scirs2_optimize/neuromorphic/
memristive_optimization.rs

1//! Memristive Optimization
2//!
3//! This module implements optimization algorithms inspired by memristors -
4//! resistive devices whose resistance depends on the history of applied voltage/current.
5//! Features advanced memristor models, crossbar architectures, and variability modeling.
6
7use crate::error::OptimizeResult;
8use crate::result::OptimizeResults;
9use scirs2_core::error::CoreResult as Result;
10use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
11use scirs2_core::random::Rng;
12use scirs2_core::simd_ops::SimdUnifiedOps;
13
14/// Advanced memristor models
15#[derive(Debug, Clone, Copy)]
16pub enum MemristorModel {
17    /// Linear ionic drift model
18    LinearIonicDrift,
19    /// Nonlinear ionic drift with window functions
20    NonlinearIonicDrift,
21    /// Simmons tunnel barrier model
22    SimmonsTunnelBarrier,
23    /// Team model with exponential switching
24    TeamModel,
25    /// Biolek model with threshold switching
26    BiolekModel,
27}
28
29/// Memristor device parameters
30#[derive(Debug, Clone)]
31pub struct MemristorParameters {
32    /// Physical length of device
33    pub length: f64,
34    /// Mobility of dopants
35    pub mobility: f64,
36    /// Ron resistance (fully doped)
37    pub r_on: f64,
38    /// Roff resistance (undoped)
39    pub r_off: f64,
40    /// Initial doped region width
41    pub initial_x: f64,
42    /// Temperature coefficient
43    pub temp_coeff: f64,
44    /// Device variability (standard deviation)
45    pub variability: f64,
46    /// Nonlinearity parameters
47    pub p_coeff: f64,
48    pub q_coeff: f64,
49}
50
51impl Default for MemristorParameters {
52    fn default() -> Self {
53        Self {
54            length: 10e-9,     // 10 nm
55            mobility: 1e-10,   // m²/s/V
56            r_on: 100.0,       // Ohms
57            r_off: 16000.0,    // Ohms
58            initial_x: 0.5,    // Normalized position
59            temp_coeff: 0.001, // 1/K
60            variability: 0.05, // 5% standard deviation
61            p_coeff: 10.0,     // Nonlinearity parameter
62            q_coeff: 10.0,     // Nonlinearity parameter
63        }
64    }
65}
66
67/// Advanced memristor device model
68#[derive(Debug, Clone)]
69pub struct Memristor {
70    /// Current resistance state
71    pub resistance: f64,
72    /// State variable (normalized position of doped region boundary)
73    pub state: f64,
74    /// Device parameters
75    pub params: MemristorParameters,
76    /// Model type
77    pub model: MemristorModel,
78    /// Current temperature
79    pub temperature: f64,
80    /// Device-specific variability factor
81    pub variability_factor: f64,
82    /// History of applied voltages (for hysteresis modeling)
83    pub voltage_history: Vec<f64>,
84    /// Maximum history length
85    pub max_history: usize,
86}
87
88impl Memristor {
89    /// Create new memristor with advanced model
90    pub fn new(params: MemristorParameters, model: MemristorModel) -> Self {
91        let initial_resistance =
92            params.r_on + (params.r_off - params.r_on) * (1.0 - params.initial_x);
93        let variability_factor = if params.variability > 0.0 {
94            1.0 + (scirs2_core::random::rng().random::<f64>() - 0.5) * 2.0 * params.variability
95        } else {
96            1.0
97        };
98
99        Self {
100            resistance: initial_resistance * variability_factor,
101            state: params.initial_x,
102            params,
103            model,
104            temperature: 300.0, // Room temperature in Kelvin
105            variability_factor,
106            voltage_history: Vec::new(),
107            max_history: 10,
108        }
109    }
110
111    /// Update memristor state using advanced physics models
112    pub fn update(&mut self, voltage: f64, dt: f64) {
113        // Store voltage history for hysteresis modeling
114        self.voltage_history.push(voltage);
115        if self.voltage_history.len() > self.max_history {
116            self.voltage_history.remove(0);
117        }
118
119        // Temperature-dependent mobility
120        let temp_factor = 1.0 + self.params.temp_coeff * (self.temperature - 300.0);
121        let effective_mobility = self.params.mobility * temp_factor;
122
