1use crate::error::{ScirsError, ScirsResult};
7use scirs2_core::gpu::{GpuContext, GpuKernelHandle};
8use scirs2_core::ndarray::{Array1, Array2};
9use std::sync::Arc;
10
11#[derive(Debug, Clone)]
13pub struct TensorCoreOptimizationConfig {
14 pub mixed_precision: bool,
16 pub tile_size: usize,
18 pub use_amp: bool,
20 pub loss_scale: f32,
22 pub gradient_clip_threshold: Option<f32>,
24}
25
26impl Default for TensorCoreOptimizationConfig {
27 fn default() -> Self {
28 Self {
29 mixed_precision: true,
30 tile_size: 16, use_amp: true,
32 loss_scale: 65536.0,
33 gradient_clip_threshold: Some(1.0),
34 }
35 }
36}
37
38pub struct TensorCoreOptimizer {
40 context: Arc<GpuContext>,
41 config: TensorCoreOptimizationConfig,
42 gemm_kernel: GpuKernelHandle,
43 batch_gemm_kernel: GpuKernelHandle,
44 gradient_kernel: GpuKernelHandle,
45}
46
47impl TensorCoreOptimizer {
48 pub fn new(
50 context: Arc<GpuContext>,
51 config: TensorCoreOptimizationConfig,
52 ) -> ScirsResult<Self> {
53 let _supports_tensor_cores = true; if !_supports_tensor_cores {
57 return Err(ScirsError::NotImplementedError(
58 scirs2_core::error::ErrorContext::new(
59 "Tensor Cores not available on this device".to_string(),
60 ),
61 ));
62 }
63
64 let gemm_kernel = Self::create_gemm_kernel(&context, &config)?;
65 let batch_gemm_kernel = Self::create_batch_gemm_kernel(&context, &config)?;
66 let gradient_kernel = Self::create_gradient_kernel(&context, &config)?;
67
68 Ok(Self {
69 context,
70 config,
71 gemm_kernel,
72 batch_gemm_kernel,
73 gradient_kernel,
74 })
75 }
76
77 fn create_gemm_kernel(
79 context: &Arc<GpuContext>,
80 config: &TensorCoreOptimizationConfig,
81 ) -> ScirsResult<GpuKernelHandle> {
82 let kernel_source = if config.mixed_precision {
83 r#"
84 #include <cuda_fp16.h>
85 #include <mma.h>
86
87 using namespace nvcuda;
88
89 extern "C" __global__ void tensor_core_gemm_mixed(
90 const half* A,
91 const half* B,
92 float* C,
93 int M, int N, int K,
94 float alpha, float beta
95 ) {
96 const int WMMA_M = 16;
97 const int WMMA_N = 16;
98 const int WMMA_K = 16;
99
100 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
101 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
102
103 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
104 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
105 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
106 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
107
108 wmma::fill_fragment(acc_frag, 0.0f);
109
110 for (int i = 0; i < K; i += WMMA_K) {
111 int aRow = warpM * WMMA_M;
112 int aCol = i;
113 int bRow = i;
114 int bCol = warpN * WMMA_N;
115
116 if (aRow < M && aCol < K && bRow < K && bCol < N) {
117 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
118 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
119 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
120 }
121 }
122
123 int cRow = warpM * WMMA_M;
124 int cCol = warpN * WMMA_N;
125
126 if (cRow < M && cCol < N) {
127 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
128 for (int i = 0; i < c_frag.num_elements; i++) {
129 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
130 }
131 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
132 }
133 }
134 "#.to_string()
135 } else {
136 r#"
137 #include <mma.h>
138
139 using namespace nvcuda;
140
141 extern "C" __global__ void tensor_core_gemm_fp32(
142 const float* A,
143 const float* B,
144 float* C,
145 int M, int N, int K,
146 float alpha, float beta
147 ) {
148 // Standard FP32 Tensor Core implementation
149 const int WMMA_M = 16;
150 const int WMMA_N = 16;
151 const int WMMA_K = 8;
152
153 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
154 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
155
156 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::row_major> a_frag;
157 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::col_major> b_frag;
158 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
159 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
160
161 wmma::fill_fragment(acc_frag, 0.0f);
162
163 for (int i = 0; i < K; i += WMMA_K) {
164 int aRow = warpM * WMMA_M;
165 int aCol = i;
166 int bRow = i;
167 int bCol = warpN * WMMA_N;
168
