1use crate::error::OptimizeError;
17use crate::error::OptimizeResult as Result;
18use crate::learned_optimizers::{
19 LearnedOptimizationConfig,
20 LearnedOptimizer,
21 MetaLearningOptimizer,
22 OptimizationProblem,
23 };
25use crate::neuromorphic::{BasicNeuromorphicOptimizer, NeuromorphicConfig, NeuromorphicOptimizer};
26use crate::quantum_inspired::{QuantumInspiredOptimizer, QuantumOptimizationStats};
27use crate::result::OptimizeResults;
28use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
29use scirs2_core::random::prelude::*;
30use std::collections::{HashMap, VecDeque};
31use std::time::{Duration, Instant};
32
33#[derive(Debug, Clone, Copy, PartialEq)]
35pub enum AdvancedStrategy {
36 QuantumNeuralFusion,
38 NeuromorphicQuantumHybrid,
40 MetaLearningQuantum,
42 AdaptiveSelection,
44 FullAdvanced,
46}
47
48#[derive(Debug, Clone)]
50pub struct AdvancedConfig {
51 pub strategy: AdvancedStrategy,
53 pub max_nit: usize,
55 pub max_evaluations: usize,
57 pub tolerance: f64,
59 pub switching_threshold: f64,
61 pub time_budget: Option<Duration>,
63 pub enable_quantum: bool,
65 pub enable_neuromorphic: bool,
67 pub enable_meta_learning: bool,
69 pub parallel_threads: usize,
71 pub fusion_strength: f64,
73 pub coordination_learning_rate: f64,
75 pub performance_memory_size: usize,
77}
78
79impl Default for AdvancedConfig {
80 fn default() -> Self {
81 Self {
82 strategy: AdvancedStrategy::FullAdvanced,
83 max_nit: 10000,
84 max_evaluations: 100000,
85 tolerance: 1e-12,
86 switching_threshold: 0.01,
87 time_budget: Some(Duration::from_secs(300)), enable_quantum: true,
89 enable_neuromorphic: true,
90 enable_meta_learning: true,
91 parallel_threads: 4,
92 fusion_strength: 0.7,
93 coordination_learning_rate: 0.01,
94 performance_memory_size: 1000,
95 }
96 }
97}
98
99#[derive(Debug, Clone)]
101pub struct StrategyPerformance {
102 pub strategy_id: String,
104 pub convergence_rate: f64,
106 pub evaluations_used: usize,
108 pub success_rate: f64,
110 pub avg_iteration_time: Duration,
112 pub best_objective: f64,
114 pub exploration_efficiency: f64,
116 pub exploitation_efficiency: f64,
118 pub adaptation_speed: f64,
120}
121
122impl Default for StrategyPerformance {
123 fn default() -> Self {
124 Self {
125 strategy_id: String::new(),
126 convergence_rate: 0.0,
127 evaluations_used: 0,
128 success_rate: 0.0,
129 avg_iteration_time: Duration::from_millis(1),
130 best_objective: f64::INFINITY,
131 exploration_efficiency: 0.5,
132 exploitation_efficiency: 0.5,
133 adaptation_speed: 0.1,
134 }
135 }
136}
137
138#[derive(Debug, Clone)]
140pub struct AdvancedState {
141 pub global_best_solution: Array1<f64>,
143 pub global_best_objective: f64,
145 pub total_evaluations: usize,
147 pub current_iteration: usize,
149 pub strategy_performances: HashMap<String, StrategyPerformance>,
151 pub knowledge_transfer_matrix: Array2<f64>,
153 pub strategy_confidences: HashMap<String, f64>,
155 pub fusion_weights: Array1<f64>,
157 pub problem_characteristics: HashMap<String, f64>,
159 pub performance_history: VecDeque<f64>,
161 pub start_time: Instant,
163}
164
165impl AdvancedState {
166 fn new(num_params: usize, num_strategies: usize) -> Self {
167 Self {
168 global_best_solution: Array1::zeros(num_params),
