scirs2_optimize/lib.rs
1#![allow(deprecated)]
2#![allow(clippy::all)]
3#![allow(dead_code)]
4#![allow(unreachable_patterns)]
5#![allow(unused_assignments)]
6#![allow(unused_variables)]
7#![allow(private_interfaces)]
8//! # SciRS2 Optimize - Mathematical Optimization for Rust
9//!
10//! **scirs2-optimize** provides comprehensive optimization algorithms modeled after SciPy's
11//! `optimize` module, offering everything from simple function minimization to complex
12//! constrained optimization and global search.
13//!
14//! ## 🎯 Key Features
15//!
16//! - **Unconstrained Optimization**: BFGS, CG, Nelder-Mead, Powell
17//! - **Constrained Optimization**: SLSQP, Trust-region methods
18//! - **Global Optimization**: Differential Evolution, Basin-hopping, Simulated Annealing
19//! - **Least Squares**: Levenberg-Marquardt, robust fitting, bounded problems
20//! - **Root Finding**: Newton, Brent, Bisection methods
21//! - **Scalar Optimization**: Brent, Golden section search
22//! - **Bounds Support**: Box constraints for all major algorithms
23
24#![allow(clippy::field_reassign_with_default)]
25#![recursion_limit = "512"]
26// Allow common mathematical conventions in optimization code
27#![allow(clippy::many_single_char_names)] // x, f, g, h, n, m etc. are standard in optimization
28#![allow(clippy::similar_names)] // x_pp, x_pm, x_mp, x_mm are standard for finite differences
29//!
30//! ## 📦 Module Overview
31//!
32//! | Module | Description | SciPy Equivalent |
33//! |--------|-------------|------------------|
34//! | [`unconstrained`] | Unconstrained minimization (BFGS, CG, Powell) | `scipy.optimize.minimize` |
35//! | [`constrained`] | Constrained optimization (SLSQP, Trust-region) | `scipy.optimize.minimize` with constraints |
36//! | [`global`] | Global optimization (DE, Basin-hopping) | `scipy.optimize.differential_evolution` |
37//! | [`mod@least_squares`] | Nonlinear least squares (LM, robust methods) | `scipy.optimize.least_squares` |
38//! | [`roots`] | Root finding algorithms | `scipy.optimize.root` |
39//! | [`scalar`] | 1-D minimization | `scipy.optimize.minimize_scalar` |
40//!
41//! ## 🚀 Quick Start
42//!
43//! ### Installation
44//!
45//! ```toml
46//! [dependencies]
47//! scirs2-optimize = "0.1.0-rc.1"
48//! ```
49//!
50//! ### Unconstrained Minimization (Rosenbrock Function)
51//!
52//! ```rust
53//! use scirs2_optimize::unconstrained::{minimize, Method};
54//! use scirs2_core::ndarray::ArrayView1;
55//!
56//! // Rosenbrock function: (1-x)² + 100(y-x²)²
57//! fn rosenbrock(x: &ArrayView1<f64>) -> f64 {
58//! let x0 = x[0];
59//! let x1 = x[1];
60//! (1.0 - x0).powi(2) + 100.0 * (x1 - x0.powi(2)).powi(2)
61//! }
62//!
63//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
64//! let initial_guess = [0.0, 0.0];
65//! let result = minimize(rosenbrock, &initial_guess, Method::BFGS, None)?;
66//!
67//! println!("Minimum at: {:?}", result.x);
68//! println!("Function value: {}", result.fun);
69//! println!("Converged: {}", result.success);
70//! # Ok(())
71//! # }
72//! ```
73//!
74//! ### Optimization with Bounds
75//!
76//! Constrain variables to specific ranges:
77//!
78//! ```rust
79//! use scirs2_optimize::{Bounds, unconstrained::{minimize, Method, Options}};
80//! use scirs2_core::ndarray::ArrayView1;
81//!
