scirs2_optimize/gpu/
tensor_core_optimization.rs

1//! Tensor Core optimizations for high-performance GPU acceleration
2//!
3//! This module leverages NVIDIA Tensor Cores for accelerated matrix operations
4//! in optimization algorithms, providing significant speedup for suitable workloads.
5
6use crate::error::{ScirsError, ScirsResult};
7use scirs2_core::gpu::{GpuContext, GpuKernelHandle};
8use scirs2_core::ndarray::{Array1, Array2};
9use std::sync::Arc;
10
11/// Tensor Core acceleration configuration
12#[derive(Debug, Clone)]
13pub struct TensorCoreOptimizationConfig {
14    /// Use mixed precision (FP16 for computation, FP32 for accumulation)
15    pub mixed_precision: bool,
16    /// Tile size for matrix operations
17    pub tile_size: usize,
18    /// Whether to use automatic mixed precision (AMP)
19    pub use_amp: bool,
20    /// Loss scaling for numerical stability in mixed precision
21    pub loss_scale: f32,
22    /// Gradient clipping threshold
23    pub gradient_clip_threshold: Option<f32>,
24}
25
26impl Default for TensorCoreOptimizationConfig {
27    fn default() -> Self {
28        Self {
29            mixed_precision: true,
30            tile_size: 16, // Optimal for most Tensor Core operations
31            use_amp: true,
32            loss_scale: 65536.0,
33            gradient_clip_threshold: Some(1.0),
34        }
35    }
36}
37
38/// Tensor Core-accelerated matrix operations for optimization
39pub struct TensorCoreOptimizer {
40    context: Arc<GpuContext>,
41    config: TensorCoreOptimizationConfig,
42    gemm_kernel: GpuKernelHandle,
43    batch_gemm_kernel: GpuKernelHandle,
44    gradient_kernel: GpuKernelHandle,
45}
46
47impl TensorCoreOptimizer {
48    /// Create a new Tensor Core optimizer
49    pub fn new(
50        context: Arc<GpuContext>,
51        config: TensorCoreOptimizationConfig,
52    ) -> ScirsResult<Self> {
53        // Check Tensor Core capability
54        // TODO: Add proper tensor core capability check when available in scirs2_core
55        let _supports_tensor_cores = true; // Assume tensor cores are available for now
56        if !_supports_tensor_cores {
57            return Err(ScirsError::NotImplementedError(
58                scirs2_core::error::ErrorContext::new(
59                    "Tensor Cores not available on this device".to_string(),
60                ),
61            ));
62        }
63
64        let gemm_kernel = Self::create_gemm_kernel(&context, &config)?;
65        let batch_gemm_kernel = Self::create_batch_gemm_kernel(&context, &config)?;
66        let gradient_kernel = Self::create_gradient_kernel(&context, &config)?;
67
68        Ok(Self {
69            context,
70            config,
71            gemm_kernel,
72            batch_gemm_kernel,
73            gradient_kernel,
74        })
75    }
76
77    /// Create optimized GEMM kernel using Tensor Cores
78    fn create_gemm_kernel(
79        context: &Arc<GpuContext>,
80        config: &TensorCoreOptimizationConfig,
81    ) -> ScirsResult<GpuKernelHandle> {
82        let kernel_source = if config.mixed_precision {
83            r#"
84                #include <cuda_fp16.h>
85                #include <mma.h>
86                
87                using namespace nvcuda;
88                
89                extern "C" __global__ void tensor_core_gemm_mixed(
90                    const half* A,
91                    const half* B,
92                    float* C,
93                    int M, int N, int K,
94                    float alpha, float beta
95                ) {
96                    const int WMMA_M = 16;
97                    const int WMMA_N = 16;
98                    const int WMMA_K = 16;
99                    
100                    int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
101                    int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
102                    
103                    wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
104                    wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
105                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
106                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
107                    
108                    wmma::fill_fragment(acc_frag, 0.0f);
109                    
110                    for (int i = 0; i < K; i += WMMA_K) {
111                        int aRow = warpM * WMMA_M;
112                        int aCol = i;
113                        int bRow = i;
114                        int bCol = warpN * WMMA_N;
115                        
116                        if (aRow < M && aCol < K && bRow < K && bCol < N) {
117                            wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
118                            wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
119                            wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
120                        }
121                    }
122                    
123                    int cRow = warpM * WMMA_M;