169 global_best_objective: f64::INFINITY,
170 total_evaluations: 0,
171 current_iteration: 0,
172 strategy_performances: HashMap::new(),
173 knowledge_transfer_matrix: Array2::zeros((num_strategies, num_strategies)),
174 strategy_confidences: HashMap::new(),
175 fusion_weights: Array1::from_elem(num_strategies, 1.0 / num_strategies as f64),
176 problem_characteristics: HashMap::new(),
177 performance_history: VecDeque::with_capacity(1000),
178 start_time: Instant::now(),
179 }
180 }
181}
182
183#[derive(Debug)]
185pub struct AdvancedCoordinator {
186 pub config: AdvancedConfig,
188 pub state: AdvancedState,
190 pub quantum_optimizer: Option<QuantumInspiredOptimizer>,
192 pub neuromorphic_optimizer: Option<BasicNeuromorphicOptimizer>,
194 pub meta_learning_optimizer: Option<MetaLearningOptimizer>,
196 pub performance_predictor: PerformancePredictor,
198 pub fusion_engine: CrossModalFusionEngine,
200 pub strategy_selector: AdaptiveStrategySelector,
202}
203
204impl AdvancedCoordinator {
205 pub fn new(config: AdvancedConfig, initial_params: &ArrayView1<f64>) -> Self {
207 let num_params = initial_params.len();
208 let num_strategies = 3; let state = AdvancedState::new(num_params, num_strategies);
210
211 let quantum_optimizer = if config.enable_quantum {
213 Some(QuantumInspiredOptimizer::new(
214 initial_params,
215 config.max_nit,
216 32, ))
218 } else {
219 None
220 };
221
222 let neuromorphic_optimizer = if config.enable_neuromorphic {
223 let neuro_config = NeuromorphicConfig {
224 total_time: 10.0,
225 num_neurons: 200,
226 ..Default::default()
227 };
228 Some(BasicNeuromorphicOptimizer::new(neuro_config, num_params))
229 } else {
230 None
231 };
232
233 let meta_learning_optimizer = if config.enable_meta_learning {
234 let meta_config = LearnedOptimizationConfig {
235 meta_training_episodes: 1000,
236 use_transformer: true,
237 hidden_size: 512,
238 ..Default::default()
239 };
240 Some(MetaLearningOptimizer::new(meta_config))
241 } else {
242 None
243 };
244
245 Self {
246 config,
247 state,
248 quantum_optimizer,
249 neuromorphic_optimizer,
250 meta_learning_optimizer,
251 performance_predictor: PerformancePredictor::new(),
252 fusion_engine: CrossModalFusionEngine::new(num_params),
253 strategy_selector: AdaptiveStrategySelector::new(),
254 }
255 }
256
257 pub fn optimize<F>(&mut self, objective: F) -> Result<OptimizeResults<f64>>
259 where
260 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + Clone,
261 {
262 self.state.start_time = Instant::now();
263 let mut best_result = None;
264 let mut consecutive_no_improvement = 0;
265
266 for iteration in 0..self.config.max_nit {
267 self.state.current_iteration = iteration;
268
269 if let Some(budget) = self.config.time_budget {
271 if self.state.start_time.elapsed() > budget {
272 break;
273 }
274 }
275
276 if self.state.total_evaluations >= self.config.max_evaluations {
278 break;
279 }
280
281 let iteration_result = match self.config.strategy {
283 AdvancedStrategy::QuantumNeuralFusion => {
284 self.execute_quantum_neural_fusion(&objective)?
285 }
286 AdvancedStrategy::NeuromorphicQuantumHybrid => {
287 self.execute_neuromorphic_quantum_hybrid(&objective)?
288 }
289 AdvancedStrategy::MetaLearningQuantum => {
290 self.execute_meta_learning_quantum(&objective)?
