scirs2_optimize/reinforcement_learning/
bandit_optimization.rs

1//! Multi-Armed Bandit Optimization
2//!
3//! Bandit-based approaches for hyperparameter and strategy selection.
4
5use crate::error::OptimizeResult;
6use crate::result::OptimizeResults;
7use scirs2_core::ndarray::{Array1, ArrayView1};
8use scirs2_core::random::{rng, Rng};
9// Unused import
10// use scirs2_core::error::CoreResult;
11
12/// Multi-armed bandit for optimization strategy selection
13#[derive(Debug, Clone)]
14pub struct BanditOptimizer {
15    /// Number of arms (strategies)
16    pub num_arms: usize,
17    /// Arm rewards
18    pub arm_rewards: Array1<f64>,
19    /// Arm counts
20    pub arm_counts: Array1<usize>,
21}
22
23impl BanditOptimizer {
24    /// Create new bandit optimizer
25    pub fn new(num_arms: usize) -> Self {
26        Self {
27            num_arms,
28            arm_rewards: Array1::zeros(num_arms),
29            arm_counts: Array1::zeros(num_arms),
30        }
31    }
32
33    /// Select arm using UCB1
34    pub fn select_arm(&self) -> usize {
35        let total_counts: usize = self.arm_counts.sum();
36        if total_counts == 0 {
37            return scirs2_core::random::rng().random_range(0..self.num_arms);
38        }
39
40        let mut best_arm = 0;
41        let mut best_ucb = f64::NEG_INFINITY;
42
43        for arm in 0..self.num_arms {
44            if self.arm_counts[arm] == 0 {
45                return arm; // Explore unvisited arms
46            }
47
48            let average_reward = self.arm_rewards[arm] / self.arm_counts[arm] as f64;
49            let confidence_interval =
50                (2.0 * (total_counts as f64).ln() / self.arm_counts[arm] as f64).sqrt();
51            let ucb = average_reward + confidence_interval;
52
53            if ucb > best_ucb {
54                best_ucb = ucb;
55                best_arm = arm;
56            }
57        }
58
59        best_arm
60    }
61
62    /// Update arm with reward
63    pub fn update_arm(&mut self, arm: usize, reward: f64) {
64        if arm < self.num_arms {
65            self.arm_rewards[arm] += reward;
66            self.arm_counts[arm] += 1;
67        }
68    }
69}
70
71/// Bandit-based optimization function
72#[allow(dead_code)]
73pub fn bandit_optimize<F>(
74    objective: F,
75    initial_params: &ArrayView1<f64>,
76    num_nit: usize,
77) -> OptimizeResult<OptimizeResults<f64>>
78where
79    F: Fn(&ArrayView1<f64>) -> f64,
80{
81    let mut bandit = BanditOptimizer::new(3); // 3 strategies
82    let mut params = initial_params.to_owned();
83    let mut best_obj = objective(initial_params);
84
85    for _iter in 0..num_nit {
86        let arm = bandit.select_arm();
87
88        // Apply different strategies based on arm
89        let step_size = match arm {
90            0 => 0.01,  // Small steps
91            1 => 0.1,   // Medium steps
92            _ => 0.001, // Very small steps
93        };
94
95        // Simple gradient-like update
96        for i in 0..params.len() {
97            params[i] += (scirs2_core::random::rng().random::<f64>() - 0.5) * step_size;
98        }
99
100        let new_obj = objective(&params.view());
101        let reward = if new_obj < best_obj { 1.0 } else { 0.0 };
102
103        bandit.update_arm(arm, reward);
104
105        if new_obj < best_obj {
106            best_obj = new_obj;
107        }
108    }
109
110    Ok(OptimizeResults::<f64> {
111        x: params,
112        fun: best_obj,
113        success: true,
114        nit: num_nit,
115        message: "Bandit optimization completed".to_string(),
116        jac: None,
117        hess: None,
118        constr: None,
119        nfev: num_nit * 3, // Each iteration evaluates multiple arms
120        njev: 0,
121        nhev: 0,
122        maxcv: 0,
123        status: 0,
124    })
125}
126
127#[allow(dead_code)]
128pub fn placeholder() {}