicationConfig,
72    /// Fault tolerance configuration
73    pub fault_tolerance: FaultToleranceConfig,
74}
75
76impl Default for DistributedConfig {
77    fn default() -> Self {
78        Self {
79            distribution_strategy: DistributionStrategy::DataParallel,
80            load_balancing: LoadBalancingConfig::default(),
81            communication: CommunicationConfig::default(),
82            fault_tolerance: FaultToleranceConfig::default(),
83        }
84    }
85}
86
87/// Work distribution strategies
88#[derive(Debug, Clone, Copy, PartialEq)]
89pub enum DistributionStrategy {
90    /// Distribute data across processes
91    DataParallel,
92    /// Distribute parameters across processes
93    ModelParallel,
94    /// Hybrid data and model parallelism
95    Hybrid,
96    /// Master-worker with dynamic task assignment
97    MasterWorker,
98}
99
100/// Load balancing configuration
101#[derive(Debug, Clone)]
102pub struct LoadBalancingConfig {
103    /// Whether to enable dynamic load balancing
104    pub dynamic: bool,
105    /// Threshold for load imbalance (0.0 to 1.0)
106    pub imbalance_threshold: f64,
107    /// Rebalancing interval (in iterations)
108    pub rebalance_interval: usize,
109}
110
111impl Default for LoadBalancingConfig {
112    fn default() -> Self {
113        Self {
114            dynamic: true,
115            imbalance_threshold: 0.2,
116            rebalance_interval: 100,
117        }
118    }
119}
120
121/// Communication optimization configuration
122#[derive(Debug, Clone)]
123pub struct CommunicationConfig {
124    /// Whether to use asynchronous communication
125    pub async_communication: bool,
126    /// Communication buffer size
127    pub buffer_size: usize,
128    /// Compression for large data transfers
129    pub use_compression: bool,
130    /// Overlap computation with communication
131    pub overlap_computation: bool,
132}
133
134impl Default for CommunicationConfig {
135    fn default() -> Self {
136        Self {
137            async_communication: true,
138            buffer_size: 1024 * 1024, // 1MB
139            use_compression: false,
140            overlap_computation: true,
141        }
142    }
143}
144
145/// Fault tolerance configuration
146#[derive(Debug, Clone)]
147pub struct FaultToleranceConfig {
148    /// Enable checkpointing
149    pub checkpointing: bool,
150    /// Checkpoint interval (in iterations)
151    pub checkpoint_interval: usize,
152    /// Maximum number of retries for failed operations
153    pub max_retries: usize,
154    /// Timeout for MPI operations (in seconds)
155    pub timeout: f64,
156}
157
158impl Default for FaultToleranceConfig {
159    fn default() -> Self {
160        Self {
161            checkpointing: false,
162            checkpoint_interval: 1000,
163            max_retries: 3,
164            timeout: 30.0,
165        }
166    }
167}
168
169/// Distributed optimization context
170pub struct DistributedOptimizationContext<M: MPIInterface> {
171    mpi: M,
172    config: DistributedConfig,
173    rank: i32,
174    size: i32,
175    work_distribution: WorkDistribution,
176    performance_stats: DistributedStats,
177}
178
179impl<M: MPIInterface> DistributedOptimizationContext<M> {
180    /// Create a new distributed optimization context
181    pub fn new(mpi: M, config: DistributedConfig) -> Self {
182        let rank = mpi.rank();
183        let size = mpi.size();
184        let work_distribution = WorkDistribution::new(rank, size, config.distribution_strategy);
185
186        Self {
187            mpi,
188            config,
189            rank,
190            size,
191            work_distribution,
192            performance_stats: DistributedStats::new(),
193        }
194    }
195
196    /// Get the MPI rank of this process
197    pub fn rank(&self) -> i32 {
198        self.rank
199    }
200
201    /// Get the total number of MPI processes
202    pub fn size(&self) -> i32 {
203        self.size
204    }
205
206    /// Check if this is the master process
207    pub fn is_master(&self) -> bool {
208        self.rank == 0
209    }
210
211    /// Distribute work among processes
212    pub fn distribute_work(&mut self, total_work: usize) -> WorkAssignment {
213        self.work_distribution.assign_work(total_work)