291 }
292 AdvancedStrategy::AdaptiveSelection => {
293 self.execute_adaptive_selection(&objective)?
294 }
295 AdvancedStrategy::FullAdvanced => self.execute_full_advanced(&objective)?,
296 };
297
298 if iteration_result.fun < self.state.global_best_objective {
300 self.state.global_best_objective = iteration_result.fun;
301 self.state.global_best_solution = iteration_result.x.clone();
302 consecutive_no_improvement = 0;
303 best_result = Some(iteration_result.clone());
304 } else {
305 consecutive_no_improvement += 1;
306 }
307
308 self.update_performance_tracking(iteration_result.fun)?;
310
311 if consecutive_no_improvement > 50 {
313 self.adapt_strategy()?;
314 consecutive_no_improvement = 0;
315 }
316
317 if self.state.global_best_objective < self.config.tolerance {
319 break;
320 }
321
322 if iteration % 25 == 0 {
324 self.perform_knowledge_transfer()?;
325 }
326 }
327
328 let final_result = best_result.unwrap_or_else(|| OptimizeResults::<f64> {
329 x: self.state.global_best_solution.clone(),
330 fun: self.state.global_best_objective,
331 success: self.state.global_best_objective < f64::INFINITY,
332 nit: self.state.current_iteration,
333 nfev: self.state.total_evaluations,
334 njev: 0,
335 nhev: 0,
336 maxcv: 0,
337 status: 0,
338 jac: None,
339 hess: None,
340 constr: None,
341 message: "Advanced optimization completed".to_string(),
342 });
343
344 Ok(final_result)
345 }
346
347 fn execute_quantum_neural_fusion<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
349 where
350 F: Fn(&ArrayView1<f64>) -> f64,
351 {
352 if let (Some(quantum_opt), Some(neuro_opt)) = (
353 self.quantum_optimizer.as_mut(),
354 self.neuromorphic_optimizer.as_mut(),
355 ) {
356 let quantum_candidate = quantum_opt.quantum_state.measure();
358 let quantum_obj = objective(&quantum_candidate.view());
359 self.state.total_evaluations += 1;
360
361 neuro_opt
363 .network_mut()
364 .encode_parameters(&quantum_candidate.view());
365 let neural_result = neuro_opt.optimize(objective, &quantum_candidate.view())?;
366 self.state.total_evaluations += neural_result.nit;
367
368 let fused_solution = self.fusion_engine.fuse_solutions(
370 &quantum_candidate.view(),
371 &neural_result.x.view(),
372 self.config.fusion_strength,
373 )?;
374
375 let fused_objective = objective(&fused_solution.view());
376 self.state.total_evaluations += 1;
377
378 Ok(OptimizeResults::<f64> {
379 x: fused_solution,
380 fun: fused_objective,
381 success: fused_objective < f64::INFINITY,
382 nit: 1,
383 nfev: 1,
384 njev: 0,
385 nhev: 0,
386 maxcv: 0,
387 status: 0,
388 jac: None,
389 hess: None,
390 constr: None,
391 message: "Quantum-Neural fusion completed".to_string(),
392 })
393 } else {
394 Err(OptimizeError::InitializationError(
395 "Required optimizers not available".to_string(),
396 ))
397 }
398 }
399
400 fn execute_neuromorphic_quantum_hybrid<F>(
402 &mut self,
403 objective: &F,
404 ) -> Result<OptimizeResults<f64>>
405 where
406 F: Fn(&ArrayView1<f64>) -> f64,
407 {
408 if let (Some(quantum_opt), Some(neuro_opt)) = (
409 self.quantum_optimizer.as_mut(),
410 self.neuromorphic_optimizer.as_mut(),
411 ) {
412 let neural_candidate = neuro_opt.network().decode_parameters();
414 let neural_obj = objective(&neural_candidate.view());
