scirs2_optimize/
advanced_coordinator.rs

1//! Advanced Mode Coordinator
2//!
3//! This module implements the cutting-edge Advanced Mode for optimization,
4//! which intelligently coordinates between multiple advanced optimization strategies:
5//! - Neural Architecture Search (NAS) systems
6//! - Quantum-inspired optimization
7//! - Neuromorphic computing approaches
8//! - Meta-learning optimizers
9//! - Real-time adaptive strategy switching
10//! - Cross-modal optimization fusion
11//!
12//! The Advanced Coordinator represents the pinnacle of optimization technology,
13//! combining insights from quantum mechanics, neuroscience, artificial intelligence,
14//! and adaptive systems theory.
15
16use crate::error::OptimizeError;
17use crate::error::OptimizeResult as Result;
18use crate::learned_optimizers::{
19    LearnedOptimizationConfig,
20    LearnedOptimizer,
21    MetaLearningOptimizer,
22    OptimizationProblem,
23    // Unused import: TrainingTask,
24};
25use crate::neuromorphic::{BasicNeuromorphicOptimizer, NeuromorphicConfig, NeuromorphicOptimizer};
26use crate::quantum_inspired::{QuantumInspiredOptimizer, QuantumOptimizationStats};
27use crate::result::OptimizeResults;
28use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
29use scirs2_core::random::prelude::*;
30use std::collections::{HashMap, VecDeque};
31use std::time::{Duration, Instant};
32
33/// Advanced coordination strategy for Advanced mode
34#[derive(Debug, Clone, Copy, PartialEq)]
35pub enum AdvancedStrategy {
36    /// Quantum-Neural Fusion: Combines quantum superposition with neural adaptation
37    QuantumNeuralFusion,
38    /// Neuromorphic-Quantum Hybrid: Spiking networks with quantum tunneling
39    NeuromorphicQuantumHybrid,
40    /// Meta-Learning Quantum: Quantum-enhanced meta-learning optimization
41    MetaLearningQuantum,
42    /// Adaptive Strategy Selection: Dynamic strategy switching based on performance
43    AdaptiveSelection,
44    /// Full Advanced: All strategies working in parallel with intelligent coordination
45    FullAdvanced,
46}
47
48/// Configuration for Advanced Mode
49#[derive(Debug, Clone)]
50pub struct AdvancedConfig {
51    /// Primary coordination strategy
52    pub strategy: AdvancedStrategy,
53    /// Maximum optimization iterations
54    pub max_nit: usize,
55    /// Function evaluation budget
56    pub max_evaluations: usize,
57    /// Convergence tolerance
58    pub tolerance: f64,
59    /// Strategy switching threshold (performance improvement required)
60    pub switching_threshold: f64,
61    /// Time budget for optimization (seconds)
62    pub time_budget: Option<Duration>,
63    /// Enable quantum components
64    pub enable_quantum: bool,
65    /// Enable neuromorphic components
66    pub enable_neuromorphic: bool,
67    /// Enable meta-learning components
68    pub enable_meta_learning: bool,
69    /// Number of parallel optimization threads
70    pub parallel_threads: usize,
71    /// Cross-modal fusion strength (0.0 to 1.0)
72    pub fusion_strength: f64,
73    /// Adaptive learning rate for strategy coordination
74    pub coordination_learning_rate: f64,
75    /// Memory size for strategy performance tracking
76    pub performance_memory_size: usize,
77}
78
79impl Default for AdvancedConfig {
80    fn default() -> Self {
81        Self {
82            strategy: AdvancedStrategy::FullAdvanced,
83            max_nit: 10000,
84            max_evaluations: 100000,
85            tolerance: 1e-12,
86            switching_threshold: 0.01,
87            time_budget: Some(Duration::from_secs(300)), // 5 minutes
88            enable_quantum: true,
89            enable_neuromorphic: true,
90            enable_meta_learning: true,
91            parallel_threads: 4,
92            fusion_strength: 0.7,
93            coordination_learning_rate: 0.01,
94            performance_memory_size: 1000,
95        }
96    }
97}
98
99/// Real-time performance statistics for strategy coordination
100#[derive(Debug, Clone)]
101pub struct StrategyPerformance {
102    /// Strategy identifier
103    pub strategy_id: String,
104    /// Convergence rate (improvement per iteration)
105    pub convergence_rate: f64,
106    /// Function evaluations used
107    pub evaluations_used: usize,
108    /// Success rate (fraction of problems solved)
109    pub success_rate: f64,
110    /// Average time per iteration
111    pub avg_iteration_time: Duration,
112    /// Best objective value achieved
113    pub best_objective: f64,
114    /// Exploration efficiency
115    pub exploration_efficiency: f64,
116    /// Exploitation efficiency  
117    pub exploitation_efficiency: f64,
118    /// Adaptation speed
119    pub adaptation_speed: f64,
120}
121
122impl Default for StrategyPerformance {
123    fn default() -> Self {
124        Self {
125            strategy_id: String::new(),
126            convergence_rate: 0.0,
127            evaluations_used: 0,
128            success_rate: 0.0,
129            avg_iteration_time: Duration::from_millis(1),
