scirs2_optimize/
quantum_inspired.rs

1//! Quantum-Inspired Optimization Methods
2//!
3//! This module implements cutting-edge quantum-inspired optimization algorithms:
4//! - Quantum superposition for parallel parameter exploration
5//! - Quantum entanglement for correlated parameter updates
6//! - Quantum annealing with sophisticated cooling schedules
7//! - Quantum tunneling for escaping local minima
8//! - Quantum interference patterns for optimization landscapes
9//! - Quantum state collapse for solution selection
10
11use crate::error::OptimizeResult;
12use crate::result::OptimizeResults;
13use ndarray::{Array1, Array2, ArrayView1};
14use num_traits::Zero;
15use rand::{rng, Rng};
16use std::collections::VecDeque;
17use std::f64::consts::PI;
18
19/// Complex number representation for quantum states
20#[derive(Debug, Clone, Copy)]
21pub struct Complex {
22    pub real: f64,
23    pub imag: f64,
24}
25
26impl Complex {
27    pub fn new(real: f64, imag: f64) -> Self {
28        Self { real, imag }
29    }
30
31    pub fn magnitude(&self) -> f64 {
32        (self.real * self.real + self.imag * self.imag).sqrt()
33    }
34
35    pub fn phase(&self) -> f64 {
36        self.imag.atan2(self.real)
37    }
38
39    pub fn conjugate(&self) -> Complex {
40        Complex::new(self.real, -self.imag)
41    }
42}
43
44impl std::ops::Add for Complex {
45    type Output = Complex;
46
47    fn add(self, other: Complex) -> Complex {
48        Complex::new(self.real + other.real, self.imag + other.imag)
49    }
50}
51
52impl std::ops::Mul for Complex {
53    type Output = Complex;
54
55    fn mul(self, other: Complex) -> Complex {
56        Complex::new(
57            self.real * other.real - self.imag * other.imag,
58            self.real * other.imag + self.imag * other.real,
59        )
60    }
61}
62
63impl std::ops::Mul<f64> for Complex {
64    type Output = Complex;
65
66    fn mul(self, scalar: f64) -> Complex {
67        Complex::new(self.real * scalar, self.imag * scalar)
68    }
69}
70
71impl Zero for Complex {
72    fn zero() -> Self {
73        Complex::new(0.0, 0.0)
74    }
75
76    fn is_zero(&self) -> bool {
77        self.real == 0.0 && self.imag == 0.0
78    }
79}
80
81/// Quantum state representation for optimization parameters
82#[derive(Debug, Clone)]
83pub struct QuantumState {
84    /// Amplitude coefficients for superposition states
85    pub amplitudes: Array1<Complex>,
86    /// Parameter values for each basis state
87    pub basis_states: Array2<f64>,
88    /// Quantum register size (number of qubits)
89    pub num_qubits: usize,
90    /// Entanglement correlations between parameters
91    pub entanglement_matrix: Array2<Complex>,
92    /// Decoherence time constant
93    pub decoherence_time: f64,
94    /// Current evolution time
95    pub evolution_time: f64,
96}
97
98impl QuantumState {
99    /// Create new quantum state with random superposition
100    pub fn new(num_params: usize, num_basis_states: usize) -> Self {
101        let num_qubits = (num_basis_states as f64).log2().ceil() as usize;
102        let actual_states = 1 << num_qubits;
103
104        // Initialize random amplitudes (normalized)
105        let mut amplitudes = Array1::from_shape_fn(actual_states, |_| {
106            Complex::new(
107                rand::rng().random_range(-1.0..1.0),
108                rand::rng().random_range(-1.0..1.0),
109            )
110        });
111
112        // Normalize amplitudes
113        let norm: f64 = amplitudes
114            .iter()
115            .map(|c| c.magnitude().powi(2))
116            .sum::<f64>()
117            .sqrt();
118        for amp in amplitudes.iter_mut() {
119            *amp = *amp * (1.0 / norm);
120        }
121
122        // Initialize basis states around reasonable search space
123        let basis_states = Array2::from_shape_fn((actual_states, num_params), |_| {
124            rand::rng().random_range(-2.0..5.0)
125        });
126
127        // Initialize entanglement matrix
128        let entanglement_matrix = Array2::from_shape_fn((num_params, num_params), |(i, j)| {
129            if i == j {
130                Complex::new(1.0, 0.0)
131            } else {
132                let correlation = rand::rng().random_range(-0.1..0.1);
133                Complex::new(correlation, correlation * 0.1)
134            }
135        });
136
137        Self {
138            amplitudes,
139            basis_states,
140            num_qubits,
141            entanglement_matrix,
142            decoherence_time: 1000.0,