415 self.state.total_evaluations += 1;
416
417 if neural_obj > self.state.global_best_objective * 1.1 {
419 quantum_opt.quantum_state.quantum_tunnel(
420 5.0, 0.3, )?;
423 }
424
425 let quantum_candidate = quantum_opt.quantum_state.measure();
427 let quantum_obj = objective(&quantum_candidate.view());
428 self.state.total_evaluations += 1;
429
430 let (best_solution, best_obj) = if quantum_obj < neural_obj {
432 (quantum_candidate, quantum_obj)
433 } else {
434 (neural_candidate, neural_obj)
435 };
436
437 Ok(OptimizeResults::<f64> {
438 x: best_solution,
439 fun: best_obj,
440 success: best_obj < f64::INFINITY,
441 nit: 1,
442 nfev: 1,
443 njev: 0,
444 nhev: 0,
445 maxcv: 0,
446 status: 0,
447 jac: None,
448 hess: None,
449 constr: None,
450 message: "Neuromorphic-Quantum hybrid completed".to_string(),
451 })
452 } else {
453 Err(OptimizeError::InitializationError(
454 "Required optimizers not available".to_string(),
455 ))
456 }
457 }
458
459 fn execute_meta_learning_quantum<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
461 where
462 F: Fn(&ArrayView1<f64>) -> f64,
463 {
464 if let (Some(quantum_opt), Some(meta_opt)) = (
465 self.quantum_optimizer.as_mut(),
466 self.meta_learning_optimizer.as_mut(),
467 ) {
468 let problem = OptimizationProblem {
470 name: "current_problem".to_string(),
471 dimension: self.state.global_best_solution.len(),
472 problem_class: "unknown".to_string(),
473 metadata: self.state.problem_characteristics.clone(),
474 max_evaluations: 100,
475 target_accuracy: self.config.tolerance,
476 };
477
478 meta_opt.adapt_to_problem(&problem, &self.state.global_best_solution.view())?;
479
480 let quantum_result = quantum_opt.optimize(objective)?;
482 self.state.total_evaluations += quantum_result.nit;
483
484 self.update_problem_characteristics(&quantum_result)?;
486
487 Ok(quantum_result)
488 } else {
489 Err(OptimizeError::InitializationError(
490 "Required optimizers not available".to_string(),
491 ))
492 }
493 }
494
495 fn execute_adaptive_selection<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
497 where
498 F: Fn(&ArrayView1<f64>) -> f64,
499 {
500 let selected_strategy = self.strategy_selector.select_strategy(&self.state)?;
502
503 match selected_strategy.as_str() {
504 "quantum" => {
505 if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
506 let result = quantum_opt.optimize(objective)?;
507 self.state.total_evaluations += result.nit;
508 Ok(result)
509 } else {
510 Err(OptimizeError::InitializationError(
511 "Quantum optimizer not available".to_string(),
512 ))
513 }
514 }
515 "neuromorphic" => {
516 if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
517 let result =
518 neuro_opt.optimize(objective, &self.state.global_best_solution.view())?;
519 self.state.total_evaluations += result.nit;
520 Ok(result)
521 } else {
522 Err(OptimizeError::InitializationError(
523 "Neuromorphic optimizer not available".to_string(),
524 ))
525 }
526 }
527 "meta_learning" => {
528 if let Some(meta_opt) = self.meta_learning_optimizer.as_mut() {
529 let result =
530 meta_opt.optimize(objective, &self.state.global_best_solution.view())?;
531 self.state.total_evaluations += result.nit;
532 Ok(result)
533 } else {
534 Err(OptimizeError::InitializationError(