124                    int cCol = warpN * WMMA_N;
125                    
126                    if (cRow < M && cCol < N) {
127                        wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
128                        for (int i = 0; i < c_frag.num_elements; i++) {
129                            c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
130                        }
131                        wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
132                    }
133                }
134            "#.to_string()
135        } else {
136            r#"
137                #include <mma.h>
138                
139                using namespace nvcuda;
140                
141                extern "C" __global__ void tensor_core_gemm_fp32(
142                    const float* A,
143                    const float* B,
144                    float* C,
145                    int M, int N, int K,
146                    float alpha, float beta
147                ) {
148                    // Standard FP32 Tensor Core implementation
149                    const int WMMA_M = 16;
150                    const int WMMA_N = 16;
151                    const int WMMA_K = 8;
152                    
153                    int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
154                    int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
155                    
156                    wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::row_major> a_frag;
157                    wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::col_major> b_frag;
158                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
159                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
160                    
161                    wmma::fill_fragment(acc_frag, 0.0f);
162                    
163                    for (int i = 0; i < K; i += WMMA_K) {
164                        int aRow = warpM * WMMA_M;
165                        int aCol = i;
166                        int bRow = i;
167                        int bCol = warpN * WMMA_N;
168                        
169                        if (aRow < M && aCol < K && bRow < K && bCol < N) {
170                            wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
171                            wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
172                            wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
173                        }
174                    }
175                    
176                    int cRow = warpM * WMMA_M;
177                    int cCol = warpN * WMMA_N;
178                    
179                    if (cRow < M && cCol < N) {
180                        wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
181                        for (int i = 0; i < c_frag.num_elements; i++) {
182                            c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
183                        }
184                        wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
185                    }
186                }
187            "#.to_string()
188        };
189
190        let kernel_name = if config.mixed_precision {
191            "tensor_core_gemm_mixed"
192        } else {
193            "tensor_core_gemm_fp32"
194        };
195
196        context
197            .execute(|compiler| compiler.compile(&kernel_source))
198            .map_err(|e| {
199                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
200                    "Failed to compile kernel: {}",
201                    e
202                )))
203            })
204    }
205
206    /// Create batch GEMM kernel for multiple matrix multiplications
207    fn create_batch_gemm_kernel(
208        context: &Arc<GpuContext>,
209        config: &TensorCoreOptimizationConfig,
210    ) -> ScirsResult<GpuKernelHandle> {
211        let kernel_source = r#"
212            #include <cuda_fp16.h>
213            #include <mma.h>
214            
215            using namespace nvcuda;
216            
217            extern "C" __global__ void tensor_core_batch_gemm(
218                const half** A_array,
219                const half** B_array,
220                float** C_array,
221                int* M_array,
222                int* N_array,
223                int* K_array,
224                float* alpha_array,
225                float* beta_array,
226                int batch_count
227            ) {
228                int batch_id = blockIdx.z;
229                if (batch_id >= batch_count) return;
230                
231                const half* A = A_array[batch_id];
232                const half* B = B_array[batch_id];
233                float* C = C_array[batch_id];
234                int M = M_array[batch_id];
235                int N = N_array[batch_id];
236                int K = K_array[batch_id];
237                float alpha = alpha_array[batch_id];
238                float beta = beta_array[batch_id];
239                
240                const int WMMA_M = 16;