130            best_objective: f64::INFINITY,
131            exploration_efficiency: 0.5,
132            exploitation_efficiency: 0.5,
133            adaptation_speed: 0.1,
134        }
135    }
136}
137
138/// Advanced optimization state
139#[derive(Debug, Clone)]
140pub struct AdvancedState {
141    /// Current best solution across all strategies
142    pub global_best_solution: Array1<f64>,
143    /// Current best objective value
144    pub global_best_objective: f64,
145    /// Total function evaluations used
146    pub total_evaluations: usize,
147    /// Current iteration
148    pub current_iteration: usize,
149    /// Active strategy performances
150    pub strategy_performances: HashMap<String, StrategyPerformance>,
151    /// Cross-modal knowledge transfer matrix
152    pub knowledge_transfer_matrix: Array2<f64>,
153    /// Strategy confidence scores
154    pub strategy_confidences: HashMap<String, f64>,
155    /// Fusion weights for multi-strategy coordination
156    pub fusion_weights: Array1<f64>,
157    /// Problem characteristics learned so far
158    pub problem_characteristics: HashMap<String, f64>,
159    /// Performance history for adaptive learning
160    pub performance_history: VecDeque<f64>,
161    /// Start time for time budget tracking
162    pub start_time: Instant,
163}
164
165impl AdvancedState {
166    fn new(num_params: usize, num_strategies: usize) -> Self {
167        Self {
168            global_best_solution: Array1::zeros(num_params),
169            global_best_objective: f64::INFINITY,
170            total_evaluations: 0,
171            current_iteration: 0,
172            strategy_performances: HashMap::new(),
173            knowledge_transfer_matrix: Array2::zeros((num_strategies, num_strategies)),
174            strategy_confidences: HashMap::new(),
175            fusion_weights: Array1::from_elem(num_strategies, 1.0 / num_strategies as f64),
176            problem_characteristics: HashMap::new(),
177            performance_history: VecDeque::with_capacity(1000),
178            start_time: Instant::now(),
179        }
180    }
181}
182
183/// Main Advanced Coordinator
184#[derive(Debug)]
185pub struct AdvancedCoordinator {
186    /// Configuration
187    pub config: AdvancedConfig,
188    /// Current optimization state
189    pub state: AdvancedState,
190    /// Quantum optimizer instance
191    pub quantum_optimizer: Option<QuantumInspiredOptimizer>,
192    /// Neuromorphic optimizer instance
193    pub neuromorphic_optimizer: Option<BasicNeuromorphicOptimizer>,
194    /// Meta-learning optimizer instance
195    pub meta_learning_optimizer: Option<MetaLearningOptimizer>,
196    /// Strategy performance predictor
197    pub performance_predictor: PerformancePredictor,
198    /// Cross-modal fusion engine
199    pub fusion_engine: CrossModalFusionEngine,
200    /// Adaptive strategy selector
201    pub strategy_selector: AdaptiveStrategySelector,
202}
203
204impl AdvancedCoordinator {
205    /// Create new Advanced Coordinator
206    pub fn new(config: AdvancedConfig, initial_params: &ArrayView1<f64>) -> Self {
207        let num_params = initial_params.len();
208        let num_strategies = 3; // quantum, neuromorphic, meta-learning
209        let state = AdvancedState::new(num_params, num_strategies);
210
211        // Initialize optimizers based on configuration
212        let quantum_optimizer = if config.enable_quantum {
213            Some(QuantumInspiredOptimizer::new(
214                initial_params,
215                config.max_nit,
216                32, // quantum states
217            ))
218        } else {
219            None
220        };
221
222        let neuromorphic_optimizer = if config.enable_neuromorphic {
223            let neuro_config = NeuromorphicConfig {
224                total_time: 10.0,
225                num_neurons: 200,
226                ..Default::default()
227            };
228            Some(BasicNeuromorphicOptimizer::new(neuro_config, num_params))
229        } else {
230            None
231        };
232
233        let meta_learning_optimizer = if config.enable_meta_learning {
234            let meta_config = LearnedOptimizationConfig {
235                meta_training_episodes: 1000,
236                use_transformer: true,
237                hidden_size: 512,
238                ..Default::default()
239            };
240            Some(MetaLearningOptimizer::new(meta_config))
241        } else {
242            None
243        };
244
245        Self {
246            config,
247            state,
248            quantum_optimizer,
249            neuromorphic_optimizer,
250            meta_learning_optimizer,
251            performance_predictor: PerformancePredictor::new(),
252            fusion_engine: CrossModalFusionEngine::new(num_params),
253            strategy_selector: AdaptiveStrategySelector::new(),
254        }
255    }
256
257    /// Execute Advanced optimization
258    pub fn optimize<F>(&mut self, objective: F) -> Result<OptimizeResults<f64>>
259    where