143            evolution_time: 0.0,
144        }
145    }
146
147    /// Measure quantum state to collapse to classical parameters
148    pub fn measure(&self) -> Array1<f64> {
149        // Compute measurement probabilities
150        let probabilities: Vec<f64> = self
151            .amplitudes
152            .iter()
153            .map(|c| c.magnitude().powi(2))
154            .collect();
155
156        // Quantum measurement (random collapse based on probabilities)
157        let mut cumulative = 0.0;
158        let random_value = rand::rng().random_range(0.0..1.0);
159
160        for (i, &prob) in probabilities.iter().enumerate() {
161            cumulative += prob;
162            if random_value <= cumulative {
163                return self.basis_states.row(i).to_owned();
164            }
165        }
166
167        // Fallback to most probable state
168        let max_prob_idx = probabilities
169            .iter()
170            .enumerate()
171            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
172            .map(|(i, _)| i)
173            .unwrap_or(0);
174
175        self.basis_states.row(max_prob_idx).to_owned()
176    }
177
178    /// Apply quantum evolution based on objective function landscape
179    pub fn evolve(&mut self, objective_gradients: &Array1<f64>, dt: f64) -> OptimizeResult<()> {
180        self.evolution_time += dt;
181
182        // Compute Hamiltonian from objective landscape
183        let hamiltonian = self.compute_hamiltonian(objective_gradients)?;
184
185        // Apply time evolution operator U = exp(-iHt)
186        self.apply_time_evolution(&hamiltonian, dt)?;
187
188        // Apply decoherence
189        self.apply_decoherence(dt)?;
190
191        // Update entanglement based on parameter correlations
192        self.update_entanglement(objective_gradients)?;
193
194        Ok(())
195    }
196
197    fn compute_hamiltonian(
198        &self,
199        objective_gradients: &Array1<f64>,
200    ) -> OptimizeResult<Array2<Complex>> {
201        let n_states = self.amplitudes.len();
202        let mut hamiltonian = Array2::zeros((n_states, n_states));
203
204        for i in 0..n_states {
205            for j in 0..n_states {
206                if i == j {
207                    // Diagonal elements: potential energy from objective
208                    let params = self.basis_states.row(i);
209                    let potential = params
210                        .iter()
211                        .zip(objective_gradients.iter())
212                        .map(|(&p, &g)| p * g)
213                        .sum::<f64>();
214
215                    hamiltonian[[i, j]] = Complex::new(potential, 0.0);
216                } else {
217                    // Off-diagonal elements: tunneling between states
218                    let distance = (&self.basis_states.row(i) - &self.basis_states.row(j))
219                        .mapv(|x| x * x)
220                        .sum()
221                        .sqrt();
222
223                    let tunneling_amplitude = (-distance * 0.1).exp();
224                    hamiltonian[[i, j]] = Complex::new(0.0, tunneling_amplitude);
225                }
226            }
227        }
228
229        Ok(hamiltonian)
230    }
231
232    fn apply_time_evolution(
233        &mut self,
234        hamiltonian: &Array2<Complex>,
235        dt: f64,
236    ) -> OptimizeResult<()> {
237        // Simplified time evolution: ψ(t+dt) = exp(-iH*dt) * ψ(t)
238        // Using first-order approximation: exp(-iH*dt) ≈ 1 - iH*dt
239
240        let n_states = self.amplitudes.len();
241        let mut new_amplitudes = self.amplitudes.clone();
242
243        for i in 0..n_states {
244            let mut evolved_amp = Complex::new(0.0, 0.0);
245
246            for j in 0..n_states {
247                let h_element = hamiltonian[[i, j]];
248                let evolution_factor = if i == j {
249                    // Diagonal: 1 - iH_ii*dt
250                    Complex::new(1.0, 0.0) + Complex::new(0.0, -h_element.real * dt)
251                } else {
252                    // Off-diagonal: -iH_ij*dt
253                    Complex::new(0.0, -h_element.real * dt) + Complex::new(h_element.imag * dt, 0.0)
254                };
255
256                evolved_amp = evolved_amp + evolution_factor * self.amplitudes[j];
257            }
258
259            new_amplitudes[i] = evolved_amp;
260        }
261
262        // Renormalize
263        let norm: f64 = new_amplitudes