241                const int WMMA_N = 16;
242                const int WMMA_K = 16;
243                
244                int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
245                int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
246                
247                wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
248                wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
249                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
250                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
251                
252                wmma::fill_fragment(acc_frag, 0.0f);
253                
254                for (int i = 0; i < K; i += WMMA_K) {
255                    int aRow = warpM * WMMA_M;
256                    int aCol = i;
257                    int bRow = i;
258                    int bCol = warpN * WMMA_N;
259                    
260                    if (aRow < M && aCol < K && bRow < K && bCol < N) {
261                        wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
262                        wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
263                        wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
264                    }
265                }
266                
267                int cRow = warpM * WMMA_M;
268                int cCol = warpN * WMMA_N;
269                
270                if (cRow < M && cCol < N) {
271                    wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
272                    for (int i = 0; i < c_frag.num_elements; i++) {
273                        c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
274                    }
275                    wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
276                }
277            }
278        "#;
279
280        context
281            .execute(|compiler| compiler.compile(kernel_source))
282            .map_err(|e| {
283                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
284                    "Failed to compile batch kernel: {}",
285                    e
286                )))
287            })
288    }
289
290    /// Create gradient computation kernel with Tensor Core acceleration
291    fn create_gradient_kernel(
292        context: &Arc<GpuContext>,
293        config: &TensorCoreOptimizationConfig,
294    ) -> ScirsResult<GpuKernelHandle> {
295        let kernel_source = r#"
296            #include <cuda_fp16.h>
297            #include <mma.h>
298            
299            using namespace nvcuda;
300            
301            extern "C" __global__ void tensor_core_gradient_computation(
302                const half* jacobian,
303                const half* residuals,
304                float* gradients,
305                int n_points,
306                int n_dims,
307                float loss_scale
308            ) {
309                // Use Tensor Cores to compute J^T * r efficiently
310                const int WMMA_M = 16;
311                const int WMMA_N = 16;
312                const int WMMA_K = 16;
313                
314                int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
315                int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
316                
317                wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> jt_frag;
318                wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> r_frag;
319                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
320                
321                wmma::fill_fragment(acc_frag, 0.0f);
322                
323                // Compute J^T * r using Tensor Cores
324                for (int k = 0; k < n_points; k += WMMA_K) {
325                    if (warpM * WMMA_M < n_dims && k < n_points) {
326                        // Load transposed Jacobian and residuals
327                        wmma::load_matrix_sync(jt_frag, jacobian + k * n_dims + warpM * WMMA_M, n_dims);
328                        wmma::load_matrix_sync(r_frag, residuals + k, 1);
329                        wmma::mma_sync(acc_frag, jt_frag, r_frag, acc_frag);
330                    }
331                }
332                
333                // Store result with loss scaling
334                if (warpM * WMMA_M < n_dims) {
335                    for (int i = 0; i < WMMA_M && warpM * WMMA_M + i < n_dims; i++) {
336                        gradients[warpM * WMMA_M + i] = acc_frag.x[i] / loss_scale;
337                    }
338                }
339            }
340        "#;
341
342        context
343            .execute(|compiler| compiler.compile(kernel_source))
344            .map_err(|e| {
345                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
346                    "Failed to compile gradient kernel: {}",
347                    e
348                )))
349            })
350    }
351
352    /// Perform optimized matrix multiplication using Tensor Cores
353    #[allow(dead_code)]
354    pub fn gemm(