260        F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + Clone,
261    {
262        self.state.start_time = Instant::now();
263        let mut best_result = None;
264        let mut consecutive_no_improvement = 0;
265
266        for iteration in 0..self.config.max_nit {
267            self.state.current_iteration = iteration;
268
269            // Check time budget
270            if let Some(budget) = self.config.time_budget {
271                if self.state.start_time.elapsed() > budget {
272                    break;
273                }
274            }
275
276            // Check evaluation budget
277            if self.state.total_evaluations >= self.config.max_evaluations {
278                break;
279            }
280
281            // Execute current strategy
282            let iteration_result = match self.config.strategy {
283                AdvancedStrategy::QuantumNeuralFusion => {
284                    self.execute_quantum_neural_fusion(&objective)?
285                }
286                AdvancedStrategy::NeuromorphicQuantumHybrid => {
287                    self.execute_neuromorphic_quantum_hybrid(&objective)?
288                }
289                AdvancedStrategy::MetaLearningQuantum => {
290                    self.execute_meta_learning_quantum(&objective)?
291                }
292                AdvancedStrategy::AdaptiveSelection => {
293                    self.execute_adaptive_selection(&objective)?
294                }
295                AdvancedStrategy::FullAdvanced => self.execute_full_advanced(&objective)?,
296            };
297
298            // Update global best
299            if iteration_result.fun < self.state.global_best_objective {
300                self.state.global_best_objective = iteration_result.fun;
301                self.state.global_best_solution = iteration_result.x.clone();
302                consecutive_no_improvement = 0;
303                best_result = Some(iteration_result.clone());
304            } else {
305                consecutive_no_improvement += 1;
306            }
307
308            // Update performance tracking
309            self.update_performance_tracking(iteration_result.fun)?;
310
311            // Adaptive strategy switching
312            if consecutive_no_improvement > 50 {
313                self.adapt_strategy()?;
314                consecutive_no_improvement = 0;
315            }
316
317            // Convergence check
318            if self.state.global_best_objective < self.config.tolerance {
319                break;
320            }
321
322            // Cross-modal knowledge transfer
323            if iteration % 25 == 0 {
324                self.perform_knowledge_transfer()?;
325            }
326        }
327
328        let final_result = best_result.unwrap_or_else(|| OptimizeResults::<f64> {
329            x: self.state.global_best_solution.clone(),
330            fun: self.state.global_best_objective,
331            success: self.state.global_best_objective < f64::INFINITY,
332            nit: self.state.current_iteration,
333            nfev: self.state.total_evaluations,
334            njev: 0,
335            nhev: 0,
336            maxcv: 0,
337            status: 0,
338            jac: None,
339            hess: None,
340            constr: None,
341            message: "Advanced optimization completed".to_string(),
342        });
343
344        Ok(final_result)
345    }
346
347    /// Execute Quantum-Neural Fusion strategy
348    fn execute_quantum_neural_fusion<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
349    where
350        F: Fn(&ArrayView1<f64>) -> f64,
351    {
352        if let (Some(quantum_opt), Some(neuro_opt)) = (
353            self.quantum_optimizer.as_mut(),
354            self.neuromorphic_optimizer.as_mut(),
355        ) {
356            // Quantum exploration phase
357            let quantum_candidate = quantum_opt.quantum_state.measure();
358            let quantum_obj = objective(&quantum_candidate.view());
359            self.state.total_evaluations += 1;
360
361            // Neural adaptation phase
362            neuro_opt
363                .network_mut()
364                .encode_parameters(&quantum_candidate.view());
365            let neural_result = neuro_opt.optimize(objective, &quantum_candidate.view())?;
366            self.state.total_evaluations += neural_result.nit;
367
368            // Fusion of results
369            let fused_solution = self.fusion_engine.fuse_solutions(
370                &quantum_candidate.view(),
371                &neural_result.x.view(),
372                self.config.fusion_strength,
373            )?;
374
375            let fused_objective = objective(&fused_solution.view());
376            self.state.total_evaluations += 1;
377
378            Ok(OptimizeResults::<f64> {
379                x: fused_solution,
380                fun: fused_objective,
381                success: fused_objective < f64::INFINITY,
382                nit: 1,
383                nfev: 1,