264            .iter()
265            .map(|c| c.magnitude().powi(2))
266            .sum::<f64>()
267            .sqrt();
268        for amp in new_amplitudes.iter_mut() {
269            *amp = *amp * (1.0 / norm.max(1e-12));
270        }
271
272        self.amplitudes = new_amplitudes;
273        Ok(())
274    }
275
276    fn apply_decoherence(&mut self, dt: f64) -> OptimizeResult<()> {
277        // Exponential decoherence: amplitude decay
278        let decoherence_factor = (-dt / self.decoherence_time).exp();
279
280        for amp in self.amplitudes.iter_mut() {
281            *amp = *amp * decoherence_factor;
282        }
283
284        // Add small random noise to simulate environmental interaction
285        let noise_strength = 1.0 - decoherence_factor;
286        for amp in self.amplitudes.iter_mut() {
287            let noise_real = rand::rng().random_range(-0.5..0.5) * noise_strength * 0.01;
288            let noise_imag = rand::rng().random_range(-0.5..0.5) * noise_strength * 0.01;
289            *amp = *amp + Complex::new(noise_real, noise_imag);
290        }
291
292        // Renormalize after decoherence
293        let norm: f64 = self
294            .amplitudes
295            .iter()
296            .map(|c| c.magnitude().powi(2))
297            .sum::<f64>()
298            .sqrt();
299        for amp in self.amplitudes.iter_mut() {
300            *amp = *amp * (1.0 / norm.max(1e-12));
301        }
302
303        Ok(())
304    }
305
306    fn update_entanglement(&mut self, objective_gradients: &Array1<f64>) -> OptimizeResult<()> {
307        let n_params = self.entanglement_matrix.nrows();
308
309        // Update entanglement based on gradient correlations
310        for i in 0..n_params {
311            for j in i + 1..n_params {
312                if i < objective_gradients.len() && j < objective_gradients.len() {
313                    let correlation = objective_gradients[i] * objective_gradients[j];
314                    let phase_update = correlation * 0.01;
315
316                    let current = self.entanglement_matrix[[i, j]];
317                    let new_phase = current.phase() + phase_update;
318                    let magnitude = current.magnitude() * 0.99 + correlation.abs() * 0.01;
319
320                    self.entanglement_matrix[[i, j]] =
321                        Complex::new(magnitude * new_phase.cos(), magnitude * new_phase.sin());
322                    self.entanglement_matrix[[j, i]] = self.entanglement_matrix[[i, j]].conjugate();
323                }
324            }
325        }
326
327        Ok(())
328    }
329
330    /// Apply quantum superposition principle to explore multiple states
331    pub fn create_superposition(&mut self, exploration_radius: f64) -> OptimizeResult<()> {
332        let n_states = self.basis_states.nrows();
333        let n_params = self.basis_states.ncols();
334
335        // Create new basis states around current ones
336        for i in 0..n_states {
337            for j in 0..n_params {
338                let perturbation =
339                    rand::rng().random_range(-exploration_radius..exploration_radius);
340                self.basis_states[[i, j]] += perturbation;
341            }
342        }
343
344        // Update amplitudes to maintain superposition
345        let equal_amplitude = Complex::new(1.0 / (n_states as f64).sqrt(), 0.0);
346        for i in 0..n_states {
347            self.amplitudes[i] = equal_amplitude;
348        }
349
350        Ok(())
351    }
352
353    /// Apply quantum tunneling to escape local minima
354    pub fn quantum_tunnel(
355        &mut self,
356        barrier_height: f64,
357        tunnel_probability: f64,
358    ) -> OptimizeResult<()> {
359        if rand::rng().random_range(0.0..1.0) < tunnel_probability {
360            // Quantum tunneling: create new basis states beyond energy barriers
361            let n_states = self.basis_states.nrows();
362            let n_params = self.basis_states.ncols();
363
364            // Select a random state to tunnel from
365            let source_state = rand::rng().random_range(0..n_states);
366
367            // Create tunneled state
368            for j in 0..n_params {
369                let tunnel_distance = barrier_height * rand::rng().random_range(-0.5..0.5);
370                self.basis_states[[source_state, j]] += tunnel_distance;
371            }
372
373            // Redistribute amplitudes to account for tunneling
374            let tunnel_amplitude_factor = (-barrier_height * 0.1).exp();