214    }
215
216    /// Synchronize all processes
217    pub fn synchronize(&self) -> ScirsResult<()> {
218        self.mpi.barrier()
219    }
220
221    /// Broadcast parameters from master to all workers
222    pub fn broadcast_parameters(&self, params: &mut Array1<f64>) -> ScirsResult<()> {
223        let data = params.as_slice_mut().expect("Operation failed");
224        self.mpi.broadcast(data, 0)
225    }
226
227    /// Gather results from all workers to master
228    pub fn gather_results(&self, local_result: &Array1<f64>) -> ScirsResult<Option<Array2<f64>>> {
229        if self.is_master() {
230            let total_size = local_result.len() * self.size as usize;
231            let mut gathered_data = vec![0.0; total_size];
232            self.mpi.gather(
233                local_result.as_slice().expect("Operation failed"),
234                Some(&mut gathered_data),
235                0,
236            )?;
237
238            // Reshape into 2D array
239            let result =
240                Array2::from_shape_vec((self.size as usize, local_result.len()), gathered_data)
241                    .map_err(|e| {
242                        ScirsError::InvalidInput(scirs2_core::error::ErrorContext::new(format!(
243                            "Failed to reshape gathered data: {}",
244                            e
245                        )))
246                    })?;
247            Ok(Some(result))
248        } else {
249            self.mpi
250                .gather(local_result.as_slice().expect("Operation failed"), None, 0)?;
251            Ok(None)
252        }
253    }
254
255    /// Perform all-reduce operation (sum)
256    pub fn allreduce_sum(&self, local_data: &Array1<f64>) -> ScirsResult<Array1<f64>> {
257        let mut result = Array1::zeros(local_data.len());
258        self.mpi.allreduce(
259            local_data.as_slice().expect("Operation failed"),
260            result.as_slice_mut().expect("Operation failed"),
261            ReductionOp::Sum,
262        )?;
263        Ok(result)
264    }
265
266    /// Get performance statistics
267    pub fn stats(&self) -> &DistributedStats {
268        &self.performance_stats
269    }
270}
271
272/// Work distribution manager
273struct WorkDistribution {
274    rank: i32,
275    size: i32,
276    strategy: DistributionStrategy,
277}
278
279impl WorkDistribution {
280    fn new(rank: i32, size: i32, strategy: DistributionStrategy) -> Self {
281        Self {
282            rank,
283            size,
284            strategy,
285        }
286    }
287
288    fn assign_work(&self, total_work: usize) -> WorkAssignment {
289        match self.strategy {
290            DistributionStrategy::DataParallel => self.data_parallel_assignment(total_work),
291            DistributionStrategy::ModelParallel => self.model_parallel_assignment(total_work),
292            DistributionStrategy::Hybrid => self.hybrid_assignment(total_work),
293            DistributionStrategy::MasterWorker => self.master_worker_assignment(total_work),
294        }
295    }
296
297    fn data_parallel_assignment(&self, total_work: usize) -> WorkAssignment {
298        let work_per_process = total_work / self.size as usize;
299        let remainder = total_work % self.size as usize;
300
301        let start = self.rank as usize * work_per_process + (self.rank as usize).min(remainder);
302        let extra = if (self.rank as usize) < remainder {
303            1
304        } else {
305            0
306        };
307        let count = work_per_process + extra;
308
309        WorkAssignment {
310            start_index: start,
311            count,
312            strategy: DistributionStrategy::DataParallel,
313        }
314    }
315
316    fn model_parallel_assignment(&self, total_work: usize) -> WorkAssignment {
317        // For model parallelism, each process handles different parameters
318        WorkAssignment {
319            start_index: 0,
320            count: total_work, // Each process sees all data but handles different parameters
321            strategy: DistributionStrategy::ModelParallel,
322        }
323    }
324
325    fn hybrid_assignment(&self, total_work: usize) -> WorkAssignment {
326        // Simplified hybrid: use data parallel for now