82//! fn objective(x: &ArrayView1<f64>) -> f64 {
83//! (x[0] + 1.0).powi(2) + (x[1] + 1.0).powi(2)
84//! }
85//!
86//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
87//! // Constrain to positive quadrant: x >= 0, y >= 0
88//! let bounds = Bounds::new(&[
89//! (Some(0.0), None), // x >= 0
90//! (Some(0.0), None), // y >= 0
91//! ]);
92//!
93//! let mut options = Options::default();
94//! options.bounds = Some(bounds);
95//!
96//! let result = minimize(objective, &[0.5, 0.5], Method::Powell, Some(options))?;
97//! println!("Constrained minimum: {:?}", result.x); // [0.0, 0.0]
98//! # Ok(())
99//! # }
100//! ```
101//!
102//! ### Robust Least Squares
103//!
104//! Fit data with outliers using robust loss functions:
105//!
106//! ```rust
107//! use scirs2_optimize::least_squares::{robust_least_squares, HuberLoss};
108//! use scirs2_core::ndarray::{array, Array1};
109//!
110//! // Linear model residual: y - (a + b*x)
111//! fn residual(params: &[f64], data: &[f64]) -> Array1<f64> {
112//! let n = data.len() / 2;
113//! let x = &data[0..n];
114//! let y = &data[n..];
115//!
116//! let mut res = Array1::zeros(n);
117//! for i in 0..n {
118//! res[i] = y[i] - (params[0] + params[1] * x[i]);
119//! }
120//! res
121//! }
122//!
123//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
124//! // Data: x = [0,1,2,3,4], y = [0.1,0.9,2.1,2.9,10.0] (last point is outlier)
125//! let data = array![0.,1.,2.,3.,4., 0.1,0.9,2.1,2.9,10.0];
126//!
127//! let huber = HuberLoss::new(1.0); // Robust to outliers
128//! let x0 = array![0.0, 0.0];
129//! let result = robust_least_squares(
130//! residual, &x0, huber, None::<fn(&[f64], &[f64]) -> scirs2_core::ndarray::Array2<f64>>, &data, None
131//! )?;
132//!
133//! println!("Robust fit: y = {:.3} + {:.3}x", result.x[0], result.x[1]);
134//! # Ok(())
135//! # }
136//! ```
137//!
138//! ### Global Optimization
139//!
140//! Find global minimum of multi-modal functions:
141//!
142//! ```rust,no_run
143//! use scirs2_optimize::global::{differential_evolution, DifferentialEvolutionOptions};
144//! use scirs2_core::ndarray::ArrayView1;
145//!
146//! // Rastrigin function (multiple local minima)
147//! fn rastrigin(x: &ArrayView1<f64>) -> f64 {
148//! let n = x.len() as f64;
149//! 10.0 * n + x.iter().map(|xi| xi.powi(2) - 10.0 * (2.0 * std::f64::consts::PI * xi).cos()).sum::<f64>()
150//! }
151//!
152//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
153//! let bounds = vec![(-5.12, 5.12); 5]; // 5-dimensional search space
154//! let options = Some(DifferentialEvolutionOptions::default());
155//!
156//! let result = differential_evolution(rastrigin, bounds, options, None)?;
157//! println!("Global minimum: {:?}", result.x);
158//! # Ok(())
159//! # }
160//! ```
161//!
162//! ### Root Finding
163//!
164//! Solve equations f(x) = 0:
165//!
166//! ```rust,no_run
167//! use scirs2_optimize::roots::{root, Method};
168//! use scirs2_core::ndarray::{array, Array1};
169//!
170//! // Find root of x² - 2 = 0 (i.e., √2)
171//! fn f(x: &[f64]) -> Array1<f64> {
172//! array![x[0] * x[0] - 2.0]
173//! }
174//!