123        match self.model {
124            MemristorModel::LinearIonicDrift => {
125                self.update_linear_drift(voltage, dt, effective_mobility);
126            }
127            MemristorModel::NonlinearIonicDrift => {
128                self.update_nonlinear_drift(voltage, dt, effective_mobility);
129            }
130            MemristorModel::SimmonsTunnelBarrier => {
131                self.update_simmons_model(voltage, dt);
132            }
133            MemristorModel::TeamModel => {
134                self.update_team_model(voltage, dt);
135            }
136            MemristorModel::BiolekModel => {
137                self.update_biolek_model(voltage, dt);
138            }
139        }
140
141        // Update resistance based on new state
142        self.update_resistance();
143    }
144
145    /// Linear ionic drift model
146    fn update_linear_drift(&mut self, voltage: f64, dt: f64, mobility: f64) {
147        let dx_dt = (mobility * self.params.r_on) / self.params.length.powi(2) * voltage;
148        self.state += dx_dt * dt;
149        self.state = self.state.max(0.0).min(1.0);
150    }
151
152    /// Nonlinear ionic drift with window functions
153    fn update_nonlinear_drift(&mut self, voltage: f64, dt: f64, mobility: f64) {
154        // Joglekar window function
155        let window = if voltage > 0.0 {
156            self.state * (1.0 - self.state).powf(self.params.p_coeff)
157        } else {
158            self.state.powf(self.params.p_coeff) * (1.0 - self.state)
159        };
160
161        let dx_dt = (mobility * self.params.r_on) / self.params.length.powi(2) * voltage * window;
162        self.state += dx_dt * dt;
163        self.state = self.state.max(0.0).min(1.0);
164    }
165
166    /// Simmons tunnel barrier model
167    fn update_simmons_model(&mut self, voltage: f64, dt: f64) {
168        let _beta = 0.8; // Barrier modification parameter
169        let v_th = 0.16; // Threshold voltage
170
171        if voltage.abs() > v_th {
172            let sign = voltage.signum();
173            let exp_term = (-(voltage.abs() - v_th) / 0.3).exp();
174            let dx_dt = sign * 10e-15 * (1.0 - exp_term);
175
176            self.state += dx_dt * dt / self.params.length;
177            self.state = self.state.max(0.0).min(1.0);
178        }
179    }
180
181    /// TEAM model with exponential switching
182    fn update_team_model(&mut self, voltage: f64, dt: f64) {
183        let v_on = 0.3; // Threshold for SET
184        let v_off = -0.5; // Threshold for RESET
185        let k_on = 8e-13; // Rate constant for SET
186        let k_off = 8e-13; // Rate constant for RESET
187
188        if voltage > v_on {
189            let dx_dt = k_on * ((voltage / v_on) - 1.0).exp();
190            self.state += dx_dt * dt;
191        } else if voltage < v_off {
192            let dx_dt = -k_off * ((voltage.abs() / v_off.abs()) - 1.0).exp();
193            self.state += dx_dt * dt;
194        }
195
196        self.state = self.state.max(0.0).min(1.0);
197    }
198
199    /// Biolek model with threshold and polarity
200    fn update_biolek_model(&mut self, voltage: f64, dt: f64) {
201        let v_th = 1.0; // Threshold voltage
202
203        if voltage.abs() > v_th {
204            let window = if voltage > 0.0 {
205                1.0 - (2.0 * self.state - 1.0).powi(2 * self.params.p_coeff as i32)
206            } else {
207                1.0 - (2.0 * self.state - 1.0).powi(2 * self.params.q_coeff as i32)
208            };
209
210            let dx_dt = voltage * window * 1e-12;
211            self.state += dx_dt * dt;
212            self.state = self.state.max(0.0).min(1.0);
213        }
214    }
215
216    /// Update resistance based on current state
217    fn update_resistance(&mut self) {
218        // Account for device variability
219        let base_resistance =
220            self.params.r_on * self.state + self.params.r_off * (1.0 - self.state);
221        self.resistance = base_resistance * self.variability_factor;
222    }
223
224    /// Get conductance (inverse of resistance)
225    pub fn conductance(&self) -> f64 {
226        1.0 / self.resistance
227    }
228
229    /// Set device temperature
230    pub fn set_temperature(&mut self, temperature: f64) {
231        self.temperature = temperature;
232    }
233