535 "Meta-learning optimizer not available".to_string(),
536 ))
537 }
538 }
539 _ => Err(OptimizeError::InitializationError(
540 "Unknown strategy selected".to_string(),
541 )),
542 }
543 }
544
545 fn execute_full_advanced<F>(&mut self, objective: &F) -> Result<OptimizeResults<f64>>
547 where
548 F: Fn(&ArrayView1<f64>) -> f64,
549 {
550 let mut results = Vec::new();
551
552 if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
554 let quantum_candidate = quantum_opt.quantum_state.measure();
555 let quantum_obj = objective(&quantum_candidate.view());
556 self.state.total_evaluations += 1;
557
558 results.push(OptimizeResults::<f64> {
559 x: quantum_candidate,
560 fun: quantum_obj,
561 success: quantum_obj < f64::INFINITY,
562 nit: 1,
563 nfev: 1,
564 njev: 0,
565 nhev: 0,
566 maxcv: 0,
567 status: 0,
568 jac: None,
569 hess: None,
570 constr: None,
571 message: "Quantum component".to_string(),
572 });
573 }
574
575 if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
576 let neural_candidate = neuro_opt.network().decode_parameters();
577 let neural_obj = objective(&neural_candidate.view());
578 self.state.total_evaluations += 1;
579
580 results.push(OptimizeResults::<f64> {
581 x: neural_candidate,
582 fun: neural_obj,
583 success: neural_obj < f64::INFINITY,
584 nit: 1,
585 nfev: 1,
586 njev: 0,
587 nhev: 0,
588 maxcv: 0,
589 status: 0,
590 jac: None,
591 hess: None,
592 constr: None,
593 message: "Neuromorphic component".to_string(),
594 });
595 }
596
597 if let Some(meta_opt) = self.meta_learning_optimizer.as_mut() {
598 let meta_candidate = self.state.global_best_solution.clone();
600 let meta_obj = objective(&meta_candidate.view());
601 self.state.total_evaluations += 1;
602
603 results.push(OptimizeResults::<f64> {
604 x: meta_candidate,
605 fun: meta_obj,
606 success: meta_obj < f64::INFINITY,
607 nit: 1,
608 nfev: 1,
609 njev: 0,
610 nhev: 0,
611 maxcv: 0,
612 status: 0,
613 jac: None,
614 hess: None,
615 constr: None,
616 message: "Meta-learning component".to_string(),
617 });
618 }
619
620 if !results.is_empty() {
622 let fused_result = self.fusion_engine.fuse_multiple_solutions(&results)?;
623 let fused_obj = objective(&fused_result.view());
624 self.state.total_evaluations += 1;
625
626 Ok(OptimizeResults::<f64> {
627 x: fused_result,
628 fun: fused_obj,
629 success: fused_obj < f64::INFINITY,
630 nit: 1,
631 nfev: 1,
632 njev: 0,
633 nhev: 0,
634 maxcv: 0,
635 status: 0,
636 jac: None,
637 hess: None,
638 constr: None,
639 message: "Full Advanced coordination completed".to_string(),
640 })
641 } else {
642 Err(OptimizeError::InitializationError(
643 "No optimizers available".to_string(),
644 ))
645 }
646 }
647
648 fn update_performance_tracking(&mut self, current_objective: f64) -> Result<()> {
650 self.state.performance_history.push_back(current_objective);
651 if self.state.performance_history.len() > self.config.performance_memory_size {
652 self.state.performance_history.pop_front();
653 }
654
655 self.update_strategy_confidences()?;
657
658 Ok(())
659 }
660
661 fn update_strategy_confidences(&mut self) -> Result<()> {
663 if self.state.performance_history.len() > 10 {
664 let recent_improvement = self.compute_recent_improvement_rate();
665