175//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
176//! let x0 = array![1.5]; // Initial guess
177//! let result = root(f, &x0, Method::Hybr, None::<fn(&[f64]) -> scirs2_core::ndarray::Array2<f64>>, None)?;
178//! println!("√2 ≈ {:.10}", result.x[0]); // 1.4142135624
179//! # Ok(())
180//! # }
181//! ```
182//! ## Submodules
183//!
184//! * `unconstrained`: Unconstrained optimization algorithms
185//! * `constrained`: Constrained optimization algorithms
186//! * `least_squares`: Least squares minimization (including robust methods)
187//! * `roots`: Root finding algorithms
188//! * `scalar`: Scalar (univariate) optimization algorithms
189//! * `global`: Global optimization algorithms
190//!
191//! ## Optimization Methods
192//!
193//! The following optimization methods are currently implemented:
194//!
195//! ### Unconstrained:
196//! - **Nelder-Mead**: A derivative-free method using simplex-based approach
197//! - **Powell**: Derivative-free method using conjugate directions
198//! - **BFGS**: Quasi-Newton method with BFGS update
199//! - **CG**: Nonlinear conjugate gradient method
200//!
201//! ### Constrained:
202//! - **SLSQP**: Sequential Least SQuares Programming
203//! - **TrustConstr**: Trust-region constrained optimizer
204//!
205//! ### Scalar (Univariate) Optimization:
206//! - **Brent**: Combines parabolic interpolation with golden section search
207//! - **Bounded**: Brent's method with bounds constraints
208//! - **Golden**: Golden section search
209//!
210//! ### Global:
211//! - **Differential Evolution**: Stochastic global optimization method
212//! - **Basin-hopping**: Random perturbations with local minimization
213//! - **Dual Annealing**: Simulated annealing with fast annealing
214//! - **Particle Swarm**: Population-based optimization inspired by swarm behavior
215//! - **Simulated Annealing**: Probabilistic optimization with cooling schedule
216//!
217//! ### Least Squares:
218//! - **Levenberg-Marquardt**: Trust-region algorithm for nonlinear least squares
219//! - **Trust Region Reflective**: Bounds-constrained least squares
220//! - **Robust Least Squares**: M-estimators for outlier-resistant regression
221//! - Huber loss: Reduces influence of moderate outliers
222//! - Bisquare loss: Completely rejects extreme outliers
223//! - Cauchy loss: Provides very strong outlier resistance
224//! - **Weighted Least Squares**: Handles heteroscedastic data (varying variance)
225//! - **Bounded Least Squares**: Box constraints on parameters
226//! - **Separable Least Squares**: Variable projection for partially linear models
227//! - **Total Least Squares**: Errors-in-variables regression
228//! ## Bounds Support
229//!
230//! The `unconstrained` module now supports bounds constraints for variables.
231//! You can specify lower and upper bounds for each variable, and the optimizer
232//! will ensure that all iterates remain within these bounds.
233//!
234//! The following methods support bounds constraints:
235//! - Powell
236//! - Nelder-Mead
237//! - BFGS
238//! - CG (Conjugate Gradient)
239//!
240//! ## Examples
241//!
242//! ### Basic Optimization
243//!
244//! ```
245//! // Example of minimizing a function using BFGS
246//! use scirs2_core::ndarray::{array, ArrayView1};
247//! use scirs2_optimize::unconstrained::{minimize, Method};
248//!
249//! fn rosenbrock(x: &ArrayView1<f64>) -> f64 {
250//! let a = 1.0;
251//! let b = 100.0;
252//! let x0 = x[0];
253//! let x1 = x[1];
254//! (a - x0).powi(2) + b * (x1 - x0.powi(2)).powi(2)
255//! }
256//!
257//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
258//! let initial_guess = [0.0, 0.0];
259//! let result = minimize(rosenbrock, &initial_guess, Method::BFGS, None)?;
260//!