355        &self,
356        _a: &Array2<f64>,
357        _b: &Array2<f64>,
358        _c: &mut Array2<f64>,
359        _alpha: f64,
360        _beta: f64,
361    ) -> ScirsResult<()> {
362        // TODO: Implement when GPU buffer creation from arrays is supported
363        Err(ScirsError::NotImplementedError(
364            scirs2_core::error::ErrorContext::new("GEMM not yet implemented".to_string()),
365        ))
366    }
367
368    /// Perform batch matrix multiplication using Tensor Cores
369    #[allow(dead_code)]
370    pub fn batch_gemm(
371        &self,
372        _a_batch: &[&Array2<f64>],
373        _b_batch: &[&Array2<f64>],
374        _c_batch: &mut [&mut Array2<f64>],
375        _alpha_batch: &[f64],
376        _beta_batch: &[f64],
377    ) -> ScirsResult<()> {
378        // TODO: Implement when GPU API supports batch operations
379        Err(ScirsError::NotImplementedError(
380            scirs2_core::error::ErrorContext::new("Batch GEMM not yet implemented".to_string()),
381        ))
382    }
383
384    /// Compute gradients using Tensor Core acceleration
385    #[allow(dead_code)]
386    pub fn compute_gradients(
387        &self,
388        _jacobian: &Array2<f64>,
389        _residuals: &Array1<f64>,
390    ) -> ScirsResult<Array1<f64>> {
391        // TODO: Implement when GPU API supports gradient computation
392        Err(ScirsError::NotImplementedError(
393            scirs2_core::error::ErrorContext::new(
394                "Gradient computation not yet implemented".to_string(),
395            ),
396        ))
397    }
398
399    /// Check if gradient clipping is needed and apply it
400    #[allow(dead_code)]
401    pub fn clip_gradients(&self, _gradients: &mut Array1<f64>) -> ScirsResult<()> {
402        // TODO: Implement when GPU API supports array operations
403        Ok(())
404    }
405
406    /// Get the current configuration
407    pub fn config(&self) -> &TensorCoreOptimizationConfig {
408        &self.config
409    }
410
411    /// Update loss scale for automatic mixed precision
412    pub fn update_loss_scale(&mut self, loss_scale: f32) {
413        self.config.loss_scale = loss_scale;
414    }
415
416    /// Check if computation overflowed (for AMP)
417    #[allow(dead_code)]
418    pub fn check_overflow(&self, _tensor: &Array2<f64>) -> ScirsResult<bool> {
419        // TODO: Implement when GPU API supports NaN/Inf checking
420        Ok(false)
421    }
422}
423
424/// Automatic Mixed Precision (AMP) manager for optimization
425pub struct AMPManager {
426    loss_scale: f32,
427    growth_factor: f32,
428    backoff_factor: f32,
429    growth_interval: u32,
430    consecutive_unskipped: u32,
431}
432
433impl AMPManager {
434    /// Create a new AMP manager
435    pub fn new() -> Self {
436        Self {
437            loss_scale: 65536.0,
438            growth_factor: 2.0,
439            backoff_factor: 0.5,
440            growth_interval: 2000,
441            consecutive_unskipped: 0,
442        }
443    }
444
445    /// Update loss scale based on overflow detection
446    pub fn update(&mut self, found_overflow: bool) -> f32 {
447        if found_overflow {
448            self.loss_scale *= self.backoff_factor;
449            self.consecutive_unskipped = 0;
450        } else {
451            self.consecutive_unskipped += 1;
452            if self.consecutive_unskipped >= self.growth_interval {
453                self.loss_scale *= self.growth_factor;
454                self.consecutive_unskipped = 0;
455            }
456        }
457
458        // Clamp loss scale to reasonable bounds
459        self.loss_scale = self.loss_scale.max(1.0).min(2_f32.powi(20));
460        self.loss_scale
461    }
462
463    /// Get current loss scale
464    pub fn loss_scale(&self) -> f32 {
465        self.loss_scale
466    }
467}
468
469impl Default for AMPManager {
470    fn default() -> Self {
471        Self::new()
472    }
473}
474
475#[cfg(test)]
476mod tests {
477    use super::*;
478
479    #[test]
480    fn test_tensor_core_config() {
481        let config = TensorCoreOptimizationConfig::default();
482        assert!(config.mixed_precision);
483        assert_eq!(config.tile_size, 16);
484        assert!(config.use_amp);
485        assert_eq!(config.loss_scale, 65536.0);
486    }
487
488    #[test]
489    fn test_amp_manager() {
490        let mut manager = AMPManager::new();
491        assert_eq!(manager.loss_scale(), 65536.0);
492
493        // Test overflow handling
494        let new_scale = manager.update(true);
495        assert_eq!(new_scale, 32768.0);
496
497        // Test growth
498        for _ in 0..2000 {
499            manager.update(false);
500        }
501        let grown_scale = manager.loss_scale();
502        assert!(grown_scale > 32768.0);
503    }
504
505    #[test]
506    #[ignore = "Requires Tensor Core capable GPU"]
507    fn test_tensor_core_optimizer() {
508        // This would test the actual Tensor Core optimizer
509        // Implementation depends on the actual scirs2-core GPU infrastructure
510    }
511}