327        self.data_parallel_assignment(total_work)
328    }
329
330    fn master_worker_assignment(&self, total_work: usize) -> WorkAssignment {
331        if self.rank == 0 {
332            // Master coordinates but may not do computation
333            WorkAssignment {
334                start_index: 0,
335                count: 0,
336                strategy: DistributionStrategy::MasterWorker,
337            }
338        } else {
339            // Workers split the work
340            let worker_count = self.size - 1;
341            let work_per_worker = total_work / worker_count as usize;
342            let remainder = total_work % worker_count as usize;
343            let worker_rank = self.rank - 1;
344
345            let start =
346                worker_rank as usize * work_per_worker + (worker_rank as usize).min(remainder);
347            let extra = if (worker_rank as usize) < remainder {
348                1
349            } else {
350                0
351            };
352            let count = work_per_worker + extra;
353
354            WorkAssignment {
355                start_index: start,
356                count,
357                strategy: DistributionStrategy::MasterWorker,
358            }
359        }
360    }
361}
362
363/// Work assignment for a process
364#[derive(Debug, Clone)]
365pub struct WorkAssignment {
366    /// Starting index for this process
367    pub start_index: usize,
368    /// Number of work items for this process
369    pub count: usize,
370    /// Distribution strategy used
371    pub strategy: DistributionStrategy,
372}
373
374impl WorkAssignment {
375    /// Get the range of indices assigned to this process
376    pub fn range(&self) -> std::ops::Range<usize> {
377        self.start_index..(self.start_index + self.count)
378    }
379
380    /// Check if this assignment is empty
381    pub fn is_empty(&self) -> bool {
382        self.count == 0
383    }
384}
385
386/// Distributed optimization algorithms
387pub mod algorithms {
388    use super::*;
389    use crate::result::OptimizeResults;
390
391    /// Distributed differential evolution
392    pub struct DistributedDifferentialEvolution<M: MPIInterface> {
393        context: DistributedOptimizationContext<M>,
394        population_size: usize,
395        max_nit: usize,
396        f_scale: f64,
397        crossover_rate: f64,
398    }
399
400    impl<M: MPIInterface> DistributedDifferentialEvolution<M> {
401        /// Create a new distributed differential evolution optimizer
402        pub fn new(
403            context: DistributedOptimizationContext<M>,
404            population_size: usize,
405            max_nit: usize,
406        ) -> Self {
407            Self {
408                context,
409                population_size,
410                max_nit,
411                f_scale: 0.8,
412                crossover_rate: 0.7,
413            }
414        }
415
416        /// Set mutation parameters
417        pub fn with_parameters(mut self, f_scale: f64, crossover_rate: f64) -> Self {
418            self.f_scale = f_scale;
419            self.crossover_rate = crossover_rate;
420            self
421        }
422
423        /// Optimize function using distributed differential evolution
424        pub fn optimize<F>(
425            &mut self,
426            function: F,
427            bounds: &[(f64, f64)],
428        ) -> ScirsResult<OptimizeResults<f64>>
429        where
430            F: Fn(&ArrayView1<f64>) -> f64 + Clone + Send + Sync,
431        {
432            let dims = bounds.len();
433
434            // Initialize local population
435            let local_pop_size = self.population_size / self.context.size() as usize;
436            let mut local_population = self.initialize_local_population(local_pop_size, bounds)?;
437            let mut local_fitness = self.evaluate_local_population(&function, &local_population)?;
438
439            // Find global best across all processes
440            let mut global_best = self.find_global_best(&local_population, &local_fitness)?;
441            let mut global_best_fitness = global_best.1;
442
443            let mut total_evaluations = self.population_size;
444
445            for iteration in 0..self.max_nit {
446                // Generate trial population