261//! println!("Solution: {:?}", result.x);
262//! println!("Function value at solution: {}", result.fun);
263//! println!("Number of nit: {}", result.nit);
264//! println!("Success: {}", result.success);
265//! # Ok(())
266//! # }
267//! ```
268//!
269//! ### Optimization with Bounds
270//!
271//! ```
272//! // Example of minimizing a function with bounds constraints
273//! use scirs2_core::ndarray::{array, ArrayView1};
274//! use scirs2_optimize::{Bounds, unconstrained::{minimize, Method, Options}};
275//!
276//! // A function with minimum at (-1, -1)
277//! fn func(x: &ArrayView1<f64>) -> f64 {
278//! (x[0] + 1.0).powi(2) + (x[1] + 1.0).powi(2)
279//! }
280//!
281//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
282//! // Create bounds: x >= 0, y >= 0
283//! // This will constrain the optimization to the positive quadrant
284//! let bounds = Bounds::new(&[(Some(0.0), None), (Some(0.0), None)]);
285//!
286//! let initial_guess = [0.5, 0.5];
287//! let mut options = Options::default();
288//! options.bounds = Some(bounds);
289//!
290//! // Use Powell's method which supports bounds
291//! let result = minimize(func, &initial_guess, Method::Powell, Some(options))?;
292//!
293//! // The constrained minimum should be at [0, 0] with value 2.0
294//! println!("Solution: {:?}", result.x);
295//! println!("Function value at solution: {}", result.fun);
296//! # Ok(())
297//! # }
298//! ```
299//!
300//! ### Bounds Creation Options
301//!
302//! ```
303//! use scirs2_optimize::Bounds;
304//!
305//! // Create bounds from pairs
306//! // Format: [(min_x1, max_x1), (min_x2, max_x2), ...] where None = unbounded
307//! let bounds1 = Bounds::new(&[
308//! (Some(0.0), Some(1.0)), // 0 <= x[0] <= 1
309//! (Some(-1.0), None), // x[1] >= -1, no upper bound
310//! (None, Some(10.0)), // x[2] <= 10, no lower bound
311//! (None, None) // x[3] is completely unbounded
312//! ]);
313//!
314//! // Alternative: create from separate lower and upper bound vectors
315//! let lb = vec![Some(0.0), Some(-1.0), None, None];
316//! let ub = vec![Some(1.0), None, Some(10.0), None];
317//! let bounds2 = Bounds::from_vecs(lb, ub).unwrap();
318//! ```
319//!
320//! ### Robust Least Squares Example
321//!
322//! ```
323//! use scirs2_core::ndarray::{array, Array1, Array2};
324//! use scirs2_optimize::least_squares::{robust_least_squares, HuberLoss};
325//!
326//! // Define residual function for linear regression
327//! fn residual(params: &[f64], data: &[f64]) -> Array1<f64> {
328//! let n = data.len() / 2;
329//! let x_vals = &data[0..n];
330//! let y_vals = &data[n..];
331//!
332//! let mut res = Array1::zeros(n);
333//! for i in 0..n {
334//! res[i] = y_vals[i] - (params[0] + params[1] * x_vals[i]);
335//! }
336//! res
337//! }
338//!
339//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
340//! // Data with outliers
341//! let data = array![0., 1., 2., 3., 4., 0.1, 0.9, 2.1, 2.9, 10.0];
342//! let x0 = array![0.0, 0.0];
343//!
344//! // Use Huber loss for robustness
345//! let huber_loss = HuberLoss::new(1.0);
346//! let result = robust_least_squares(
347//! residual,
348//! &x0,
349//! huber_loss,
350//! None::<fn(&[f64], &[f64]) -> Array2<f64>>,
351//! &data,
352//! None
353//! )?;
354//!