666 for (_strategy, confidence) in self.state.strategy_confidences.iter_mut() {
668 if recent_improvement > 0.0 {
669 *confidence = (*confidence * 0.9 + 0.1).min(1.0);
670 } else {
671 *confidence = (*confidence * 0.95).max(0.1);
672 }
673 }
674 }
675
676 Ok(())
677 }
678
679 fn compute_recent_improvement_rate(&self) -> f64 {
681 if self.state.performance_history.len() < 10 {
682 return 0.0;
683 }
684
685 let recent: Vec<f64> = self
686 .state
687 .performance_history
688 .iter()
689 .rev()
690 .take(10)
691 .cloned()
692 .collect();
693
694 let initial = recent[9];
695 let final_val = recent[0];
696
697 if initial > 0.0 {
698 (initial - final_val) / initial
699 } else {
700 0.0
701 }
702 }
703
704 fn adapt_strategy(&mut self) -> Result<()> {
706 let improvement_rate = self.compute_recent_improvement_rate();
708
709 if improvement_rate < 0.001 {
710 self.config.strategy = match self.config.strategy {
712 AdvancedStrategy::AdaptiveSelection => AdvancedStrategy::QuantumNeuralFusion,
713 AdvancedStrategy::QuantumNeuralFusion => {
714 AdvancedStrategy::NeuromorphicQuantumHybrid
715 }
716 AdvancedStrategy::NeuromorphicQuantumHybrid => {
717 AdvancedStrategy::MetaLearningQuantum
718 }
719 AdvancedStrategy::MetaLearningQuantum => AdvancedStrategy::FullAdvanced,
720 AdvancedStrategy::FullAdvanced => AdvancedStrategy::AdaptiveSelection,
721 };
722 }
723
724 Ok(())
725 }
726
727 fn perform_knowledge_transfer(&mut self) -> Result<()> {
729 let best_solution = &self.state.global_best_solution;
731
732 if let Some(quantum_opt) = self.quantum_optimizer.as_mut() {
733 for i in 0..quantum_opt.quantum_state.basis_states.nrows() {
735 for j in 0..best_solution
736 .len()
737 .min(quantum_opt.quantum_state.basis_states.ncols())
738 {
739 let noise = (thread_rng().gen::<f64>() - 0.5) * 0.1;
740 quantum_opt.quantum_state.basis_states[[i, j]] = best_solution[j] + noise;
741 }
742 }
743 }
744
745 if let Some(neuro_opt) = self.neuromorphic_optimizer.as_mut() {
746 neuro_opt
748 .network_mut()
749 .encode_parameters(&best_solution.view());
750 }
751
752 Ok(())
753 }
754
755 fn update_problem_characteristics(&mut self, result: &OptimizeResults<f64>) -> Result<()> {
757 let dimensionality = result.x.len() as f64;
759 let convergence_rate = if result.nit > 0 {
760 1.0 / result.nit as f64
761 } else {
762 0.0
763 };
764
765 self.state
766 .problem_characteristics
767 .insert("dimensionality".to_string(), dimensionality);
768 self.state
769 .problem_characteristics
770 .insert("convergence_rate".to_string(), convergence_rate);
771 self.state
772 .problem_characteristics
773 .insert("objective_scale".to_string(), result.fun.abs().ln());
774
775 Ok(())
776 }
777
778 pub fn get_advanced_stats(&self) -> AdvancedStats {
780 AdvancedStats {
781 total_evaluations: self.state.total_evaluations,
782 current_iteration: self.state.current_iteration,
783 best_objective: self.state.global_best_objective,
784 active_strategy: self.config.strategy,
785 elapsed_time: self.state.start_time.elapsed(),
786 strategy_confidences: self.state.strategy_confidences.clone(),
787 problem_characteristics: self.state.problem_characteristics.clone(),
788 quantum_stats: self
789 .quantum_optimizer
790 .as_ref()
791 .map(|opt| opt.get_quantum_stats()),
792 }
793 }
794}