234    /// Get current power dissipation for given voltage
235    pub fn power_dissipation(&self, voltage: f64) -> f64 {
236        voltage.powi(2) / self.resistance
237    }
238
239    /// Reset device to initial state
240    pub fn reset(&mut self) {
241        self.state = self.params.initial_x;
242        self.voltage_history.clear();
243        self.update_resistance();
244    }
245}
246
247/// Advanced memristive crossbar architecture
248#[derive(Debug, Clone)]
249pub struct MemristiveCrossbar {
250    /// Array of memristors
251    pub memristors: Vec<Vec<Memristor>>,
252    /// Dimensions
253    pub rows: usize,
254    pub cols: usize,
255    /// Parasitic resistances (wire resistance)
256    pub row_resistance: Array1<f64>,
257    pub col_resistance: Array1<f64>,
258    /// Voltage compliance limits
259    pub v_max: f64,
260    pub v_min: f64,
261    /// Stuck-at-fault map (true = faulty device)
262    pub fault_map: Array2<bool>,
263    /// Sneak path compensation
264    pub use_sneak_compensation: bool,
265    /// Crossbar statistics
266    pub stats: CrossbarStats,
267}
268
269/// Statistics for crossbar operation
270#[derive(Debug, Clone)]
271pub struct CrossbarStats {
272    /// Total operations performed
273    pub operations: usize,
274    /// Total power consumption
275    pub power_consumption: f64,
276    /// Average read time
277    pub avg_read_time_ns: f64,
278    /// Average write time
279    pub avg_write_time_ns: f64,
280    /// Number of faulty devices
281    pub faulty_devices: usize,
282}
283
284impl Default for CrossbarStats {
285    fn default() -> Self {
286        Self {
287            operations: 0,
288            power_consumption: 0.0,
289            avg_read_time_ns: 1.0,
290            avg_write_time_ns: 10.0,
291            faulty_devices: 0,
292        }
293    }
294}
295
296impl MemristiveCrossbar {
297    /// Create new advanced crossbar
298    pub fn new(
299        rows: usize,
300        cols: usize,
301        params: MemristorParameters,
302        model: MemristorModel,
303    ) -> Self {
304        let mut memristors = Vec::with_capacity(rows);
305        let mut fault_map = Array2::from_elem((rows, cols), false);
306        let mut faulty_count = 0;
307
308        for i in 0..rows {
309            let mut row = Vec::with_capacity(cols);
310            for j in 0..cols {
311                let mut memristor = Memristor::new(params.clone(), model);
312
313                // Introduce random stuck-at faults (1% probability)
314                if scirs2_core::random::rng().random::<f64>() < 0.01 {
315                    fault_map[[i, j]] = true;
316                    faulty_count += 1;
317                    // Set to extreme resistance values for stuck faults
318                    if scirs2_core::random::rng().random::<bool>() {
319                        memristor.resistance = params.r_off * 10.0; // Stuck high
320                    } else {
321                        memristor.resistance = params.r_on * 0.1; // Stuck low
322                    }
323                }
324
325                row.push(memristor);
326            }
327            memristors.push(row);
328        }
329
330        // Wire resistance (increases with array size)
331        let wire_r_per_cell = 1.0; // Ohms per cell
332        let row_resistance = Array1::from_shape_fn(rows, |i| wire_r_per_cell * (i + 1) as f64);
333        let col_resistance = Array1::from_shape_fn(cols, |j| wire_r_per_cell * (j + 1) as f64);
334
335        let mut stats = CrossbarStats::default();
336        stats.faulty_devices = faulty_count;
337
338        Self {
339            memristors,
340            rows,
341            cols,
342            row_resistance,
343            col_resistance,
344            v_max: 1.5,  // Maximum compliance voltage
345            v_min: -1.5, // Minimum compliance voltage
346            fault_map,
347            use_sneak_compensation: true,
348            stats,
349        }
350    }
351
352    /// Matrix-vector multiplication with non-idealities
353    pub fn multiply(&mut self, input: &ArrayView1<f64>) -> Array1<f64> {
354        let start_time = std::time::Instant::now();
355        let mut output = Array1::zeros(self.rows);
356
357        // SIMD-optimized computation where possible
358        if input.len() >= 4 && self.rows >= 4 {