355//! println!("Robust solution: intercept={:.3}, slope={:.3}",
356//! result.x[0], result.x[1]);
357//! # Ok(())
358//! # }
359//! ```
360
361// BLAS backend linking handled through scirs2-core
362
363// Export error types
364pub mod error;
365pub use error::{OptimizeError, OptimizeResult};
366
367// Module structure
368pub mod advanced_coordinator;
369#[cfg(feature = "async")]
370pub mod async_parallel;
371pub mod automatic_differentiation;
372pub mod benchmarking;
373pub mod constrained;
374pub mod distributed;
375pub mod distributed_gpu;
376pub mod global;
377pub mod gpu;
378pub mod jit_optimization;
379pub mod learned_optimizers;
380pub mod least_squares;
381pub mod ml_optimizers;
382pub mod multi_objective;
383pub mod neural_integration;
384pub mod neuromorphic;
385pub mod parallel;
386pub mod quantum_inspired;
387pub mod reinforcement_learning;
388pub mod roots;
389pub mod roots_anderson;
390pub mod roots_krylov;
391pub mod scalar;
392pub mod self_tuning;
393pub mod simd_ops;
394pub mod sparse_numdiff; // Refactored into a module with submodules
395pub mod stochastic;
396pub mod streaming;
397pub mod unconstrained;
398pub mod unified_pipeline;
399pub mod visualization;
400
401// Common optimization result structure
402pub mod result;
403pub use result::OptimizeResults;
404
405// Convenience re-exports for common functions
406pub use advanced_coordinator::{
407 advanced_optimize, AdvancedConfig, AdvancedCoordinator, AdvancedStats, AdvancedStrategy,
408 StrategyPerformance,
409};
410#[cfg(feature = "async")]
411pub use async_parallel::{
412 AsyncDifferentialEvolution, AsyncOptimizationConfig, AsyncOptimizationStats,
413 SlowEvaluationStrategy,
414};
415pub use automatic_differentiation::{
416 autodiff, create_ad_gradient, create_ad_hessian, optimize_ad_mode, ADMode, ADResult,
417 AutoDiffFunction, AutoDiffOptions,
418};
419pub use benchmarking::{
420 benchmark_suites, test_functions, AlgorithmRanking, BenchmarkConfig, BenchmarkResults,
421 BenchmarkRun, BenchmarkSummary, BenchmarkSystem, ProblemCharacteristics, RuntimeStats,
422 TestProblem,
423};
424pub use constrained::minimize_constrained;
425pub use distributed::{
426 algorithms::{DistributedDifferentialEvolution, DistributedParticleSwarm},
427 DistributedConfig, DistributedOptimizationContext, DistributedStats, DistributionStrategy,
428 MPIInterface, WorkAssignment,
429};
430pub use distributed_gpu::{
431 DistributedGpuConfig, DistributedGpuOptimizer, DistributedGpuResults, DistributedGpuStats,
432 GpuCommunicationStrategy, IterationStats,
433};
434pub use global::{
435 basinhopping, bayesian_optimization, differential_evolution, dual_annealing,
436 generate_diverse_start_points, multi_start, multi_start_with_clustering, particle_swarm,
437 simulated_annealing,
438};
439pub use gpu::{
440 acceleration::{
441 AccelerationConfig, AccelerationManager, AccelerationStrategy, PerformanceStats,
442 },
443 algorithms::{GpuDifferentialEvolution, GpuParticleSwarm},
444 GpuFunction, GpuOptimizationConfig, GpuOptimizationContext, GpuPrecision,
445};
446pub use jit_optimization::{optimize_function, FunctionPattern, JitCompiler, JitOptions, JitStats};
447pub use learned_optimizers::{
448 learned_optimize, ActivationType, AdaptationStatistics, AdaptiveNASSystem,