375            self.amplitudes[source_state] = self.amplitudes[source_state] * tunnel_amplitude_factor;
376
377            // Renormalize
378            let norm: f64 = self
379                .amplitudes
380                .iter()
381                .map(|c| c.magnitude().powi(2))
382                .sum::<f64>()
383                .sqrt();
384            for amp in self.amplitudes.iter_mut() {
385                *amp = *amp * (1.0 / norm.max(1e-12));
386            }
387        }
388
389        Ok(())
390    }
391}
392
393/// Quantum annealing schedule for cooling
394#[derive(Debug, Clone)]
395pub struct QuantumAnnealingSchedule {
396    /// Initial temperature
397    pub initial_temperature: f64,
398    /// Final temperature
399    pub final_temperature: f64,
400    /// Current temperature
401    pub current_temperature: f64,
402    /// Annealing progress (0 to 1)
403    pub progress: f64,
404    /// Cooling schedule type
405    pub schedule_type: CoolingSchedule,
406    /// Quantum fluctuation strength
407    pub quantum_fluctuation: f64,
408}
409
410#[derive(Debug, Clone)]
411pub enum CoolingSchedule {
412    Linear,
413    Exponential,
414    Logarithmic,
415    QuantumAdaptive,
416}
417
418impl QuantumAnnealingSchedule {
419    pub fn new(initial_temp: f64, final_temp: f64, schedule: CoolingSchedule) -> Self {
420        Self {
421            initial_temperature: initial_temp,
422            final_temperature: final_temp,
423            current_temperature: initial_temp,
424            progress: 0.0,
425            schedule_type: schedule,
426            quantum_fluctuation: 1.0,
427        }
428    }
429
430    pub fn update(&mut self, iteration: usize, max_nit: usize, energy_change: f64) {
431        self.progress = iteration as f64 / max_nit as f64;
432
433        self.current_temperature = match self.schedule_type {
434            CoolingSchedule::Linear => {
435                self.initial_temperature * (1.0 - self.progress)
436                    + self.final_temperature * self.progress
437            }
438            CoolingSchedule::Exponential => {
439                self.initial_temperature
440                    * (self.final_temperature / self.initial_temperature).powf(self.progress)
441            }
442            CoolingSchedule::Logarithmic => self.initial_temperature / (1.0 + self.progress).ln(),
443            CoolingSchedule::QuantumAdaptive => {
444                // Adaptive cooling based on energy landscape and quantum effects
445                let base_temp = self.initial_temperature * (0.1_f64).powf(self.progress);
446                let quantum_correction = self.quantum_fluctuation * (-energy_change.abs()).exp();
447                base_temp * (1.0 + quantum_correction * 0.1)
448            }
449        };
450
451        // Update quantum fluctuation strength
452        self.quantum_fluctuation =
453            1.0 - self.progress + 0.1 * (2.0 * PI * self.progress * 10.0).sin();
454    }
455
456    pub fn should_accept(&self, energy_delta: f64) -> bool {
457        if energy_delta <= 0.0 {
458            true // Always accept improvements
459        } else {
460            // Quantum-enhanced Boltzmann acceptance with fluctuations
461            let classical_prob = (-energy_delta / self.current_temperature).exp();
462            let quantum_prob = classical_prob * (1.0 + self.quantum_fluctuation * 0.1);
463
464            rand::rng().random_range(0.0..1.0) < quantum_prob.min(1.0)
465        }
466    }
467}
468
469/// Advanced Quantum-Inspired Optimizer
470#[derive(Debug, Clone)]
471pub struct QuantumInspiredOptimizer {
472    /// Quantum state representation
473    pub quantum_state: QuantumState,
474    /// Annealing schedule
475    pub annealing_schedule: QuantumAnnealingSchedule,
476    /// Best solution found
477    pub best_solution: Array1<f64>,
478    /// Best objective value
479    pub best_objective: f64,
480    /// Current iteration
481    pub iteration: usize,
482    /// Maximum iterations
483    pub max_nit: usize,
484    /// Objective function evaluations
485    pub function_evaluations: usize,
486    /// Quantum interference patterns
487    pub interference_history: VecDeque<f64>,
488    /// Entanglement strength tracker
489    pub entanglement_strength: f64,
490    /// Tunneling event counter
491    pub tunneling_events: usize,
492    /// Convergence tolerance
493    pub tolerance: f64,
494}
495
496impl QuantumInspiredOptimizer {
497    /// Create new quantum-inspired optimizer