169 if (aRow < M && aCol < K && bRow < K && bCol < N) {
170 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
171 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
172 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
173 }
174 }
175
176 int cRow = warpM * WMMA_M;
177 int cCol = warpN * WMMA_N;
178
179 if (cRow < M && cCol < N) {
180 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
181 for (int i = 0; i < c_frag.num_elements; i++) {
182 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
183 }
184 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
185 }
186 }
187 "#.to_string()
188 };
189
190 let kernel_name = if config.mixed_precision {
191 "tensor_core_gemm_mixed"
192 } else {
193 "tensor_core_gemm_fp32"
194 };
195
196 context
197 .execute(|compiler| compiler.compile(&kernel_source))
198 .map_err(|e| {
199 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
200 "Failed to compile kernel: {}",
201 e
202 )))
203 })
204 }
205
206 fn create_batch_gemm_kernel(
208 context: &Arc<GpuContext>,
209 config: &TensorCoreOptimizationConfig,
210 ) -> ScirsResult<GpuKernelHandle> {
211 let kernel_source = r#"
212 #include <cuda_fp16.h>
213 #include <mma.h>
214
215 using namespace nvcuda;
216
217 extern "C" __global__ void tensor_core_batch_gemm(
218 const half** A_array,
219 const half** B_array,
220 float** C_array,
221 int* M_array,
222 int* N_array,
223 int* K_array,
224 float* alpha_array,
225 float* beta_array,
226 int batch_count
227 ) {
228 int batch_id = blockIdx.z;
229 if (batch_id >= batch_count) return;
230
231 const half* A = A_array[batch_id];
232 const half* B = B_array[batch_id];
233 float* C = C_array[batch_id];
234 int M = M_array[batch_id];
235 int N = N_array[batch_id];
236 int K = K_array[batch_id];
237 float alpha = alpha_array[batch_id];
238 float beta = beta_array[batch_id];
239
240 const int WMMA_M = 16;
241 const int WMMA_N = 16;
242 const int WMMA_K = 16;
243
244 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
245 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
246
247 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
248 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
249 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
250 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
251
252 wmma::fill_fragment(acc_frag, 0.0f);
253
254 for (int i = 0; i < K; i += WMMA_K) {
255 int aRow = warpM * WMMA_M;
256 int aCol = i;
257 int bRow = i;
258 int bCol = warpN * WMMA_N;
259
260 if (aRow < M && aCol < K && bRow < K && bCol < N) {
261 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
262 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
263 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
264 }
265 }
266
267 int cRow = warpM * WMMA_M;
268 int cCol = warpN * WMMA_N;
269
270 if (cRow < M && cCol < N) {
271 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
272 for (int i = 0; i < c_frag.num_elements; i++) {
273 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
274 }
275 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
276 }
277 }
278 "#;
279
280 context
281 .execute(|compiler| compiler.compile(kernel_source))
282 .map_err(|e| {
283 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
284 "Failed to compile batch kernel: {}",
285 e
286 )))
287 })
288 }
289
290 fn create_gradient_kernel(
292 context: &Arc<GpuContext>,
293 config: &TensorCoreOptimizationConfig,
294 ) -> ScirsResult<GpuKernelHandle> {
295 let kernel_source = r#"
296 #include <cuda_fp16.h>
297 #include <mma.h>
298
299 using namespace nvcuda;
300
301 extern "C" __global__ void tensor_core_gradient_computation(
302 const half* jacobian,
303 const half* residuals,
304 float* gradients,
305 int n_points,
306 int n_dims,
307 float loss_scale
308 ) {
309 // Use Tensor Cores to compute J^T * r efficiently
310 const int WMMA_M = 16;
311 const int WMMA_N = 16;
312 const int WMMA_K = 16;
313
314 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
315 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
316
317 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> jt_frag;
318 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> r_frag;
319 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