449 AdaptiveTransformerOptimizer, FewShotLearningOptimizer, LearnedHyperparameterTuner,
450 LearnedOptimizationConfig, LearnedOptimizer, MetaOptimizerState, NeuralAdaptiveOptimizer,
451 OptimizationNetwork, OptimizationProblem, ParameterDistribution, ProblemEncoder, TrainingTask,
452};
453pub use least_squares::{
454 bounded_least_squares, least_squares, robust_least_squares, separable_least_squares,
455 total_least_squares, weighted_least_squares, BisquareLoss, CauchyLoss, HuberLoss,
456};
457pub use ml_optimizers::{
458 ml_problems, ADMMOptimizer, CoordinateDescentOptimizer, ElasticNetOptimizer,
459 GroupLassoOptimizer, LassoOptimizer,
460};
461pub use multi_objective::{
462 MultiObjectiveConfig, MultiObjectiveResult, MultiObjectiveSolution, NSGAII, NSGAIII,
463};
464pub use neural_integration::{optimizers, NeuralOptimizer, NeuralParameters, NeuralTrainer};
465pub use neuromorphic::{
466 neuromorphic_optimize, BasicNeuromorphicOptimizer, NeuromorphicConfig, NeuromorphicNetwork,
467 NeuromorphicOptimizer, NeuronState, SpikeEvent,
468};
469pub use quantum_inspired::{
470 quantum_optimize, quantum_particle_swarm_optimize, Complex, CoolingSchedule,
471 QuantumAnnealingSchedule, QuantumInspiredOptimizer, QuantumOptimizationStats, QuantumState,
472};
473pub use reinforcement_learning::{
474 actor_critic_optimize, bandit_optimize, evolutionary_optimize, meta_learning_optimize,
475 policy_gradient_optimize, BanditOptimizer, EvolutionaryStrategy, Experience,
476 MetaLearningOptimizer, OptimizationAction, OptimizationState, QLearningOptimizer,
477 RLOptimizationConfig, RLOptimizer,
478};
479pub use roots::root;
480pub use scalar::minimize_scalar;
481pub use self_tuning::{
482 presets, AdaptationResult, AdaptationStrategy, ParameterChange, ParameterValue,
483 PerformanceMetrics, SelfTuningConfig, SelfTuningOptimizer, TunableParameter,
484};
485pub use sparse_numdiff::{sparse_hessian, sparse_jacobian, SparseFiniteDiffOptions};
486pub use stochastic::{
487 minimize_adam, minimize_adamw, minimize_rmsprop, minimize_sgd, minimize_sgd_momentum,
488 minimize_stochastic, AdamOptions, AdamWOptions, DataProvider, InMemoryDataProvider,
489 LearningRateSchedule, MomentumOptions, RMSPropOptions, SGDOptions, StochasticGradientFunction,
490 StochasticMethod, StochasticOptions,
491};
492pub use streaming::{
493 exponentially_weighted_rls, incremental_bfgs, incremental_lbfgs,
494 incremental_lbfgs_linear_regression, kalman_filter_estimator, online_gradient_descent,
495 online_linear_regression, online_logistic_regression, real_time_linear_regression,
496 recursive_least_squares, rolling_window_gradient_descent, rolling_window_least_squares,
497 rolling_window_linear_regression, rolling_window_weighted_least_squares,
498 streaming_trust_region_linear_regression, streaming_trust_region_logistic_regression,
499 IncrementalNewton, IncrementalNewtonMethod, LinearRegressionObjective,
500 LogisticRegressionObjective, RealTimeEstimator, RealTimeMethod, RollingWindowOptimizer,
501 StreamingConfig, StreamingDataPoint, StreamingObjective, StreamingOptimizer, StreamingStats,
502 StreamingTrustRegion,
503};
504pub use unconstrained::{minimize, Bounds};
505pub use unified_pipeline::{
506 presets as unified_presets, UnifiedOptimizationConfig, UnifiedOptimizationResults,
507 UnifiedOptimizer,
508};
509pub use visualization::{
