scirs2_optimize/reinforcement_learning/
meta_learning.rs1use crate::error::OptimizeResult;
6use crate::result::OptimizeResults;
7use scirs2_core::ndarray::{Array1, ArrayView1};
8use std::collections::HashMap;
11
12#[derive(Debug, Clone)]
14pub struct MetaLearningOptimizer {
15 pub task_parameters: HashMap<String, Array1<f64>>,
17 pub meta_parameters: Array1<f64>,
19 pub meta_learning_rate: f64,
21 pub task_count: usize,
23}
24
25impl MetaLearningOptimizer {
26 pub fn new(_param_size: usize, meta_learning_rate: f64) -> Self {
28 Self {
29 task_parameters: HashMap::new(),
30 meta_parameters: Array1::zeros(_param_size),
31 meta_learning_rate,
32 task_count: 0,
33 }
34 }
35
36 pub fn learn_task<F>(
38 &mut self,
39 task_id: String,
40 objective: &F,
41 initial_params: &ArrayView1<f64>,
42 num_steps: usize,
43 ) -> OptimizeResult<Array1<f64>>
44 where
45 F: Fn(&ArrayView1<f64>) -> f64,
46 {
47 let mut task_params = if let Some(existing) = self.task_parameters.get(&task_id) {
49 existing.clone()
50 } else {
51 &self.meta_parameters + initial_params
52 };
53
54 for _step in 0..num_steps {
56 let current_obj = objective(&task_params.view());
57
58 let mut gradient = Array1::zeros(task_params.len());
60 let h = 1e-6;
61
62 for i in 0..task_params.len() {
63 let mut params_plus = task_params.clone();
64 params_plus[i] += h;
65 let obj_plus = objective(¶ms_plus.view());
66 gradient[i] = (obj_plus - current_obj) / h;
67 }
68
69 task_params = &task_params - &(0.01 * &gradient);
71 }
72
73 self.task_parameters.insert(task_id, task_params.clone());
75 self.task_count += 1;
76
77 Ok(task_params)
78 }
79
80 pub fn update_meta_parameters(&mut self) {
82 if self.task_parameters.is_empty() {
83 return;
84 }
85
86 let mut sum = Array1::zeros(self.meta_parameters.len());
88 for task_params in self.task_parameters.values() {
89 sum = &sum + task_params;
90 }
91
92 let average = &sum / self.task_parameters.len() as f64;
93
94 self.meta_parameters = &((1.0 - self.meta_learning_rate) * &self.meta_parameters)
96 + &(self.meta_learning_rate * &average);
97 }
98
99 pub fn optimize_new_task<F>(
101 &mut self,
102 objective: &F,
103 initial_params: &ArrayView1<f64>,
104 num_steps: usize,
105 ) -> OptimizeResult<OptimizeResults<f64>>
106 where
107 F: Fn(&ArrayView1<f64>) -> f64,
108 {
109 let task_id = format!("task_{}", self.task_count);
110 let result_params = self.learn_task(task_id, objective, initial_params, num_steps)?;
111
112 self.update_meta_parameters();
114
115 Ok(OptimizeResults::<f64> {
116 x: result_params.clone(),
117 fun: objective(&result_params.view()),
118 success: true,
119 nit: num_steps,
120 message: "Meta-learning optimization completed".to_string(),
121 jac: None,
122 hess: None,
123 constr: None,
124 nfev: num_steps * (self.task_count + 1), njev: 0,
126 nhev: 0,
127 maxcv: 0,
128 status: 0,
129 })
130 }
131}
132
133#[allow(dead_code)]
135pub fn meta_learning_optimize<F>(
136 objective: F,
137 initial_params: &ArrayView1<f64>,
138 num_tasks: usize,
139 steps_per_task: usize,
140) -> OptimizeResult<OptimizeResults<f64>>
141where
142 F: Fn(&ArrayView1<f64>) -> f64,
143{
144 let mut meta_optimizer = MetaLearningOptimizer::new(initial_params.len(), 0.1);
145
146 for task_idx in 0..num_tasks {
148 let task_id = format!("training_task_{}", task_idx);
149
150 let shift = (task_idx as f64 - num_tasks as f64 * 0.5) * 0.1;
152 let task_objective = |x: &ArrayView1<f64>| objective(x) + shift;
153
154 meta_optimizer.learn_task(task_id, &task_objective, initial_params, steps_per_task)?;
155 meta_optimizer.update_meta_parameters();
156 }
157
158 meta_optimizer.optimize_new_task(&objective, initial_params, steps_per_task)
160}
161
162#[allow(dead_code)]
163pub fn placeholder() {}