498    pub fn new(
499        initial_params: &ArrayView1<f64>,
500        max_nit: usize,
501        num_quantum_states: usize,
502    ) -> Self {
503        let n_params = initial_params.len();
504        let quantum_state = QuantumState::new(n_params, num_quantum_states);
505        let annealing_schedule =
506            QuantumAnnealingSchedule::new(10.0, 0.01, CoolingSchedule::QuantumAdaptive);
507
508        Self {
509            quantum_state,
510            annealing_schedule,
511            best_solution: initial_params.to_owned(),
512            best_objective: f64::INFINITY,
513            iteration: 0,
514            max_nit,
515            function_evaluations: 0,
516            interference_history: VecDeque::with_capacity(1000),
517            entanglement_strength: 1.0,
518            tunneling_events: 0,
519            tolerance: 1e-8,
520        }
521    }
522
523    /// Run quantum-inspired optimization
524    pub fn optimize<F>(&mut self, objective: F) -> OptimizeResult<OptimizeResults<f64>>
525    where
526        F: Fn(&ArrayView1<f64>) -> f64,
527    {
528        // Evaluate initial point if not already done
529        if self.best_objective == f64::INFINITY {
530            self.best_objective = objective(&self.best_solution.view());
531            self.function_evaluations += 1;
532        }
533
534        let mut prev_objective = self.best_objective;
535        let mut stagnation_counter = 0;
536
537        for iteration in 0..self.max_nit {
538            self.iteration = iteration;
539
540            // Measure quantum state to get candidate solution
541            let candidate_params = self.quantum_state.measure();
542            let candidate_objective = objective(&candidate_params.view());
543            self.function_evaluations += 1;
544
545            // Update best solution
546            if candidate_objective < self.best_objective {
547                self.best_objective = candidate_objective;
548                self.best_solution = candidate_params.clone();
549                stagnation_counter = 0;
550            } else {
551                stagnation_counter += 1;
552            }
553
554            // Compute energy change and gradients (finite difference)
555            let energy_change = candidate_objective - prev_objective;
556            let gradients =
557                self.compute_finite_difference_gradient(&objective, &candidate_params.view())?;
558
559            // Quantum evolution based on objective landscape
560            self.quantum_state.evolve(&gradients, 0.1)?;
561
562            // Update annealing schedule
563            self.annealing_schedule
564                .update(iteration, self.max_nit, energy_change);
565
566            // Quantum tunneling for local minima escape
567            if stagnation_counter > 20 {
568                let barrier_height = self.annealing_schedule.current_temperature;
569                let tunnel_prob = 0.1 * self.annealing_schedule.quantum_fluctuation;
570                self.quantum_state
571                    .quantum_tunnel(barrier_height, tunnel_prob)?;
572
573                if rand::rng().random_range(0.0..1.0) < tunnel_prob {
574                    self.tunneling_events += 1;
575                    stagnation_counter = 0;
576                }
577            }
578
579            // Quantum superposition for exploration
580            if iteration % 50 == 0 {
581                let exploration_radius = self.annealing_schedule.current_temperature * 0.1;
582                self.quantum_state
583                    .create_superposition(exploration_radius)?;
584            }
585
586            // Track interference patterns
587            let interference = self.compute_quantum_interference();
588            self.interference_history.push_back(interference);
589            if self.interference_history.len() > 1000 {
590                self.interference_history.pop_front();
591            }
592
593            // Update entanglement strength
594            self.entanglement_strength = self.compute_entanglement_strength();
595
596            // Convergence check
597            if (prev_objective - candidate_objective).abs() < self.tolerance && iteration > 100 {
598                break;
599            }
600
601            prev_objective = candidate_objective;
602        }
603
604        Ok(OptimizeResults::<f64> {
605            x: self.best_solution.clone(),
606            fun: self.best_objective,
607            success: self.best_objective < f64::INFINITY,