359            self.multiply_simd(input, &mut output);
360        } else {
361            self.multiply_scalar(input, &mut output);
362        }
363
364        // Account for parasitic resistances and sneak paths
365        if self.use_sneak_compensation {
366            self.compensate_sneak_paths(&mut output, input);
367        }
368
369        // Update statistics
370        self.stats.operations += 1;
371        self.stats.power_consumption += self.calculate_read_power(input);
372        let elapsed = start_time.elapsed().as_nanos() as f64;
373        self.stats.avg_read_time_ns =
374            (self.stats.avg_read_time_ns * (self.stats.operations - 1) as f64 + elapsed)
375                / self.stats.operations as f64;
376
377        output
378    }
379
380    /// SIMD-optimized matrix multiplication
381    fn multiply_simd(&self, input: &ArrayView1<f64>, output: &mut Array1<f64>) {
382        for i in 0..self.rows {
383            let mut sum = 0.0;
384            let conductances: Vec<f64> = (0..self.cols)
385                .map(|j| {
386                    if self.fault_map[[i, j]] {
387                        0.0
388                    } else {
389                        self.memristors[i][j].conductance()
390                    }
391                })
392                .collect();
393
394            // Use SIMD operations for dot product
395            if conductances.len() >= input.len() {
396                let g_slice = &conductances[..input.len()];
397                let g_array = Array1::from(g_slice.to_vec());
398                sum = SimdUnifiedOps::simd_dot(&g_array.view(), input);
399            }
400
401            output[i] = sum;
402        }
403    }
404
405    /// Scalar matrix multiplication fallback
406    fn multiply_scalar(&self, input: &ArrayView1<f64>, output: &mut Array1<f64>) {
407        for i in 0..self.rows {
408            for j in 0..self.cols.min(input.len()) {
409                if !self.fault_map[[i, j]] {
410                    let conductance = self.memristors[i][j].conductance();
411                    output[i] += input[j] * conductance;
412                }
413            }
414        }
415    }
416
417    /// Compensate for sneak path currents
418    fn compensate_sneak_paths(&self, output: &mut Array1<f64>, input: &ArrayView1<f64>) {
419        // Simplified sneak path compensation
420        // In practice, this would involve solving Kirchhoff's laws
421        let _avg_conductance = self.calculate_average_conductance();
422        let sneak_compensation_factor = 0.95; // Empirical factor
423
424        for i in 0..output.len() {
425            output[i] *= sneak_compensation_factor;
426        }
427    }
428
429    /// Calculate average conductance for sneak path estimation
430    fn calculate_average_conductance(&self) -> f64 {
431        let mut sum = 0.0;
432        let mut count = 0;
433
434        for i in 0..self.rows {
435            for j in 0..self.cols {
436                if !self.fault_map[[i, j]] {
437                    sum += self.memristors[i][j].conductance();
438                    count += 1;
439                }
440            }
441        }
442
443        if count > 0 {
444            sum / count as f64
445        } else {
446            0.0
447        }
448    }
449
450    /// Calculate power consumption for read operation
451    fn calculate_read_power(&self, input: &ArrayView1<f64>) -> f64 {
452        let mut power = 0.0;
453        let read_voltage = 0.1; // Low read voltage
454
455        for i in 0..self.rows {
456            for j in 0..self.cols.min(input.len()) {
457                if !self.fault_map[[i, j]] && input[j].abs() > 1e-10 {
458                    power += self.memristors[i][j].power_dissipation(read_voltage * input[j]);
459                }
460            }
461        }
462
463        power
464    }
465
466    /// Advanced update with programming algorithms
467    pub fn update(
468        &mut self,
469        input: &ArrayView1<f64>,
470        target: &ArrayView1<f64>,
471        learning_rate: f64,
472    ) -> Result<()> {
473        let start_time = std::time::Instant::now();
474
475        // Compute current output
476        let current_output = self.multiply(input);
477        let error = target - &current_output;
478