447                let trial_population = self.generate_trial_population(&local_population)?;
448                let trial_fitness = self.evaluate_local_population(&function, &trial_population)?;
449
450                // Selection
451                self.selection(
452                    &mut local_population,
453                    &mut local_fitness,
454                    &trial_population,
455                    &trial_fitness,
456                );
457
458                total_evaluations += local_pop_size;
459
460                // Exchange information between processes
461                if iteration % 10 == 0 {
462                    let new_global_best =
463                        self.find_global_best(&local_population, &local_fitness)?;
464                    if new_global_best.1 < global_best_fitness {
465                        global_best = new_global_best;
466                        global_best_fitness = global_best.1;
467                    }
468
469                    // Migration between processes
470                    self.migrate_individuals(&mut local_population, &mut local_fitness)?;
471                }
472
473                // Convergence check (simplified)
474                if iteration % 50 == 0 {
475                    let convergence = self.check_convergence(&local_fitness)?;
476                    if convergence {
477                        break;
478                    }
479                }
480            }
481
482            // Final global best search
483            let final_best = self.find_global_best(&local_population, &local_fitness)?;
484            if final_best.1 < global_best_fitness {
485                global_best = final_best.clone();
486                global_best_fitness = final_best.1;
487            }
488
489            Ok(OptimizeResults::<f64> {
490                x: global_best.0,
491                fun: global_best_fitness,
492                success: true,
493                message: "Distributed differential evolution completed".to_string(),
494                nit: self.max_nit,
495                nfev: total_evaluations,
496                ..OptimizeResults::default()
497            })
498        }
499
500        fn initialize_local_population(
501            &self,
502            local_size: usize,
503            bounds: &[(f64, f64)],
504        ) -> ScirsResult<Array2<f64>> {
505            let mut rng = scirs2_core::random::rng();
506
507            let dims = bounds.len();
508            let mut population = Array2::zeros((local_size, dims));
509
510            for i in 0..local_size {
511                for j in 0..dims {
512                    let (low, high) = bounds[j];
513                    population[[i, j]] = rng.random_range(low..=high);
514                }
515            }
516
517            Ok(population)
518        }
519
520        fn evaluate_local_population<F>(
521            &self,
522            function: &F,
523            population: &Array2<f64>,
524        ) -> ScirsResult<Array1<f64>>
525        where
526            F: Fn(&ArrayView1<f64>) -> f64,
527        {
528            let mut fitness = Array1::zeros(population.nrows());
529
530            for i in 0..population.nrows() {
531                let individual = population.row(i);
532                fitness[i] = function(&individual);
533            }
534
535            Ok(fitness)
536        }
537
538        fn find_global_best(
539            &mut self,
540            local_population: &Array2<f64>,
541            local_fitness: &Array1<f64>,
542        ) -> ScirsResult<(Array1<f64>, f64)> {
543            // Find local best
544            let mut best_idx = 0;
545            let mut best_fitness = local_fitness[0];
546            for (i, &fitness) in local_fitness.iter().enumerate() {
547                if fitness < best_fitness {
548                    best_fitness = fitness;
549                    best_idx = i;
550                }
551            }
552
553            let local_best = local_population.row(best_idx).to_owned();
554
555            // Find global best across all processes
556            let global_fitness = Array1::from_elem(1, best_fitness);
557            let global_fitness_sum = self.context.allreduce_sum(&global_fitness)?;
558
559            // For simplicity, we'll use the local best for now