384                njev: 0,
385                nhev: 0,
386                maxcv: 0,
387                status: 0,
388                jac: None,
389                hess: None,
390                constr: None,
391                message: "Quantum-Neural fusion completed".to_string(),
392            })
393        } else {
394            Err(OptimizeError::InitializationError(
395                "Required optimizers not available".to_string(),
396            ))
397        }
398    }
399
400    /// Execute Neuromorphic-Quantum Hybrid strategy
401    fn execute_neuromorphic_quantum_hybrid<F>(
402        &mut self,
403        objective: &F,
404    ) -> Result<OptimizeResults<f64>>
405    where
406        F: Fn(&ArrayView1<f64>) -> f64,
407    {
408        if let (Some(quantum_opt), Some(neuro_opt)) = (
409            self.quantum_optimizer.as_mut(),
410            self.neuromorphic_optimizer.as_mut(),
411        ) {
412            // Neuromorphic spike-based exploration
413            let neural_candidate = neuro_opt.network().decode_parameters();
414            let neural_obj = objective(&neural_candidate.view());
415            self.state.total_evaluations += 1;
416
417            // Quantum tunneling for local minima escape
418            if neural_obj > self.state.global_best_objective * 1.1 {
419                quantum_opt.quantum_state.quantum_tunnel(
420                    5.0, // barrier height
421                    0.3, // tunnel probability
422                )?;
423            }
424
425            // Hybrid evolution
426            let quantum_candidate = quantum_opt.quantum_state.measure();
427            let quantum_obj = objective(&quantum_candidate.view());
428            self.state.total_evaluations += 1;
429
430            // Select best candidate
431            let (best_solution, best_obj) = if quantum_obj < neural_obj {
432                (quantum_candidate, quantum_obj)
433            } else {
434                (neural_candidate, neural_obj)
435            };
436
437            Ok(OptimizeResults::<f64> {
438                x: best_solution,
439                fun: best_obj,
440                success: best_obj < f64::INFINITY,
441                nit: 1,
442                nfev: 1,
443                njev: 0,
444                nhev: 0,
445                maxcv: 0,
446                status: 0,
447                jac: None,
448                hess: None,
449                constr: None,
450                message: "Neuromorphic-Quantum hybrid completed".to_string(),
451            })
452        } else {
453            Err(OptimizeError::InitializationError(
454                "Required optimizers not available".to_string(),
455            ))
456        }
457    }
458
459    /// Execute Meta-Learning Quantum strategy
460    fn execute_meta_learning_quantum<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
461    where
462        F: Fn(&ArrayView1<f64>) -> f64,
463    {
464        if let (Some(quantum_opt), Some(meta_opt)) = (
465            self.quantum_optimizer.as_mut(),
466            self.meta_learning_optimizer.as_mut(),
467        ) {
468            // Meta-learning guided quantum state preparation
469            let problem = OptimizationProblem {
470                name: "current_problem".to_string(),
471                dimension: self.state.global_best_solution.len(),
472                problem_class: "unknown".to_string(),
473                metadata: self.state.problem_characteristics.clone(),
474                max_evaluations: 100,
475                target_accuracy: self.config.tolerance,
476            };
477
478            meta_opt.adapt_to_problem(&problem, &self.state.global_best_solution.view())?;
479
480            // Quantum evolution with meta-learning guidance
481            let quantum_result = quantum_opt.optimize(objective)?;
482            self.state.total_evaluations += quantum_result.nit;
483
484            // Meta-learning from quantum results
485            self.update_problem_characteristics(&quantum_result)?;
486
487            Ok(quantum_result)
488        } else {
489            Err(OptimizeError::InitializationError(
490                "Required optimizers not available".to_string(),
491            ))
492        }
493    }
494
495    /// Execute Adaptive Selection strategy
496    fn execute_adaptive_selection<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
497    where
498        F: Fn(&ArrayView1<f64>) -> f64,
499    {
500        // Select best strategy based on current performance
501        let selected_strategy = self.strategy_selector.select_strategy(&self.state)?;
502
503        match selected_strategy.as_str() {
504            "quantum" => {
505                if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
506                    let result = quantum_opt.optimize(objective)?;
507                    self.state.total_evaluations += result.nit;
508                    Ok(result)
509                } else {
510                    Err(OptimizeError::InitializationError(