510 tracking::TrajectoryTracker, ColorScheme, OptimizationTrajectory, OptimizationVisualizer,
511 OutputFormat, VisualizationConfig,
512};
513
514// Prelude module for convenient imports
515pub mod prelude {
516 pub use crate::advanced_coordinator::{
517 advanced_optimize, AdvancedConfig, AdvancedCoordinator, AdvancedStats, AdvancedStrategy,
518 StrategyPerformance,
519 };
520 #[cfg(feature = "async")]
521 pub use crate::async_parallel::{
522 AsyncDifferentialEvolution, AsyncOptimizationConfig, AsyncOptimizationStats,
523 SlowEvaluationStrategy,
524 };
525 pub use crate::automatic_differentiation::{
526 autodiff, create_ad_gradient, create_ad_hessian, optimize_ad_mode, ADMode, ADResult,
527 AutoDiffFunction, AutoDiffOptions, Dual, DualNumber,
528 };
529 pub use crate::benchmarking::{
530 benchmark_suites, test_functions, AlgorithmRanking, BenchmarkConfig, BenchmarkResults,
531 BenchmarkRun, BenchmarkSummary, BenchmarkSystem, ProblemCharacteristics, RuntimeStats,
532 TestProblem,
533 };
534 pub use crate::constrained::{minimize_constrained, Method as ConstrainedMethod};
535 pub use crate::distributed::{
536 algorithms::{DistributedDifferentialEvolution, DistributedParticleSwarm},
537 DistributedConfig, DistributedOptimizationContext, DistributedStats, DistributionStrategy,
538 MPIInterface, WorkAssignment,
539 };
540 pub use crate::distributed_gpu::{
541 DistributedGpuConfig, DistributedGpuOptimizer, DistributedGpuResults, DistributedGpuStats,
542 GpuCommunicationStrategy, IterationStats,
543 };
544 pub use crate::error::{OptimizeError, OptimizeResult};
545 pub use crate::global::{
546 basinhopping, bayesian_optimization, differential_evolution, dual_annealing,
547 generate_diverse_start_points, multi_start_with_clustering, particle_swarm,
548 simulated_annealing, AcquisitionFunctionType, BasinHoppingOptions,
549 BayesianOptimizationOptions, BayesianOptimizer, ClusterCentroid, ClusteringAlgorithm,
550 ClusteringOptions, ClusteringResult, DifferentialEvolutionOptions, DualAnnealingOptions,
551 InitialPointGenerator, KernelType, LocalMinimum, Parameter, ParticleSwarmOptions,
552 SimulatedAnnealingOptions, Space, StartPointStrategy,
553 };
554 pub use crate::gpu::{
555 acceleration::{
556 AccelerationConfig, AccelerationManager, AccelerationStrategy, PerformanceStats,
557 },
558 algorithms::{GpuDifferentialEvolution, GpuParticleSwarm},
559 GpuFunction, GpuOptimizationConfig, GpuOptimizationContext, GpuPrecision,
560 };
561 pub use crate::jit_optimization::{
562 optimize_function, FunctionPattern, JitCompiler, JitOptions, JitStats,
563 };
564 pub use crate::learned_optimizers::{
565 learned_optimize, ActivationType, AdaptationStatistics, AdaptiveNASSystem,
566 AdaptiveTransformerOptimizer, FewShotLearningOptimizer, LearnedHyperparameterTuner,
567 LearnedOptimizationConfig, LearnedOptimizer, MetaOptimizerState, NeuralAdaptiveOptimizer,
568 OptimizationNetwork, OptimizationProblem, ParameterDistribution, ProblemEncoder,
569 TrainingTask,
570 };
571 pub use crate::least_squares::{
572 bounded_least_squares, least_squares, robust_least_squares, separable_least_squares,
573 total_least_squares, weighted_least_squares, BisquareLoss, BoundedOptions, CauchyLoss,
574 HuberLoss, LinearSolver, Method as LeastSquaresMethod, RobustLoss, RobustOptions,