479        // Apply different programming schemes
480        for i in 0..self.rows.min(error.len()) {
481            for j in 0..self.cols.min(input.len()) {
482                if !self.fault_map[[i, j]] {
483                    // Compute desired conductance change
484                    let desired_delta_g = learning_rate * error[i] * input[j];
485
486                    // Convert to voltage pulses
487                    let programming_voltage =
488                        self.conductance_change_to_voltage(desired_delta_g, i, j);
489
490                    // Apply voltage compliance
491                    let limited_voltage = programming_voltage.max(self.v_min).min(self.v_max);
492
493                    // Update memristor
494                    let dt = 1e-6; // 1 microsecond programming pulse
495                    self.memristors[i][j].update(limited_voltage, dt);
496                }
497            }
498        }
499
500        // Update statistics
501        let elapsed = start_time.elapsed().as_nanos() as f64;
502        self.stats.avg_write_time_ns =
503            (self.stats.avg_write_time_ns * self.stats.operations as f64 + elapsed)
504                / (self.stats.operations + 1) as f64;
505
506        Ok(())
507    }
508
509    /// Convert desired conductance change to programming voltage
510    fn conductance_change_to_voltage(&self, delta_g: f64, row: usize, col: usize) -> f64 {
511        // Simplified model: voltage proportional to desired conductance change
512        let current_g = self.memristors[row][col].conductance();
513        let relative_change = delta_g / (current_g + 1e-12);
514
515        // Empirical voltage-conductance relationship
516        if relative_change > 0.0 {
517            0.5 * relative_change.ln().max(-3.0) // SET operation
518        } else {
519            -0.5 * (-relative_change).ln().max(-3.0) // RESET operation
520        }
521    }
522
523    /// Perform crossbar refresh to combat drift
524    pub fn refresh(&mut self) -> Result<()> {
525        for i in 0..self.rows {
526            for j in 0..self.cols {
527                if !self.fault_map[[i, j]] {
528                    // Read current conductance
529                    let _target_conductance = self.memristors[i][j].conductance();
530
531                    // Apply refresh pulse to maintain conductance
532                    let refresh_voltage = 0.1; // Small refresh voltage
533                    self.memristors[i][j].update(refresh_voltage, 1e-7);
534                }
535            }
536        }
537        Ok(())
538    }
539
540    /// Get crossbar statistics
541    pub fn get_stats(&self) -> &CrossbarStats {
542        &self.stats
543    }
544
545    /// Reset all memristors
546    pub fn reset(&mut self) {
547        for i in 0..self.rows {
548            for j in 0..self.cols {
549                if !self.fault_map[[i, j]] {
550                    self.memristors[i][j].reset();
551                }
552            }
553        }
554        self.stats = CrossbarStats::default();
555        self.stats.faulty_devices = self.fault_map.iter().filter(|&&x| x).count();
556    }
557
558    /// Get conductance matrix
559    pub fn get_conductance_matrix(&self) -> Array2<f64> {
560        let mut conductances = Array2::zeros((self.rows, self.cols));
561        for i in 0..self.rows {
562            for j in 0..self.cols {
563                conductances[[i, j]] = if self.fault_map[[i, j]] {
564                    0.0
565                } else {
566                    self.memristors[i][j].conductance()
567                };
568            }
569        }
570        conductances
571    }
572}
573
574/// Advanced memristive optimization algorithms
575/// Memristive Gradient Descent Optimizer
576#[derive(Debug, Clone)]
577pub struct MemristiveOptimizer {
578    /// Memristive crossbar for weight storage and computation
579    pub crossbar: MemristiveCrossbar,
580    /// Current parameter estimates
581    pub parameters: Array1<f64>,
582    /// Best parameters found
583    pub best_parameters: Array1<f64>,
584    /// Best objective value
585    pub best_objective: f64,
586    /// Learning rate
587    pub learning_rate: f64,
588    /// Momentum coefficient
589    pub momentum: f64,
590    /// Momentum buffer
591    pub momentum_buffer: Array1<f64>,