608            nit: self.iteration,
609            message: format!(
610                "Quantum optimization completed. Tunneling events: {}, Final entanglement: {:.3}",
611                self.tunneling_events, self.entanglement_strength
612            ),
613            jac: None,
614            hess: None,
615            constr: None,
616            nfev: self.iteration * self.quantum_state.num_qubits, // Iteration count times qubits
617            njev: 0,
618            nhev: 0,
619            maxcv: 0,
620            status: if self.best_objective < f64::INFINITY {
621                0
622            } else {
623                1
624            },
625        })
626    }
627
628    fn compute_finite_difference_gradient<F>(
629        &self,
630        objective: &F,
631        params: &ArrayView1<f64>,
632    ) -> OptimizeResult<Array1<f64>>
633    where
634        F: Fn(&ArrayView1<f64>) -> f64,
635    {
636        let eps = 1e-8;
637        let mut gradient = Array1::zeros(params.len());
638        let base_value = objective(params);
639
640        for i in 0..params.len() {
641            let mut params_plus = params.to_owned();
642            params_plus[i] += eps;
643            let value_plus = objective(&params_plus.view());
644
645            gradient[i] = (value_plus - base_value) / eps;
646        }
647
648        Ok(gradient)
649    }
650
651    fn compute_quantum_interference(&self) -> f64 {
652        // Compute interference pattern from amplitude overlaps
653        let mut interference = 0.0;
654        let n_states = self.quantum_state.amplitudes.len();
655
656        for i in 0..n_states {
657            for j in i + 1..n_states {
658                let amp_i = self.quantum_state.amplitudes[i];
659                let amp_j = self.quantum_state.amplitudes[j];
660
661                // Interference term: Re(ψ_i* ψ_j)
662                let interference_term = (amp_i.conjugate() * amp_j).real;
663                interference += interference_term.abs();
664            }
665        }
666
667        interference / (n_states * (n_states - 1) / 2) as f64
668    }
669
670    fn compute_entanglement_strength(&self) -> f64 {
671        // Simple entanglement measure based on off-diagonal elements
672        let mut total_entanglement = 0.0;
673        let n_params = self.quantum_state.entanglement_matrix.nrows();
674        let mut count = 0;
675
676        for i in 0..n_params {
677            for j in i + 1..n_params {
678                total_entanglement += self.quantum_state.entanglement_matrix[[i, j]].magnitude();
679                count += 1;
680            }
681        }
682
683        if count > 0 {
684            total_entanglement / count as f64
685        } else {
686            0.0
687        }
688    }
689
690    /// Get optimization statistics
691    pub fn get_quantum_stats(&self) -> QuantumOptimizationStats {
692        QuantumOptimizationStats {
693            function_evaluations: self.function_evaluations,
694            tunneling_events: self.tunneling_events,
695            current_temperature: self.annealing_schedule.current_temperature,
696            entanglement_strength: self.entanglement_strength,
697            quantum_interference: self.interference_history.back().copied().unwrap_or(0.0),
698            superposition_dimension: self.quantum_state.amplitudes.len(),
699            evolution_time: self.quantum_state.evolution_time,
700            decoherence_level: 1.0
701                - (-self.quantum_state.evolution_time / self.quantum_state.decoherence_time).exp(),
702        }
703    }
704}
705
706/// Statistics for quantum optimization
707#[derive(Debug, Clone)]
708pub struct QuantumOptimizationStats {
709    pub function_evaluations: usize,
710    pub tunneling_events: usize,
711    pub current_temperature: f64,
712    pub entanglement_strength: f64,
713    pub quantum_interference: f64,
714    pub superposition_dimension: usize,
715    pub evolution_time: f64,
716    pub decoherence_level: f64,
717}
718
719/// Convenience function for quantum-inspired optimization
720#[allow(dead_code)]
721pub fn quantum_optimize<F>(
722    objective: F,
723    initial_params: &ArrayView1<f64>,
724    max_nit: Option<usize>,
725    num_quantum_states: Option<usize>,
726) -> OptimizeResult<OptimizeResults<f64>>
727where
728    F: Fn(&ArrayView1<f64>) -> f64,
729{
730    let max_iter = max_nit.unwrap_or(1000);
731    let num_states = num_quantum_states.unwrap_or(32);
732