575 SeparableOptions, SeparableResult, TLSMethod, TotalLeastSquaresOptions,
576 TotalLeastSquaresResult, WeightedOptions,
577 };
578 pub use crate::ml_optimizers::{
579 ml_problems, ADMMOptimizer, CoordinateDescentOptimizer, ElasticNetOptimizer,
580 GroupLassoOptimizer, LassoOptimizer,
581 };
582 pub use crate::multi_objective::{
583 MultiObjectiveConfig, MultiObjectiveResult, MultiObjectiveSolution, NSGAII, NSGAIII,
584 };
585 pub use crate::neural_integration::{
586 optimizers, NeuralOptimizer, NeuralParameters, NeuralTrainer,
587 };
588 pub use crate::neuromorphic::{
589 neuromorphic_optimize, BasicNeuromorphicOptimizer, NeuromorphicConfig, NeuromorphicNetwork,
590 NeuromorphicOptimizer, NeuronState, SpikeEvent,
591 };
592 pub use crate::parallel::{
593 parallel_evaluate_batch, parallel_finite_diff_gradient, ParallelOptions,
594 };
595 pub use crate::quantum_inspired::{
596 quantum_optimize, quantum_particle_swarm_optimize, Complex, CoolingSchedule,
597 QuantumAnnealingSchedule, QuantumInspiredOptimizer, QuantumOptimizationStats, QuantumState,
598 };
599 pub use crate::reinforcement_learning::{
600 bandit_optimize, evolutionary_optimize, meta_learning_optimize, policy_gradient_optimize,
601 BanditOptimizer, EvolutionaryStrategy, Experience, MetaLearningOptimizer,
602 OptimizationAction, OptimizationState, QLearningOptimizer, RLOptimizationConfig,
603 RLOptimizer,
604 };
605 pub use crate::result::OptimizeResults;
606 pub use crate::roots::{root, Method as RootMethod};
607 pub use crate::scalar::{
608 minimize_scalar, Method as ScalarMethod, Options as ScalarOptions, ScalarOptimizeResult,
609 };
610 pub use crate::self_tuning::{
611 presets, AdaptationResult, AdaptationStrategy, ParameterChange, ParameterValue,
612 PerformanceMetrics, SelfTuningConfig, SelfTuningOptimizer, TunableParameter,
613 };
614 pub use crate::sparse_numdiff::{sparse_hessian, sparse_jacobian, SparseFiniteDiffOptions};
615 pub use crate::streaming::{
616 exponentially_weighted_rls, incremental_bfgs, incremental_lbfgs,
617 incremental_lbfgs_linear_regression, kalman_filter_estimator, online_gradient_descent,
618 online_linear_regression, online_logistic_regression, real_time_linear_regression,
619 recursive_least_squares, rolling_window_gradient_descent, rolling_window_least_squares,
620 rolling_window_linear_regression, rolling_window_weighted_least_squares,
621 streaming_trust_region_linear_regression, streaming_trust_region_logistic_regression,
622 IncrementalNewton, IncrementalNewtonMethod, LinearRegressionObjective,
623 LogisticRegressionObjective, RealTimeEstimator, RealTimeMethod, RollingWindowOptimizer,
624 StreamingConfig, StreamingDataPoint, StreamingObjective, StreamingOptimizer,
625 StreamingStats, StreamingTrustRegion,
626 };
627 pub use crate::unconstrained::{minimize, Bounds, Method as UnconstrainedMethod, Options};
628 pub use crate::unified_pipeline::{
629 presets as unified_presets, UnifiedOptimizationConfig, UnifiedOptimizationResults,
630 UnifiedOptimizer,
631 };
632 pub use crate::visualization::{
633 tracking::TrajectoryTracker, ColorScheme, OptimizationTrajectory, OptimizationVisualizer,
634 OutputFormat, VisualizationConfig,
635 };
636}
637
638#[cfg(test)]
639mod tests {
640 #[test]
641 fn it_works() {
642 assert_eq!(2 + 2, 4);
643 }
644}