592    /// Iteration counter
593    pub nit: usize,
594}
595
596impl MemristiveOptimizer {
597    /// Create new memristive optimizer
598    pub fn new(
599        initial_params: Array1<f64>,
600        learning_rate: f64,
601        momentum: f64,
602        memristor_params: MemristorParameters,
603        model: MemristorModel,
604    ) -> Self {
605        let n = initial_params.len();
606        let crossbar_size = (n as f64).sqrt().ceil() as usize;
607        let crossbar =
608            MemristiveCrossbar::new(crossbar_size, crossbar_size, memristor_params, model);
609
610        Self {
611            crossbar,
612            parameters: initial_params.clone(),
613            best_parameters: initial_params.clone(),
614            best_objective: f64::INFINITY,
615            learning_rate,
616            momentum,
617            momentum_buffer: Array1::zeros(n),
618            nit: 0,
619        }
620    }
621
622    /// Optimize using memristive crossbar
623    pub fn optimize<F>(
624        &mut self,
625        objective: F,
626        max_nit: usize,
627    ) -> OptimizeResult<OptimizeResults<f64>>
628    where
629        F: Fn(&ArrayView1<f64>) -> f64,
630    {
631        let mut convergence_history = Vec::new();
632
633        for iter in 0..max_nit {
634            // Evaluate current objective
635            let current_obj = objective(&self.parameters.view());
636            convergence_history.push(current_obj);
637
638            // Update best solution
639            if current_obj < self.best_objective {
640                self.best_objective = current_obj;
641                self.best_parameters = self.parameters.clone();
642            }
643
644            // Compute gradient using finite differences
645            let gradient = self.compute_finite_diff_gradient(&objective)?;
646
647            // Encode gradient into crossbar input
648            let crossbar_input = self.encode_gradient(&gradient);
649
650            // Compute update using crossbar
651            let crossbar_output = self.crossbar.multiply(&crossbar_input.view());
652
653            // Decode update and apply to parameters
654            let decoded_update = self.decode_update(&crossbar_output);
655
656            // Apply momentum
657            self.apply_momentum_update(&decoded_update)?;
658
659            // Update crossbar weights based on performance
660            self.update_crossbar_weights(&gradient, current_obj)?;
661
662            // Check convergence
663            if self.check_convergence(&convergence_history) {
664                break;
665            }
666
667            self.nit += 1;
668
669            // Periodic crossbar refresh to combat drift
670            if iter % 100 == 0 {
671                self.crossbar.refresh()?;
672            }
673        }
674
675        Ok(OptimizeResults::<f64> {
676            x: self.best_parameters.clone(),
677            fun: self.best_objective,
678            success: self.best_objective < 1e-6,
679            nit: self.nit,
680            message: "Memristive optimization completed".to_string(),
681            jac: None,
682            hess: None,
683            constr: None,
684            nfev: self.nit,
685            njev: 0,
686            nhev: 0,
687            maxcv: 0,
688            status: 0,
689        })
690    }
691
692    /// Compute finite difference gradient
693    fn compute_finite_diff_gradient<F>(&self, objective: &F) -> Result<Array1<f64>>
694    where
695        F: Fn(&ArrayView1<f64>) -> f64,
696    {
697        let n = self.parameters.len();
698        let mut gradient = Array1::zeros(n);
699        let h = 1e-6;
700        let f0 = objective(&self.parameters.view());
701
702        for i in 0..n {
703            let mut params_plus = self.parameters.clone();
704            params_plus[i] += h;
705            let f_plus = objective(&params_plus.view());
706            gradient[i] = (f_plus - f0) / h;
707        }
708
709        Ok(gradient)
710    }
711
712    /// Encode gradient for crossbar input
713    fn encode_gradient(&self, gradient: &Array1<f64>) -> Array1<f64> {
714        let crossbar_size = self.crossbar.cols;
715        let mut encoded = Array1::zeros(crossbar_size);
716
717        // Simple encoding: map gradient to crossbar input with normalization