560            // In a full implementation, we'd need to communicate the actual best individual
561            Ok((local_best, best_fitness))
562        }
563
564        fn generate_trial_population(&self, population: &Array2<f64>) -> ScirsResult<Array2<f64>> {
565            let mut rng = scirs2_core::random::rng();
566
567            let (pop_size, dims) = population.dim();
568            let mut trial_population = Array2::zeros((pop_size, dims));
569
570            for i in 0..pop_size {
571                // Select three random individuals
572                let mut indices = Vec::new();
573                while indices.len() < 3 {
574                    let idx = rng.random_range(0..pop_size);
575                    if idx != i && !indices.contains(&idx) {
576                        indices.push(idx);
577                    }
578                }
579
580                let a = indices[0];
581                let b = indices[1];
582                let c = indices[2];
583
584                // Mutation and crossover
585                let j_rand = rng.random_range(0..dims);
586                for j in 0..dims {
587                    if rng.random::<f64>() < self.crossover_rate || j == j_rand {
588                        trial_population[[i, j]] = population[[a, j]]
589                            + self.f_scale * (population[[b, j]] - population[[c, j]]);
590                    } else {
591                        trial_population[[i, j]] = population[[i, j]];
592                    }
593                }
594            }
595
596            Ok(trial_population)
597        }
598
599        fn selection(
600            &self,
601            population: &mut Array2<f64>,
602            fitness: &mut Array1<f64>,
603            trial_population: &Array2<f64>,
604            trial_fitness: &Array1<f64>,
605        ) {
606            for i in 0..population.nrows() {
607                if trial_fitness[i] <= fitness[i] {
608                    for j in 0..population.ncols() {
609                        population[[i, j]] = trial_population[[i, j]];
610                    }
611                    fitness[i] = trial_fitness[i];
612                }
613            }
614        }
615
616        fn migrate_individuals(
617            &mut self,
618            population: &mut Array2<f64>,
619            fitness: &mut Array1<f64>,
620        ) -> ScirsResult<()> {
621            // Simple migration: send best individual to next process
622            if self.context.size() <= 1 {
623                return Ok(());
624            }
625
626            let best_idx = fitness
627                .iter()
628                .enumerate()
629                .min_by(|(_, a), (_, b)| a.partial_cmp(b).expect("Operation failed"))
630                .map(|(i, _)| i)
631                .unwrap_or(0);
632
633            let _next_rank = (self.context.rank() + 1) % self.context.size();
634            let _prev_rank = (self.context.rank() - 1 + self.context.size()) % self.context.size();
635
636            // Send best individual to next process
637            let _best_individual = population.row(best_idx).to_owned();
638            let _best_fitness_val = fitness[best_idx];
639
640            // In a real implementation, we would use MPI send/recv here
641            // For now, we'll skip the actual communication
642
643            Ok(())
644        }
645
646        fn check_convergence(&mut self, local_fitness: &Array1<f64>) -> ScirsResult<bool> {
647            let mean = local_fitness.view().mean();
648            let variance = local_fitness
649                .iter()
650                .map(|&x| (x - mean).powi(2))
651                .sum::<f64>()
652                / local_fitness.len() as f64;
653
654            let std_dev = variance.sqrt();
655
656            // Simple convergence criterion
657            Ok(std_dev < 1e-12)
658        }
659    }
660
661    /// Distributed particle swarm optimization
662    pub struct DistributedParticleSwarm<M: MPIInterface> {
663        context: DistributedOptimizationContext<M>,
664        swarm_size: usize,
665        max_nit: usize,
666        w: f64,  // Inertia weight
667        c1: f64, // Cognitive parameter
668        c2: f64, // Social parameter
669    }
670
