scirs2_optimize/neuromorphic/
neural_ode_optimization.rs1use crate::error::OptimizeResult;
6use scirs2_core::ndarray::{Array1, ArrayView1};
7
8#[derive(Debug, Clone)]
10pub struct NeuralODE {
11 pub weights: Array1<f64>,
13 pub state: Array1<f64>,
15 pub dt: f64,
17}
18
19impl NeuralODE {
20 pub fn new(state_size: usize, dt: f64) -> Self {
22 Self {
23 weights: Array1::from(vec![0.1; state_size * state_size]),
24 state: Array1::zeros(state_size),
25 dt,
26 }
27 }
28
29 pub fn compute_derivative(
31 &self,
32 state: &ArrayView1<f64>,
33 objective_gradient: &ArrayView1<f64>,
34 ) -> Array1<f64> {
35 let n = state.len();
36 let mut derivative = Array1::zeros(n);
37
38 for i in 0..n {
41 for j in 0..n {
42 let weight_idx = i * n + j;
43 if weight_idx < self.weights.len() {
44 derivative[i] -= self.weights[weight_idx] * state[j];
45 }
46 }
47
48 if i < objective_gradient.len() {
50 derivative[i] += objective_gradient[i];
51 }
52 }
53
54 derivative
55 }
56
57 pub fn integrate_step(&mut self, objective_gradient: &ArrayView1<f64>) {
59 let derivative = self.compute_derivative(&self.state.view(), objective_gradient);
60
61 for i in 0..self.state.len() {
62 self.state[i] += self.dt * derivative[i];
63 }
64 }
65
66 pub fn get_parameters(&self) -> &Array1<f64> {
68 &self.state
69 }
70
71 pub fn set_initial_state(&mut self, initial_state: &ArrayView1<f64>) {
73 self.state = initial_state.to_owned();
74 }
75}
76
77#[allow(dead_code)]
79pub fn neural_ode_optimize<F>(
80 objective: F,
81 initial_params: &ArrayView1<f64>,
82 num_steps: usize,
83 dt: f64,
84) -> OptimizeResult<Array1<f64>>
85where
86 F: Fn(&ArrayView1<f64>) -> f64,
87{
88 let mut neural_ode = NeuralODE::new(initial_params.len(), dt);
89 neural_ode.set_initial_state(initial_params);
90
91 for _step in 0..num_steps {
92 let current_params = neural_ode.get_parameters();
94 let gradient = compute_finite_difference_gradient(&objective, ¤t_params.view());
95
96 neural_ode.integrate_step(&(-1.0 * &gradient).view()); }
99
100 Ok(neural_ode.get_parameters().clone())
101}
102
103#[allow(dead_code)]
105fn compute_finite_difference_gradient<F>(objective: &F, params: &ArrayView1<f64>) -> Array1<f64>
106where
107 F: Fn(&ArrayView1<f64>) -> f64,
108{
109 let n = params.len();
110 let mut gradient = Array1::zeros(n);
111 let h = 1e-6;
112 let f0 = objective(params);
113
114 for i in 0..n {
115 let mut params_plus = params.to_owned();
116 params_plus[i] += h;
117 let f_plus = objective(¶ms_plus.view());
118 gradient[i] = (f_plus - f0) / h;
119 }
120
121 gradient
122}
123
124#[allow(dead_code)]
125pub fn placeholder() {
126 }