795
796#[derive(Debug)]
798struct PerformancePredictor {
799 }
801
802impl PerformancePredictor {
803 fn new() -> Self {
804 Self {}
805 }
806}
807
808#[derive(Debug)]
810struct CrossModalFusionEngine {
811 num_params: usize,
812}
813
814impl CrossModalFusionEngine {
815 fn new(num_params: usize) -> Self {
816 Self { num_params }
817 }
818
819 fn fuse_solutions(
820 &self,
821 solution1: &ArrayView1<f64>,
822 solution2: &ArrayView1<f64>,
823 fusion_strength: f64,
824 ) -> Result<Array1<f64>> {
825 let mut fused = Array1::zeros(self.num_params);
826
827 for i in 0..self.num_params {
828 if i < solution1.len() && i < solution2.len() {
829 fused[i] = (1.0 - fusion_strength) * solution1[i] + fusion_strength * solution2[i];
830 }
831 }
832
833 Ok(fused)
834 }
835
836 fn fuse_multiple_solutions(&self, results: &[OptimizeResults<f64>]) -> Result<Array1<f64>> {
837 if results.is_empty() {
838 return Ok(Array1::zeros(self.num_params));
839 }
840
841 let mut fused = Array1::zeros(self.num_params);
842 let mut weights = Vec::new();
843
844 let max_obj = results
846 .iter()
847 .map(|r| r.fun)
848 .fold(f64::NEG_INFINITY, f64::max);
849 for result in results {
850 let weight = max_obj - result.fun + 1e-12;
853 weights.push(weight);
854 }
855
856 let total_weight: f64 = weights.iter().sum();
858 if total_weight > 0.0 {
859 for weight in &mut weights {
860 *weight /= total_weight;
861 }
862 }
863
864 for (result, weight) in results.iter().zip(weights.iter()) {
866 for i in 0..self.num_params.min(result.x.len()) {
867 fused[i] += weight * result.x[i];
868 }
869 }
870
871 Ok(fused)
872 }
873}
874
875#[derive(Debug)]
877struct AdaptiveStrategySelector {
878 }
880
881impl AdaptiveStrategySelector {
882 fn new() -> Self {
883 Self {}
884 }
885
886 fn select_strategy(&self, state: &AdvancedState) -> Result<String> {
887 if state.performance_history.len() < 10 {
889 return Ok("quantum".to_string());
890 }
891
892 let improvement_rate = if state.performance_history.len() >= 2 {
893 let recent = state.performance_history.back().unwrap();
894 let prev = state.performance_history[state.performance_history.len() - 2];
895
896 if prev > 0.0 {
897 (prev - recent) / prev
898 } else {
899 0.0
900 }
901 } else {
902 0.0
903 };
904
905 if improvement_rate > 0.01 {
906 Ok("quantum".to_string())
907 } else if improvement_rate > 0.001 {
908 Ok("neuromorphic".to_string())
909 } else {
910 Ok("meta_learning".to_string())
911 }
912 }
913}
914
915#[derive(Debug, Clone)]
917pub struct AdvancedStats {
918 pub total_evaluations: usize,
919 pub current_iteration: usize,
920 pub best_objective: f64,
921 pub active_strategy: AdvancedStrategy,
922 pub elapsed_time: Duration,
923 pub strategy_confidences: HashMap<String, f64>,
924 pub problem_characteristics: HashMap<String, f64>,
925 pub quantum_stats: Option<QuantumOptimizationStats>,
926}
927
928#[allow(dead_code)]
930pub fn advanced_optimize<F>(
931 objective: F,
932 initial_params: &ArrayView1<f64>,
933 config: Option<AdvancedConfig>,
934) -> Result<OptimizeResults<f64>>
935where
936 F: Fn(&ArrayView1<f64>) -> f64 + Send + Sync + Clone,
937{
938 let config = config.unwrap_or_default();
939 let mut coordinator = AdvancedCoordinator::new(config, initial_params);