671    impl<M: MPIInterface> DistributedParticleSwarm<M> {
672        /// Create a new distributed particle swarm optimizer
673        pub fn new(
674            context: DistributedOptimizationContext<M>,
675            swarm_size: usize,
676            max_nit: usize,
677        ) -> Self {
678            Self {
679                context,
680                swarm_size,
681                max_nit,
682                w: 0.729,
683                c1: 1.49445,
684                c2: 1.49445,
685            }
686        }
687
688        /// Set PSO parameters
689        pub fn with_parameters(mut self, w: f64, c1: f64, c2: f64) -> Self {
690            self.w = w;
691            self.c1 = c1;
692            self.c2 = c2;
693            self
694        }
695
696        /// Optimize function using distributed particle swarm optimization
697        pub fn optimize<F>(
698            &mut self,
699            function: F,
700            bounds: &[(f64, f64)],
701        ) -> ScirsResult<OptimizeResults<f64>>
702        where
703            F: Fn(&ArrayView1<f64>) -> f64 + Clone + Send + Sync,
704        {
705            let dims = bounds.len();
706            let local_swarm_size = self.swarm_size / self.context.size() as usize;
707
708            // Initialize local swarm
709            let mut positions = self.initialize_positions(local_swarm_size, bounds)?;
710            let mut velocities = Array2::zeros((local_swarm_size, dims));
711            let mut personal_best = positions.clone();
712            let mut personal_best_fitness = self.evaluate_swarm(&function, &positions)?;
713
714            // Find global best
715            let mut global_best = self.find_global_best(&personal_best, &personal_best_fitness)?;
716            let mut global_best_fitness = global_best.1;
717
718            let mut function_evaluations = local_swarm_size;
719
720            for iteration in 0..self.max_nit {
721                // Update swarm
722                self.update_swarm(
723                    &mut positions,
724                    &mut velocities,
725                    &personal_best,
726                    &global_best.0,
727                    bounds,
728                )?;
729
730                // Evaluate new positions
731                let fitness = self.evaluate_swarm(&function, &positions)?;
732                function_evaluations += local_swarm_size;
733
734                // Update personal bests
735                for i in 0..local_swarm_size {
736                    if fitness[i] < personal_best_fitness[i] {
737                        personal_best_fitness[i] = fitness[i];
738                        for j in 0..dims {
739                            personal_best[[i, j]] = positions[[i, j]];
740                        }
741                    }
742                }
743
744                // Update global best
745                if iteration % 10 == 0 {
746                    let new_global_best =
747                        self.find_global_best(&personal_best, &personal_best_fitness)?;
748                    if new_global_best.1 < global_best_fitness {
749                        global_best = new_global_best;
750                        global_best_fitness = global_best.1;
751                    }
752                }
753            }
754
755            Ok(OptimizeResults::<f64> {
756                x: global_best.0,
757                fun: global_best_fitness,
758                success: true,
759                message: "Distributed particle swarm optimization completed".to_string(),
760                nit: self.max_nit,
761                nfev: function_evaluations,
762                ..OptimizeResults::default()
763            })
764        }
765
766        fn initialize_positions(
767            &self,
768            local_size: usize,
769            bounds: &[(f64, f64)],
770        ) -> ScirsResult<Array2<f64>> {
771            let mut rng = scirs2_core::random::rng();
772
773            let dims = bounds.len();
774            let mut positions = Array2::zeros((local_size, dims));
775
776            for i in 0..local_size {
777                for j in 0..dims {
778                    let (low, high) = bounds[j];
779                    positions[[i, j]] = rng.random_range(low..=high);
780                }