733    let mut optimizer = QuantumInspiredOptimizer::new(initial_params, max_iter, num_states);
734    optimizer.optimize(objective)
735}
736
737/// Quantum-enhanced particle swarm optimization
738#[allow(dead_code)]
739pub fn quantum_particle_swarm_optimize<F>(
740    objective: F,
741    initial_params: &ArrayView1<f64>,
742    numparticles: usize,
743    max_nit: usize,
744) -> OptimizeResult<OptimizeResults<f64>>
745where
746    F: Fn(&ArrayView1<f64>) -> f64,
747{
748    let mut particles = Vec::new();
749
750    // Create quantum-enhanced particles
751    for _ in 0..numparticles {
752        let particle_optimizer = QuantumInspiredOptimizer::new(initial_params, max_nit, 8);
753        particles.push(particle_optimizer);
754    }
755
756    let mut global_best_solution = initial_params.to_owned();
757    let mut global_best_objective = f64::INFINITY;
758
759    for iteration in 0..max_nit {
760        for particle in &mut particles {
761            // Run a few quantum optimization steps per particle
762            for _ in 0..5 {
763                let candidate = particle.quantum_state.measure();
764                let obj_value = objective(&candidate.view());
765
766                if obj_value < particle.best_objective {
767                    particle.best_objective = obj_value;
768                    particle.best_solution = candidate.clone();
769                }
770
771                if obj_value < global_best_objective {
772                    global_best_objective = obj_value;
773                    global_best_solution = candidate.clone();
774                }
775
776                // Quantum evolution with global best influence
777                let gradients =
778                    particle.compute_finite_difference_gradient(&objective, &candidate.view())?;
779                particle.quantum_state.evolve(&gradients, 0.01)?;
780
781                // Entangle particles with global best
782                if rand::rng().random_range(0.0..1.0) < 0.1 {
783                    let n_params = initial_params.len();
784                    for i in 0..n_params.min(particle.quantum_state.basis_states.ncols()) {
785                        let entanglement_strength = 0.1;
786                        for state_idx in 0..particle.quantum_state.basis_states.nrows() {
787                            particle.quantum_state.basis_states[[state_idx, i]] = (1.0
788                                - entanglement_strength)
789                                * particle.quantum_state.basis_states[[state_idx, i]]
790                                + entanglement_strength * global_best_solution[i];
791                        }
792                    }
793                }
794            }
795        }
796
797        // Quantum tunneling for swarm diversity
798        if iteration % 100 == 0 {
799            for particle in &mut particles {
800                particle.quantum_state.quantum_tunnel(1.0, 0.05)?;
801            }
802        }
803    }
804
805    Ok(OptimizeResults::<f64> {
806        x: global_best_solution,
807        fun: global_best_objective,
808        success: global_best_objective < f64::INFINITY,
809        nit: max_nit,
810        message: format!(
811            "Quantum particle swarm optimization completed with {} particles",
812            numparticles
813        ),
814        jac: None,
815        hess: None,
816        constr: None,
817        nfev: max_nit * numparticles, // Iterations times particles
818        njev: 0,
819        nhev: 0,
820        maxcv: 0,
821        status: if global_best_objective < f64::INFINITY {
822            0
823        } else {
824            1
825        },
826    })
827}
828
829#[cfg(test)]
830mod tests {
831    use super::*;
832
833    #[test]
834    fn test_complex_arithmetic() {
835        let c1 = Complex::new(1.0, 2.0);
836        let c2 = Complex::new(3.0, 4.0);
837
838        let sum = c1 + c2;
839        assert_eq!(sum.real, 4.0);
840        assert_eq!(sum.imag, 6.0);
841
842        let product = c1 * c2;
843        assert_eq!(product.real, -5.0); // 1*3 - 2*4
844        assert_eq!(product.imag, 10.0); // 1*4 + 2*3
845
846        assert!((c1.magnitude() - (5.0_f64).sqrt()).abs() < 1e-10);
847    }
848
849    #[test]
850    fn test_quantum_state_creation() {
851        let state = QuantumState::new(3, 8);
852        assert_eq!(state.num_qubits, 3);
853        assert_eq!(state.amplitudes.len(), 8);
854        assert_eq!(state.basis_states.nrows(), 8);
855        assert_eq!(state.basis_states.ncols(), 3);
856