718        let max_grad = gradient.mapv(|x| x.abs()).fold(0.0, |a, &b| f64::max(a, b));
719        if max_grad > 0.0 {
720            for i in 0..crossbar_size.min(gradient.len()) {
721                encoded[i] = gradient[i] / max_grad;
722            }
723        }
724
725        encoded
726    }
727
728    /// Decode crossbar output to parameter update
729    fn decode_update(&self, crossbar_output: &Array1<f64>) -> Array1<f64> {
730        let n = self.parameters.len();
731        let mut update = Array1::zeros(n);
732
733        // Simple decoding: map crossbar output back to parameter space
734        for i in 0..n.min(crossbar_output.len()) {
735            update[i] = crossbar_output[i] * self.learning_rate;
736        }
737
738        update
739    }
740
741    /// Apply momentum update to parameters
742    fn apply_momentum_update(&mut self, update: &Array1<f64>) -> Result<()> {
743        // Update momentum buffer
744        self.momentum_buffer =
745            &(self.momentum * &self.momentum_buffer) + &((1.0 - self.momentum) * update);
746
747        // Apply update to parameters
748        self.parameters = &self.parameters - &self.momentum_buffer;
749
750        Ok(())
751    }
752
753    /// Update crossbar weights based on optimization performance
754    fn update_crossbar_weights(
755        &mut self,
756        gradient: &Array1<f64>,
757        objective_value: f64,
758    ) -> Result<()> {
759        // Adaptive weight update based on gradient and performance
760        let performance_factor = (-objective_value / 10.0).exp(); // Better performance = higher factor
761
762        let encoded_gradient = self.encode_gradient(gradient);
763        let target_output = &encoded_gradient * performance_factor;
764
765        self.crossbar
766            .update(&encoded_gradient.view(), &target_output.view(), 0.01)?;
767
768        Ok(())
769    }
770
771    /// Check convergence based on objective history
772    fn check_convergence(&self, history: &[f64]) -> bool {
773        if history.len() < 10 {
774            return false;
775        }
776
777        let recent = &history[history.len() - 5..];
778        let variance = recent
779            .iter()
780            .fold(0.0, |acc, &x| acc + (x - recent[0]).powi(2))
781            / recent.len() as f64;
782
783        variance < 1e-12
784    }
785}
786
787/// Memristive gradient descent with basic crossbar
788#[allow(dead_code)]
789pub fn memristive_gradient_descent<F>(
790    objective: F,
791    initial_params: &ArrayView1<f64>,
792    learning_rate: f64,
793    max_nit: usize,
794) -> Result<Array1<f64>>
795where
796    F: Fn(&ArrayView1<f64>) -> f64,
797{
798    let params = MemristorParameters::default();
799    let model = MemristorModel::NonlinearIonicDrift;
800
801    let mut optimizer = MemristiveOptimizer::new(
802        initial_params.to_owned(),
803        learning_rate,
804        0.9, // momentum
805        params,
806        model,
807    );
808
809    let result = optimizer.optimize(objective, max_nit)?;
810    Ok(result.x)
811}
812
813/// Advanced memristive optimization with custom configuration
814#[allow(dead_code)]
815pub fn advanced_memristive_optimization<F>(
816    objective: F,
817    initial_params: &ArrayView1<f64>,
818    learning_rate: f64,
819    max_nit: usize,
820    memristor_params: MemristorParameters,
821    model: MemristorModel,
822) -> OptimizeResult<OptimizeResults<f64>>
823where
824    F: Fn(&ArrayView1<f64>) -> f64,
825{
826    let mut optimizer = MemristiveOptimizer::new(
827        initial_params.to_owned(),
828        learning_rate,
829        0.9,
830        memristor_params,
831        model,
832    );
833
834    optimizer.optimize(objective, max_nit)
835}
836
837/// Memristive Neural Network Optimizer for ML problems
838#[allow(dead_code)]
839pub fn memristive_neural_optimizer<F>(
840    objective: F,
841    initial_weights: &ArrayView2<f64>,
842    learning_rate: f64,
843    max_nit: usize,
844) -> Result<Array2<f64>>
845where
846    F: Fn(&ArrayView2<f64>) -> f64,
847{
848    let (rows, cols) = initial_weights.dim();
849    let params = MemristorParameters::default();
850    let mut crossbar = MemristiveCrossbar::new(rows, cols, params, MemristorModel::TeamModel);
851
852    // Initialize crossbar with weights
853    for i in 0..rows {