781            }
782
783            Ok(positions)
784        }
785
786        fn evaluate_swarm<F>(
787            &self,
788            function: &F,
789            positions: &Array2<f64>,
790        ) -> ScirsResult<Array1<f64>>
791        where
792            F: Fn(&ArrayView1<f64>) -> f64,
793        {
794            let mut fitness = Array1::zeros(positions.nrows());
795
796            for i in 0..positions.nrows() {
797                let particle = positions.row(i);
798                fitness[i] = function(&particle);
799            }
800
801            Ok(fitness)
802        }
803
804        fn find_global_best(
805            &mut self,
806            positions: &Array2<f64>,
807            fitness: &Array1<f64>,
808        ) -> ScirsResult<(Array1<f64>, f64)> {
809            // Find local best
810            let mut best_idx = 0;
811            let mut best_fitness = fitness[0];
812            for (i, &f) in fitness.iter().enumerate() {
813                if f < best_fitness {
814                    best_fitness = f;
815                    best_idx = i;
816                }
817            }
818
819            let local_best = positions.row(best_idx).to_owned();
820
821            // In a full implementation, we would find the global best across all processes
822            Ok((local_best, best_fitness))
823        }
824
825        fn update_swarm(
826            &self,
827            positions: &mut Array2<f64>,
828            velocities: &mut Array2<f64>,
829            personal_best: &Array2<f64>,
830            global_best: &Array1<f64>,
831            bounds: &[(f64, f64)],
832        ) -> ScirsResult<()> {
833            let mut rng = scirs2_core::random::rng();
834
835            let (swarm_size, dims) = positions.dim();
836
837            for i in 0..swarm_size {
838                for j in 0..dims {
839                    let r1: f64 = rng.random();
840                    let r2: f64 = rng.random();
841
842                    // Update velocity
843                    velocities[[i, j]] = self.w * velocities[[i, j]]
844                        + self.c1 * r1 * (personal_best[[i, j]] - positions[[i, j]])
845                        + self.c2 * r2 * (global_best[j] - positions[[i, j]]);
846
847                    // Update position
848                    positions[[i, j]] += velocities[[i, j]];
849
850                    // Apply bounds
851                    let (low, high) = bounds[j];
852                    if positions[[i, j]] < low {
853                        positions[[i, j]] = low;
854                        velocities[[i, j]] = 0.0;
855                    } else if positions[[i, j]] > high {
856                        positions[[i, j]] = high;
857                        velocities[[i, j]] = 0.0;
858                    }
859                }
860            }
861
862            Ok(())
863        }
864    }
865}
866
867/// Performance statistics for distributed optimization
868#[derive(Debug, Clone)]
869pub struct DistributedStats {
870    /// Communication time statistics
871    pub communication_time: f64,
872    /// Computation time statistics
873    pub computation_time: f64,
874    /// Load balancing statistics
875    pub load_balance_ratio: f64,
876    /// Number of synchronization points
877    pub synchronizations: usize,
878    /// Data transfer statistics (bytes)
879    pub bytes_transferred: usize,
880}
881
882impl DistributedStats {
883    fn new() -> Self {
884        Self {
885            communication_time: 0.0,
886            computation_time: 0.0,
887            load_balance_ratio: 1.0,
888            synchronizations: 0,
889            bytes_transferred: 0,
890        }
891    }
892
893    /// Calculate parallel efficiency
894    pub fn parallel_efficiency(&self) -> f64 {
895        if self.communication_time + self.computation_time == 0.0 {
896            1.0
897        } else {
898            self.computation_time / (self.communication_time + self.computation_time)
899        }
900    }
901
902    /// Generate performance report
903    pub fn generate_report(&self) -> String {
904        format!(
905            "Distributed Optimization Performance Report\n\
906             ==========================================\n\
907             Computation Time: {:.3}s\n\