857        // Check normalization
858        let norm_squared: f64 = state.amplitudes.iter().map(|c| c.magnitude().powi(2)).sum();
859        assert!((norm_squared - 1.0).abs() < 1e-10);
860    }
861
862    #[test]
863    fn test_quantum_measurement() {
864        let state = QuantumState::new(2, 4);
865        let measured_params = state.measure();
866        assert_eq!(measured_params.len(), 2);
867    }
868
869    #[test]
870    fn test_quantum_annealing_schedule() {
871        let mut schedule = QuantumAnnealingSchedule::new(10.0, 0.1, CoolingSchedule::Linear);
872
873        schedule.update(0, 100, 0.0);
874        assert!((schedule.current_temperature - 10.0).abs() < 1e-10);
875
876        schedule.update(50, 100, -1.0);
877        assert!(schedule.current_temperature < 10.0);
878        assert!(schedule.current_temperature > 0.1);
879
880        schedule.update(100, 100, 0.0);
881        assert!((schedule.current_temperature - 0.1).abs() < 1e-10);
882    }
883
884    #[test]
885    fn test_quantum_optimizer_creation() {
886        let initial_params = Array1::from(vec![1.0, 2.0]);
887        let optimizer = QuantumInspiredOptimizer::new(&initial_params.view(), 100, 16);
888
889        assert_eq!(optimizer.best_solution.len(), 2);
890        assert_eq!(optimizer.max_nit, 100);
891        assert_eq!(optimizer.quantum_state.amplitudes.len(), 16);
892    }
893
894    #[test]
895    fn test_quantum_optimization() {
896        let objective = |x: &ArrayView1<f64>| (x[0] - 1.0).powi(2) + (x[1] - 2.0).powi(2);
897        let initial = Array1::from(vec![0.0, 0.0]);
898
899        let result = quantum_optimize(objective, &initial.view(), Some(200), Some(16)).unwrap();
900
901        assert!(result.nit > 0);
902        // Test that the algorithm runs and produces finite results, even if not optimal
903        assert!(result.fun.is_finite());
904        assert!(result.success);
905        assert_eq!(result.x.len(), 2);
906
907        // Basic sanity checks - results should be reasonable
908        assert!(result.x[0].abs() < 10.0);
909        assert!(result.x[1].abs() < 10.0);
910    }
911
912    #[test]
913    fn test_quantum_tunneling() {
914        let mut state = QuantumState::new(2, 4);
915        let original_states = state.basis_states.clone();
916
917        state.quantum_tunnel(5.0, 1.0).unwrap(); // Force tunneling
918
919        // States should have changed due to tunneling
920        let mut changed = false;
921        for i in 0..state.basis_states.nrows() {
922            for j in 0..state.basis_states.ncols() {
923                if (state.basis_states[[i, j]] - original_states[[i, j]]).abs() > 1e-10 {
924                    changed = true;
925                    break;
926                }
927            }
928        }
929
930        assert!(changed);
931    }
932
933    #[test]
934    fn test_quantum_particle_swarm() {
935        let objective = |x: &ArrayView1<f64>| x[0].powi(2) + x[1].powi(2);
936        let initial = Array1::from(vec![5.0, 5.0]);
937
938        let result = quantum_particle_swarm_optimize(objective, &initial.view(), 5, 20).unwrap();
939
940        assert!(result.nit > 0);
941        assert!(result.fun < objective(&initial.view()));
942        assert!(result.success);
943    }
944
945    #[test]
946    fn test_quantum_superposition() {
947        let mut state = QuantumState::new(2, 4);
948        state.create_superposition(1.0).unwrap();
949
950        // Check that amplitudes are approximately equal (superposition)
951        let n_states = state.amplitudes.len();
952        let expected_magnitude = 1.0 / (n_states as f64).sqrt();
953
954        for amp in &state.amplitudes {
955            assert!((amp.magnitude() - expected_magnitude).abs() < 0.1);
956        }
957    }
958
959    #[test]
960    fn test_quantum_evolution() {
961        let mut state = QuantumState::new(2, 4);
962        let gradients = Array1::from(vec![1.0, -1.0]);
963
964        let original_amplitudes = state.amplitudes.clone();
965        state.evolve(&gradients, 0.1).unwrap();
966
967        // Amplitudes should have evolved
968        let mut evolved = false;
969        for i in 0..state.amplitudes.len() {
970            if (state.amplitudes[i].real - original_amplitudes[i].real).abs() > 1e-10
971                || (state.amplitudes[i].imag - original_amplitudes[i].imag).abs() > 1e-10
972            {
973                evolved = true;
974                break;
975            }
976        }
977
978        assert!(evolved);
979    }
980}