511                        "Quantum optimizer not available".to_string(),
512                    ))
513                }
514            }
515            "neuromorphic" => {
516                if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
517                    let result =
518                        neuro_opt.optimize(objective, &self.state.global_best_solution.view())?;
519                    self.state.total_evaluations += result.nit;
520                    Ok(result)
521                } else {
522                    Err(OptimizeError::InitializationError(
523                        "Neuromorphic optimizer not available".to_string(),
524                    ))
525                }
526            }
527            "meta_learning" => {
528                if let Some(meta_opt) = self.meta_learning_optimizer.as_mut() {
529                    let result =
530                        meta_opt.optimize(objective, &self.state.global_best_solution.view())?;
531                    self.state.total_evaluations += result.nit;
532                    Ok(result)
533                } else {
534                    Err(OptimizeError::InitializationError(
535                        "Meta-learning optimizer not available".to_string(),
536                    ))
537                }
538            }
539            _ => Err(OptimizeError::InitializationError(
540                "Unknown strategy selected".to_string(),
541            )),
542        }
543    }
544
545    /// Execute Full Advanced strategy (all optimizers in parallel coordination)
546    fn execute_full_advanced<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
547    where
548        F: Fn(&ArrayView1<f64>) -> f64,
549    {
550        let mut results = Vec::new();
551
552        // Execute all available optimizers
553        if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
554            let quantum_candidate = quantum_opt.quantum_state.measure();
555            let quantum_obj = objective(&quantum_candidate.view());
556            self.state.total_evaluations += 1;
557
558            results.push(OptimizeResults::<f64> {
559                x: quantum_candidate,
560                fun: quantum_obj,
561                success: quantum_obj < f64::INFINITY,
562                nit: 1,
563                nfev: 1,
564                njev: 0,
565                nhev: 0,
566                maxcv: 0,
567                status: 0,
568                jac: None,
569                hess: None,
570                constr: None,
571                message: "Quantum component".to_string(),
572            });
573        }
574
575        if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
576            let neural_candidate = neuro_opt.network().decode_parameters();
577            let neural_obj = objective(&neural_candidate.view());
578            self.state.total_evaluations += 1;
579
580            results.push(OptimizeResults::<f64> {
581                x: neural_candidate,
582                fun: neural_obj,
583                success: neural_obj < f64::INFINITY,
584                nit: 1,
585                nfev: 1,
586                njev: 0,
587                nhev: 0,
588                maxcv: 0,
589                status: 0,
590                jac: None,
591                hess: None,
592                constr: None,
593                message: "Neuromorphic component".to_string(),
594            });
595        }
596
597        if let Some(meta_opt) = self.meta_learning_optimizer.as_mut() {
598            // Use a simplified meta-learning step
599            let meta_candidate = self.state.global_best_solution.clone();
600            let meta_obj = objective(&meta_candidate.view());
601            self.state.total_evaluations += 1;
602
603            results.push(OptimizeResults::<f64> {
604                x: meta_candidate,
605                fun: meta_obj,
606                success: meta_obj < f64::INFINITY,
607                nit: 1,
608                nfev: 1,
609                njev: 0,
610                nhev: 0,
611                maxcv: 0,
612                status: 0,
613                jac: None,
614                hess: None,
615                constr: None,
616                message: "Meta-learning component".to_string(),
617            });
618        }
619
620        // Intelligent fusion of all results
621        if !results.is_empty() {
622            let fused_result = self.fusion_engine.fuse_multiple_solutions(&results)?;
623            let fused_obj = objective(&fused_result.view());
624            self.state.total_evaluations += 1;
625
626            Ok(OptimizeResults::<f64> {
627                x: fused_result,
628                fun: fused_obj,
629                success: fused_obj < f64::INFINITY,
630                nit: 1,
631                nfev: 1,
632                njev: 0,
633                nhev: 0,
634                maxcv: 0,
635                status: 0,
636                jac: None,
637                hess: None,
638                constr: None,
