scirs2_optimize/neuromorphic/
event_driven.rs1use scirs2_core::error::CoreResult as Result;
6use scirs2_core::ndarray::{Array1, ArrayView1};
7use std::cmp::Ordering;
8use std::collections::BinaryHeap;
9
10#[derive(Debug, Clone)]
12pub struct OptimizationEvent {
13 pub time: f64,
15 pub event_type: EventType,
17 pub data: Array1<f64>,
19}
20
21#[derive(Debug, Clone)]
23pub enum EventType {
24 ParameterUpdate,
26 GradientComputation,
28 ObjectiveEvaluation,
30}
31
32impl PartialEq for OptimizationEvent {
33 fn eq(&self, other: &Self) -> bool {
34 self.time == other.time
35 }
36}
37
38impl Eq for OptimizationEvent {}
39
40impl PartialOrd for OptimizationEvent {
41 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
42 other.time.partial_cmp(&self.time)
44 }
45}
46
47impl Ord for OptimizationEvent {
48 fn cmp(&self, other: &Self) -> Ordering {
49 self.partial_cmp(other).unwrap_or(Ordering::Equal)
50 }
51}
52
53#[derive(Debug, Clone)]
55pub struct EventDrivenOptimizer {
56 pub event_queue: BinaryHeap<OptimizationEvent>,
58 pub current_time: f64,
60 pub parameters: Array1<f64>,
62}
63
64impl EventDrivenOptimizer {
65 pub fn new(initial_params: Array1<f64>) -> Self {
67 Self {
68 event_queue: BinaryHeap::new(),
69 current_time: 0.0,
70 parameters: initial_params,
71 }
72 }
73
74 pub fn schedule_event(&mut self, event: OptimizationEvent) {
76 self.event_queue.push(event);
77 }
78
79 pub fn process_next_event<F>(&mut self, objective: &F) -> Result<bool>
81 where
82 F: Fn(&ArrayView1<f64>) -> f64,
83 {
84 if let Some(event) = self.event_queue.pop() {
85 self.current_time = event.time;
86
87 match event.event_type {
88 EventType::ParameterUpdate => {
89 for (i, &update) in event.data.iter().enumerate() {
91 if i < self.parameters.len() {
92 self.parameters[i] += update;
93 }
94 }
95 }
96 EventType::GradientComputation => {
97 let _gradient = self.compute_finite_difference_gradient(objective);
99 }
100 EventType::ObjectiveEvaluation => {
101 let _obj_val = objective(&self.parameters.view());
102 }
103 }
104
105 Ok(true)
106 } else {
107 Ok(false)
108 }
109 }
110
111 fn compute_finite_difference_gradient<F>(&self, objective: &F) -> Array1<f64>
113 where
114 F: Fn(&ArrayView1<f64>) -> f64,
115 {
116 let n = self.parameters.len();
117 let mut gradient = Array1::zeros(n);
118 let h = 1e-6;
119 let f0 = objective(&self.parameters.view());
120
121 for i in 0..n {
122 let mut params_plus = self.parameters.clone();
123 params_plus[i] += h;
124 let f_plus = objective(¶ms_plus.view());
125 gradient[i] = (f_plus - f0) / h;
126 }
127
128 gradient
129 }
130}
131
132#[allow(dead_code)]
134pub fn event_driven_optimize<F>(
135 objective: F,
136 initial_params: &ArrayView1<f64>,
137 max_events: usize,
138) -> Result<Array1<f64>>
139where
140 F: Fn(&ArrayView1<f64>) -> f64,
141{
142 let mut optimizer = EventDrivenOptimizer::new(initial_params.to_owned());
143
144 for i in 0..10 {
146 let event = OptimizationEvent {
147 time: i as f64 * 0.1,
148 event_type: EventType::ParameterUpdate,
149 data: Array1::from(vec![0.01; initial_params.len()]),
150 };
151 optimizer.schedule_event(event);
152 }
153
154 for _ in 0..max_events {
156 if !optimizer.process_next_event(&objective)? {
157 break;
158 }
159 }
160
161 Ok(optimizer.parameters)
162}
163
164#[allow(dead_code)]
165pub fn placeholder() {
166 }