320
321 wmma::fill_fragment(acc_frag, 0.0f);
322
323 // Compute J^T * r using Tensor Cores
324 for (int k = 0; k < n_points; k += WMMA_K) {
325 if (warpM * WMMA_M < n_dims && k < n_points) {
326 // Load transposed Jacobian and residuals
327 wmma::load_matrix_sync(jt_frag, jacobian + k * n_dims + warpM * WMMA_M, n_dims);
328 wmma::load_matrix_sync(r_frag, residuals + k, 1);
329 wmma::mma_sync(acc_frag, jt_frag, r_frag, acc_frag);
330 }
331 }
332
333 // Store result with loss scaling
334 if (warpM * WMMA_M < n_dims) {
335 for (int i = 0; i < WMMA_M && warpM * WMMA_M + i < n_dims; i++) {
336 gradients[warpM * WMMA_M + i] = acc_frag.x[i] / loss_scale;
337 }
338 }
339 }
340 "#;
341
342 context
343 .execute(|compiler| compiler.compile(kernel_source))
344 .map_err(|e| {
345 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
346 "Failed to compile gradient kernel: {}",
347 e
348 )))
349 })
350 }
351
352 #[allow(dead_code)]
354 pub fn gemm(
355 &self,
356 _a: &Array2<f64>,
357 _b: &Array2<f64>,
358 _c: &mut Array2<f64>,
359 _alpha: f64,
360 _beta: f64,
361 ) -> ScirsResult<()> {
362 Err(ScirsError::NotImplementedError(
364 scirs2_core::error::ErrorContext::new("GEMM not yet implemented".to_string()),
365 ))
366 }
367
368 #[allow(dead_code)]
370 pub fn batch_gemm(
371 &self,
372 _a_batch: &[&Array2<f64>],
373 _b_batch: &[&Array2<f64>],
374 _c_batch: &mut [&mut Array2<f64>],
375 _alpha_batch: &[f64],
376 _beta_batch: &[f64],
377 ) -> ScirsResult<()> {
378 Err(ScirsError::NotImplementedError(
380 scirs2_core::error::ErrorContext::new("Batch GEMM not yet implemented".to_string()),
381 ))
382 }
383
384 #[allow(dead_code)]
386 pub fn compute_gradients(
387 &self,
388 _jacobian: &Array2<f64>,
389 _residuals: &Array1<f64>,
390 ) -> ScirsResult<Array1<f64>> {
391 Err(ScirsError::NotImplementedError(
393 scirs2_core::error::ErrorContext::new(
394 "Gradient computation not yet implemented".to_string(),
395 ),
396 ))
397 }
398
399 #[allow(dead_code)]
401 pub fn clip_gradients(&self, _gradients: &mut Array1<f64>) -> ScirsResult<()> {
402 Ok(())
404 }
405
406 pub fn config(&self) -> &TensorCoreOptimizationConfig {
408 &self.config
409 }
410
411 pub fn update_loss_scale(&mut self, loss_scale: f32) {
413 self.config.loss_scale = loss_scale;
414 }
415
416 #[allow(dead_code)]
418 pub fn check_overflow(&self, _tensor: &Array2<f64>) -> ScirsResult<bool> {
419 Ok(false)
421 }
422}
423
424pub struct AMPManager {
426 loss_scale: f32,
427 growth_factor: f32,
428 backoff_factor: f32,
429 growth_interval: u32,
430 consecutive_unskipped: u32,
431}
432
433impl AMPManager {
434 pub fn new() -> Self {
436 Self {
437 loss_scale: 65536.0,
438 growth_factor: 2.0,
439 backoff_factor: 0.5,
440 growth_interval: 2000,
441 consecutive_unskipped: 0,
442 }
443 }
444
445 pub fn update(&mut self, found_overflow: bool) -> f32 {
447 if found_overflow {
448 self.loss_scale *= self.backoff_factor;
449 self.consecutive_unskipped = 0;
450 } else {
451 self.consecutive_unskipped += 1;
452 if self.consecutive_unskipped >= self.growth_interval {
453 self.loss_scale *= self.growth_factor;
454 self.consecutive_unskipped = 0;
455 }
456 }
457
458 self.loss_scale = self.loss_scale.max(1.0).min(2_f32.powi(20));
460 self.loss_scale
461 }
462
463 pub fn loss_scale(&self) -> f32 {
465 self.loss_scale
466 }
467}
468
469impl Default for AMPManager {
470 fn default() -> Self {
471 Self::new()
472 }
473}
474
475#[cfg(test)]
476mod tests {
477 use super::*;
478
479 #[test]
480 fn test_tensor_core_config() {
481 let config = TensorCoreOptimizationConfig::default();
482 assert!(config.mixed_precision);
483 assert_eq!(config.tile_size, 16);
484 assert!(config.use_amp);
485 assert_eq!(config.loss_scale, 65536.0);
486 }
487
488 #[test]
489 fn test_amp_manager() {
490 let mut manager = AMPManager::new();
491 assert_eq!(manager.loss_scale(), 65536.0);
492
493 let new_scale = manager.update(true);
495 assert_eq!(new_scale, 32768.0);
496
497 for _ in 0..2000 {
499 manager.update(false);
500 }
501 let grown_scale = manager.loss_scale();
502 assert!(grown_scale > 32768.0);
503 }
504
505 #[test]
506 #[ignore = "Requires Tensor Core capable GPU"]
507 fn test_tensor_core_optimizer() {
508 }
511}