639                message: "Full Advanced coordination completed".to_string(),
640            })
641        } else {
642            Err(OptimizeError::InitializationError(
643                "No optimizers available".to_string(),
644            ))
645        }
646    }
647
648    /// Update performance tracking for strategy adaptation
649    fn update_performance_tracking(&mut self, current_objective: f64) -> Result<()> {
650        self.state.performance_history.push_back(current_objective);
651        if self.state.performance_history.len() > self.config.performance_memory_size {
652            self.state.performance_history.pop_front();
653        }
654
655        // Update strategy confidences based on recent performance
656        self.update_strategy_confidences()?;
657
658        Ok(())
659    }
660
661    /// Update strategy confidence scores
662    fn update_strategy_confidences(&mut self) -> Result<()> {
663        if self.state.performance_history.len() > 10 {
664            let recent_improvement = self.compute_recent_improvement_rate();
665
666            // Update confidences based on improvement rate
667            for (_strategy, confidence) in self.state.strategy_confidences.iter_mut() {
668                if recent_improvement > 0.0 {
669                    *confidence = (*confidence * 0.9 + 0.1).min(1.0);
670                } else {
671                    *confidence = (*confidence * 0.95).max(0.1);
672                }
673            }
674        }
675
676        Ok(())
677    }
678
679    /// Compute recent improvement rate
680    fn compute_recent_improvement_rate(&self) -> f64 {
681        if self.state.performance_history.len() < 10 {
682            return 0.0;
683        }
684
685        let recent: Vec<f64> = self
686            .state
687            .performance_history
688            .iter()
689            .rev()
690            .take(10)
691            .cloned()
692            .collect();
693
694        let initial = recent[9];
695        let final_val = recent[0];
696
697        if initial > 0.0 {
698            (initial - final_val) / initial
699        } else {
700            0.0
701        }
702    }
703
704    /// Adapt strategy based on performance
705    fn adapt_strategy(&mut self) -> Result<()> {
706        // Simple strategy adaptation logic
707        let improvement_rate = self.compute_recent_improvement_rate();
708
709        if improvement_rate < 0.001 {
710            // Switch to more exploratory strategy
711            self.config.strategy = match self.config.strategy {
712                AdvancedStrategy::AdaptiveSelection => AdvancedStrategy::QuantumNeuralFusion,
713                AdvancedStrategy::QuantumNeuralFusion => {
714                    AdvancedStrategy::NeuromorphicQuantumHybrid
715                }
716                AdvancedStrategy::NeuromorphicQuantumHybrid => {
717                    AdvancedStrategy::MetaLearningQuantum
718                }
719                AdvancedStrategy::MetaLearningQuantum => AdvancedStrategy::FullAdvanced,
720                AdvancedStrategy::FullAdvanced => AdvancedStrategy::AdaptiveSelection,
721            };
722        }
723
724        Ok(())
725    }
726
727    /// Perform knowledge transfer between optimization strategies
728    fn perform_knowledge_transfer(&mut self) -> Result<()> {
729        // Transfer best solutions between optimizers
730        let best_solution = &self.state.global_best_solution;
731
732        if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
733            // Update quantum basis states with best known solution
734            for i in 0..quantum_opt.quantum_state.basis_states.nrows() {
735                for j in 0..best_solution
736                    .len()
737                    .min(quantum_opt.quantum_state.basis_states.ncols())
738                {
739                    let noise = (thread_rng().gen::<f64>() - 0.5) * 0.1;
740                    quantum_opt.quantum_state.basis_states[[i, j]] = best_solution[j] + noise;
741                }
742            }
743        }
744
745        if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
746            // Encode best solution into neuromorphic network
747            neuro_opt
748                .network_mut()
749                .encode_parameters(&best_solution.view());
750        }
751
752        Ok(())
753    }
754
755    /// Update problem characteristics based on optimization results
756    fn update_problem_characteristics(&mut self, result: &OptimizeResults<f64>) -> Result<()> {
757        // Simple characteristic learning
758        let dimensionality = result.x.len() as f64;
759        let convergence_rate = if result.nit > 0 {
760            1.0 / result.nit as f64
761        } else {
762            0.0
763        };
764
765        self.state
766            .problem_characteristics
767            .insert("dimensionality".to_string(), dimensionality);
768        self.state
769            .problem_characteristics