854        for j in 0..cols {
855            let _target_conductance = initial_weights[[i, j]].abs() * 1e-3; // Scale to conductance
856            let voltage = if initial_weights[[i, j]] > 0.0 {
857                1.0
858            } else {
859                -1.0
860            };
861            crossbar.memristors[i][j].update(voltage, 1e-3);
862        }
863    }
864
865    for _iter in 0..max_nit {
866        // Get current weights from crossbar
867        let current_weights = crossbar.get_conductance_matrix();
868        let objective_value = objective(&current_weights.view());
869
870        // Compute weight gradients (simplified)
871        let mut weight_gradients = Array2::zeros((rows, cols));
872        let h = 1e-6;
873
874        for i in 0..rows {
875            for j in 0..cols {
876                let mut perturbed_weights = current_weights.clone();
877                perturbed_weights[[i, j]] += h;
878                let f_plus = objective(&perturbed_weights.view());
879                weight_gradients[[i, j]] = (f_plus - objective_value) / h;
880            }
881        }
882
883        // Update crossbar based on gradients
884        for i in 0..rows {
885            let row_input = weight_gradients.row(i).to_owned();
886            let target = Array1::zeros(cols); // Target is zero update
887            crossbar
888                .update(&row_input.view(), &target.view(), learning_rate)
889                .ok();
890        }
891    }
892
893    Ok(crossbar.get_conductance_matrix())
894}
895
896#[cfg(test)]
897mod tests {
898    use super::*;
899
900    #[test]
901    fn test_memristor_models() {
902        let params = MemristorParameters::default();
903        let mut memristor = Memristor::new(params, MemristorModel::NonlinearIonicDrift);
904
905        let initial_resistance = memristor.resistance;
906        memristor.update(1.0, 1e-3);
907
908        // Resistance should change with applied voltage
909        assert!(memristor.resistance != initial_resistance);
910    }
911
912    #[test]
913    fn test_crossbar_operations() {
914        let params = MemristorParameters::default();
915        let mut crossbar = MemristiveCrossbar::new(3, 3, params, MemristorModel::LinearIonicDrift);
916
917        let input = Array1::from(vec![1.0, 0.5, 0.0]);
918        let output = crossbar.multiply(&input.view());
919
920        assert_eq!(output.len(), 3);
921        assert!(output.iter().all(|&x| x.is_finite()));
922    }
923
924    #[test]
925    fn test_memristive_optimization() {
926        let objective = |x: &ArrayView1<f64>| x[0].powi(2) + x[1].powi(2);
927        let initial = Array1::from(vec![1.0, 1.0]);
928
929        let result = memristive_gradient_descent(objective, &initial.view(), 0.1, 100);
930        assert!(result.is_ok());
931
932        let final_params = result.unwrap();
933        let final_obj = objective(&final_params.view());
934        let initial_obj = objective(&initial.view());
935
936        // Should improve from initial solution
937        assert!(final_obj < initial_obj);
938    }
939
940    #[test]
941    fn test_crossbar_with_faults() {
942        let params = MemristorParameters::default();
943        // Reduce size from 10x10 to 3x3 for faster test execution
944        let mut crossbar = MemristiveCrossbar::new(3, 3, params, MemristorModel::TeamModel);
945
946        // Should handle faults gracefully
947        let _faulty_count = crossbar.fault_map.iter().filter(|&&x| x).count();
948        // Some devices may be faulty - this is expected behavior
949
950        let input = Array1::ones(3);
951        let output = crossbar.multiply(&input.view());
952        assert!(output.iter().all(|&x| x.is_finite()));
953    }
954
955    #[test]
956    fn test_temperature_effects() {
957        let params = MemristorParameters::default();
958        let mut memristor = Memristor::new(params, MemristorModel::NonlinearIonicDrift);
959
960        let resistance_at_300k = memristor.resistance;
961
962        memristor.set_temperature(350.0); // Higher temperature
963        memristor.update(1.0, 1e-3);
964        let resistance_at_350k = memristor.resistance;
965
966        // Temperature should affect resistance evolution
967        assert!(resistance_at_350k != resistance_at_300k);
968    }
969}