908             Communication Time: {:.3}s\n\
909             Parallel Efficiency: {:.1}%\n\
910             Load Balance Ratio: {:.3}\n\
911             Synchronizations: {}\n\
912             Data Transferred: {} bytes\n",
913            self.computation_time,
914            self.communication_time,
915            self.parallel_efficiency() * 100.0,
916            self.load_balance_ratio,
917            self.synchronizations,
918            self.bytes_transferred
919        )
920    }
921}
922
923/// Mock MPI implementation for testing
924#[cfg(test)]
925pub struct MockMPI {
926    rank: i32,
927    size: i32,
928}
929
930#[cfg(test)]
931impl MockMPI {
932    pub fn new(rank: i32, size: i32) -> Self {
933        Self { rank, size }
934    }
935}
936
937#[cfg(test)]
938impl MPIInterface for MockMPI {
939    fn rank(&self) -> i32 {
940        self.rank
941    }
942    fn size(&self) -> i32 {
943        self.size
944    }
945
946    fn broadcast<T>(&self, data: &mut [T], root: i32) -> ScirsResult<()>
947    where
948        T: Clone + Send + Sync,
949    {
950        Ok(())
951    }
952
953    fn gather<T>(
954        &self,
955        _send_data: &[T],
956        _recv_data: Option<&mut [T]>,
957        _root: i32,
958    ) -> ScirsResult<()>
959    where
960        T: Clone + Send + Sync,
961    {
962        Ok(())
963    }
964
965    fn allreduce<T>(
966        &self,
967        send_data: &[T],
968        recv_data: &mut [T],
969        _op: ReductionOp,
970    ) -> ScirsResult<()>
971    where
972        T: Clone + Send + Sync + std::ops::Add<Output = T> + PartialOrd,
973    {
974        for (i, item) in send_data.iter().enumerate() {
975            if i < recv_data.len() {
976                recv_data[i] = item.clone();
977            }
978        }
979        Ok(())
980    }
981
982    fn barrier(&self) -> ScirsResult<()> {
983        Ok(())
984    }
985    fn send<T>(&self, _data: &[T], _dest: i32, tag: i32) -> ScirsResult<()>
986    where
987        T: Clone + Send + Sync,
988    {
989        Ok(())
990    }
991    fn recv<T>(&self, _data: &mut [T], _source: i32, tag: i32) -> ScirsResult<()>
992    where
993        T: Clone + Send + Sync,
994    {
995        Ok(())
996    }
997}
998
999#[cfg(test)]
1000mod tests {
1001    use super::*;
1002
1003    #[test]
1004    fn test_work_distribution() {
1005        let distribution = WorkDistribution::new(0, 4, DistributionStrategy::DataParallel);
1006        let assignment = distribution.assign_work(100);
1007
1008        assert_eq!(assignment.count, 25);
1009        assert_eq!(assignment.start_index, 0);
1010        assert_eq!(assignment.range(), 0..25);
1011    }
1012
1013    #[test]
1014    fn test_work_assignment_remainder() {
1015        let distribution = WorkDistribution::new(3, 4, DistributionStrategy::DataParallel);
1016        let assignment = distribution.assign_work(10);
1017
1018        // 10 items, 4 processes: 2, 3, 3, 2
1019        assert_eq!(assignment.count, 2);
1020        assert_eq!(assignment.start_index, 8);
1021    }
1022
1023    #[test]
1024    fn test_master_worker_distribution() {
1025        let master_distribution = WorkDistribution::new(0, 4, DistributionStrategy::MasterWorker);
1026        let master_assignment = master_distribution.assign_work(100);
1027
1028        assert_eq!(master_assignment.count, 0); // Master doesn't do computation
1029
1030        let worker_distribution = WorkDistribution::new(1, 4, DistributionStrategy::MasterWorker);
1031        let worker_assignment = worker_distribution.assign_work(100);
1032
1033        assert!(worker_assignment.count > 0); // Worker does computation
1034    }
1035
1036    #[test]
1037    fn test_distributed_context() {
1038        let mpi = MockMPI::new(0, 4);
1039        let config = DistributedConfig::default();
1040        let context = DistributedOptimizationContext::new(mpi, config);
1041
1042        assert_eq!(context.rank(), 0);
1043        assert_eq!(context.size(), 4);
1044        assert!(context.is_master());
1045    }
1046
1047    #[test]
1048    fn test_distributed_stats() {
1049        let mut stats = DistributedStats::new();
1050        stats.computation_time = 80.0;
1051        stats.communication_time = 20.0;
1052
1053        assert_eq!(stats.parallel_efficiency(), 0.8);
1054    }
1055}