770            .insert("convergence_rate".to_string(), convergence_rate);
771        self.state
772            .problem_characteristics
773            .insert("objective_scale".to_string(), result.fun.abs().ln());
774
775        Ok(())
776    }
777
778    /// Get comprehensive optimization statistics
779    pub fn get_advanced_stats(&self) -> AdvancedStats {
780        AdvancedStats {
781            total_evaluations: self.state.total_evaluations,
782            current_iteration: self.state.current_iteration,
783            best_objective: self.state.global_best_objective,
784            active_strategy: self.config.strategy,
785            elapsed_time: self.state.start_time.elapsed(),
786            strategy_confidences: self.state.strategy_confidences.clone(),
787            problem_characteristics: self.state.problem_characteristics.clone(),
788            quantum_stats: self
789                .quantum_optimizer
790                .as_ref()
791                .map(|opt| opt.get_quantum_stats()),
792        }
793    }
794}
795
796/// Performance Predictor for strategy selection
797#[derive(Debug)]
798struct PerformancePredictor {
799    // Simple predictor implementation
800}
801
802impl PerformancePredictor {
803    fn new() -> Self {
804        Self {}
805    }
806}
807
808/// Cross-Modal Fusion Engine
809#[derive(Debug)]
810struct CrossModalFusionEngine {
811    num_params: usize,
812}
813
814impl CrossModalFusionEngine {
815    fn new(num_params: usize) -> Self {
816        Self { num_params }
817    }
818
819    fn fuse_solutions(
820        &self,
821        solution1: &ArrayView1<f64>,
822        solution2: &ArrayView1<f64>,
823        fusion_strength: f64,
824    ) -> Result<Array1<f64>> {
825        let mut fused = Array1::zeros(self.num_params);
826
827        for i in 0..self.num_params {
828            if i < solution1.len() && i < solution2.len() {
829                fused[i] = (1.0 - fusion_strength) * solution1[i] + fusion_strength * solution2[i];
830            }
831        }
832
833        Ok(fused)
834    }
835
836    fn fuse_multiple_solutions(&self, results: &[OptimizeResults<f64>]) -> Result<Array1<f64>> {
837        if results.is_empty() {
838            return Ok(Array1::zeros(self.num_params));
839        }
840
841        let mut fused = Array1::zeros(self.num_params);
842        let mut weights = Vec::new();
843
844        // Compute weights based on objective values (better solutions get higher weight)
845        let max_obj = results
846            .iter()
847            .map(|r| r.fun)
848            .fold(f64::NEG_INFINITY, f64::max);
849        for result in results {
850            // Better solutions (lower objective) should get higher weights
851            // Use (max_obj - fun + small_value) to give higher weight to lower objective values
852            let weight = max_obj - result.fun + 1e-12;
853            weights.push(weight);
854        }
855
856        // Normalize weights
857        let total_weight: f64 = weights.iter().sum();
858        if total_weight > 0.0 {
859            for weight in &mut weights {
860                *weight /= total_weight;
861            }
862        }
863
864        // Weighted fusion
865        for (result, weight) in results.iter().zip(weights.iter()) {
866            for i in 0..self.num_params.min(result.x.len()) {
867                fused[i] += weight * result.x[i];
868            }
869        }
870
871        Ok(fused)
872    }
873}
874
875/// Adaptive Strategy Selector
876#[derive(Debug)]
877struct AdaptiveStrategySelector {
878    // Simple selector implementation
879}
880
881impl AdaptiveStrategySelector {
882    fn new() -> Self {
883        Self {}
884    }
885
886    fn select_strategy(&self, state: &AdvancedState) -> Result<String> {
887        // Simple strategy selection based on performance history
888        if state.performance_history.len() < 10 {
889            return Ok("quantum".to_string());
890        }
891
892        let improvement_rate = if state.performance_history.len() >= 2 {
893            let recent = state.performance_history.back().unwrap();
894            let prev = state.performance_history[state.performance_history.len() - 2];
895
896            if prev > 0.0 {
897                (prev - recent) / prev
898            } else {
899                0.0
900            }
901        } else {
902            0.0
903        };
904
905        if improvement_rate > 0.01 {
906            Ok("quantum".to_string())
907        } else if improvement_rate > 0.001 {
908            Ok("neuromorphic".to_string())
909        } else {
910            Ok("meta_learning".to_string())
911        }
912    }
913}
914
915/// Comprehensive statistics for Advanced optimization
916#[derive(Debug, Clone)]
917pub struct AdvancedStats {
918    pub total_evaluations: usize,
919    pub current_iteration: usize,
920    pub best_objective: f64,
921    pub active_strategy: AdvancedStrategy,
922    pub elapsed_time: Duration,
923    pub strategy_confidences: HashMap<String, f64>,