940 coordinator.optimize(objective)
941}
942
943#[cfg(test)]
944mod tests {
945 use super::*;
946
947 #[test]
948 fn test_advanced_config_default() {
949 let config = AdvancedConfig::default();
950 assert_eq!(config.strategy, AdvancedStrategy::FullAdvanced);
951 assert!(config.enable_quantum);
952 assert!(config.enable_neuromorphic);
953 assert!(config.enable_meta_learning);
954 }
955
956 #[test]
957 fn test_advanced_coordinator_creation() {
958 let config = AdvancedConfig::default();
959 let initial_params = Array1::from(vec![1.0, 2.0]);
960 let coordinator = AdvancedCoordinator::new(config, &initial_params.view());
961
962 assert_eq!(coordinator.state.global_best_solution.len(), 2);
963 assert!(coordinator.quantum_optimizer.is_some());
964 assert!(coordinator.neuromorphic_optimizer.is_some());
965 assert!(coordinator.meta_learning_optimizer.is_some());
966 }
967
968 #[test]
969 fn test_cross_modal_fusion() {
970 let fusion_engine = CrossModalFusionEngine::new(2);
971 let sol1 = Array1::from(vec![1.0, 2.0]);
972 let sol2 = Array1::from(vec![3.0, 4.0]);
973
974 let fused = fusion_engine
975 .fuse_solutions(&sol1.view(), &sol2.view(), 0.5)
976 .unwrap();
977
978 assert!((fused[0] - 2.0).abs() < 1e-10);
979 assert!((fused[1] - 3.0).abs() < 1e-10);
980 }
981
982 #[test]
983 fn test_advanced_optimization() {
984 let config = AdvancedConfig {
985 max_nit: 50,
986 strategy: AdvancedStrategy::AdaptiveSelection,
987 ..Default::default()
988 };
989
990 let objective = |x: &ArrayView1<f64>| x[0].powi(2) + x[1].powi(2);
991 let initial = Array1::from(vec![2.0, 2.0]);
992
993 let result = advanced_optimize(objective, &initial.view(), Some(config)).unwrap();
994
995 assert!(result.nit > 0);
996 assert!(result.fun <= objective(&initial.view()));
997 assert!(result.success);
998 }
999
1000 #[test]
1001 fn test_strategy_performance_tracking() {
1002 let config = AdvancedConfig::default();
1003 let initial_params = Array1::from(vec![1.0]);
1004 let mut coordinator = AdvancedCoordinator::new(config, &initial_params.view());
1005
1006 for i in 0..12 {
1008 coordinator
1009 .state
1010 .performance_history
1011 .push_back(15.0 - i as f64 * 0.5);
1012 }
1013
1014 let improvement_rate = coordinator.compute_recent_improvement_rate();
1015 assert!(improvement_rate > 0.0);
1016 }
1017
1018 #[test]
1019 fn test_multiple_solution_fusion() {
1020 let fusion_engine = CrossModalFusionEngine::new(2);
1021 let results = vec![
1022 OptimizeResults::<f64> {
1023 x: Array1::from(vec![1.0, 2.0]),
1024 fun: 1.0,
1025 success: true,
1026 nit: 10,
1027 nfev: 10,
1028 njev: 0,
1029 nhev: 0,
1030 maxcv: 0,
1031 status: 0,
1032 jac: None,
1033 hess: None,
1034 constr: None,
1035 message: "test1".to_string(),
1036 },
1037 OptimizeResults::<f64> {
1038 x: Array1::from(vec![3.0, 4.0]),
1039 fun: 2.0,
1040 success: true,
1041 nit: 15,
1042 nfev: 15,
1043 njev: 0,
1044 nhev: 0,
1045 maxcv: 0,
1046 status: 0,
1047 jac: None,
1048 hess: None,
1049 constr: None,
1050 message: "test2".to_string(),
1051 },
1052 ];
1053
1054 let fused = fusion_engine.fuse_multiple_solutions(&results).unwrap();
1055 assert_eq!(fused.len(), 2);
1056
1057 assert!(fused[0] < 2.0); assert!(fused[1] < 3.0); }
1061}
1062
1063#[allow(dead_code)]
1064pub fn placeholder() {
1065 }