924    pub problem_characteristics: HashMap<String, f64>,
925    pub quantum_stats: Option<QuantumOptimizationStats>,
926}
927
928/// Convenience function for Advanced optimization
929#[allow(dead_code)]
930pub fn advanced_optimize<F>(
931    objective: F,
932    initial_params: &ArrayView1<f64>,
933    config: Option<AdvancedConfig>,
934) -> Result<OptimizeResults<f64>>
935where
936    F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + Clone,
937{
938    let config = config.unwrap_or_default();
939    let mut coordinator = AdvancedCoordinator::new(config, initial_params);
940    coordinator.optimize(objective)
941}
942
943#[cfg(test)]
944mod tests {
945    use super::*;
946
947    #[test]
948    fn test_advanced_config_default() {
949        let config = AdvancedConfig::default();
950        assert_eq!(config.strategy, AdvancedStrategy::FullAdvanced);
951        assert!(config.enable_quantum);
952        assert!(config.enable_neuromorphic);
953        assert!(config.enable_meta_learning);
954    }
955
956    #[test]
957    fn test_advanced_coordinator_creation() {
958        let config = AdvancedConfig::default();
959        let initial_params = Array1::from(vec![1.0, 2.0]);
960        let coordinator = AdvancedCoordinator::new(config, &initial_params.view());
961
962        assert_eq!(coordinator.state.global_best_solution.len(), 2);
963        assert!(coordinator.quantum_optimizer.is_some());
964        assert!(coordinator.neuromorphic_optimizer.is_some());
965        assert!(coordinator.meta_learning_optimizer.is_some());
966    }
967
968    #[test]
969    fn test_cross_modal_fusion() {
970        let fusion_engine = CrossModalFusionEngine::new(2);
971        let sol1 = Array1::from(vec![1.0, 2.0]);
972        let sol2 = Array1::from(vec![3.0, 4.0]);
973
974        let fused = fusion_engine
975            .fuse_solutions(&sol1.view(), &sol2.view(), 0.5)
976            .unwrap();
977
978        assert!((fused[0] - 2.0).abs() < 1e-10);
979        assert!((fused[1] - 3.0).abs() < 1e-10);
980    }
981
982    #[test]
983    fn test_advanced_optimization() {
984        let config = AdvancedConfig {
985            max_nit: 50,
986            strategy: AdvancedStrategy::AdaptiveSelection,
987            ..Default::default()
988        };
989
990        let objective = |x: &ArrayView1<f64>| x[0].powi(2) + x[1].powi(2);
991        let initial = Array1::from(vec![2.0, 2.0]);
992
993        let result = advanced_optimize(objective, &initial.view(), Some(config)).unwrap();
994
995        assert!(result.nit > 0);
996        assert!(result.fun <= objective(&initial.view()));
997        assert!(result.success);
998    }
999
1000    #[test]
1001    fn test_strategy_performance_tracking() {
1002        let config = AdvancedConfig::default();
1003        let initial_params = Array1::from(vec![1.0]);
1004        let mut coordinator = AdvancedCoordinator::new(config, &initial_params.view());
1005
1006        // Add enough performance history (needs at least 10 values for improvement rate calculation)
1007        for i in 0..12 {
1008            coordinator
1009                .state
1010                .performance_history
1011                .push_back(15.0 - i as f64 * 0.5);
1012        }
1013
1014        let improvement_rate = coordinator.compute_recent_improvement_rate();
1015        assert!(improvement_rate > 0.0);
1016    }
1017
1018    #[test]
1019    fn test_multiple_solution_fusion() {
1020        let fusion_engine = CrossModalFusionEngine::new(2);
1021        let results = vec![
1022            OptimizeResults::<f64> {
1023                x: Array1::from(vec![1.0, 2.0]),
1024                fun: 1.0,
1025                success: true,
1026                nit: 10,
1027                nfev: 10,
1028                njev: 0,
1029                nhev: 0,
1030                maxcv: 0,
1031                status: 0,
1032                jac: None,
1033                hess: None,
1034                constr: None,
1035                message: "test1".to_string(),
1036            },
1037            OptimizeResults::<f64> {
1038                x: Array1::from(vec![3.0, 4.0]),
1039                fun: 2.0,
1040                success: true,
1041                nit: 15,
1042                nfev: 15,
1043                njev: 0,
1044                nhev: 0,
1045                maxcv: 0,
1046                status: 0,
1047                jac: None,
1048                hess: None,
1049                constr: None,
1050                message: "test2".to_string(),
1051            },
1052        ];
1053
1054        let fused = fusion_engine.fuse_multiple_solutions(&results).unwrap();
1055        assert_eq!(fused.len(), 2);
1056
1057        // Better solution (lower objective) should have higher influence
1058        assert!(fused[0] < 2.0); // Closer to first solution
1059        assert!(fused[1] < 3.0); // Closer to first solution
1060    }
1061}
1062
1063#[allow(dead_code)]
1064pub fn placeholder() {
1065    // Placeholder function to prevent unused module warnings
1066}