1use crate::error::{ScirsError, ScirsResult};
7use ndarray::{Array1, Array2};
8use scirs2_core::gpu::{GpuContext, GpuKernelHandle};
9use std::sync::Arc;
10
11#[derive(Debug, Clone)]
13pub struct TensorCoreOptimizationConfig {
14 pub mixed_precision: bool,
16 pub tile_size: usize,
18 pub use_amp: bool,
20 pub loss_scale: f32,
22 pub gradient_clip_threshold: Option<f32>,
24}
25
26impl Default for TensorCoreOptimizationConfig {
27 fn default() -> Self {
28 Self {
29 mixed_precision: true,
30 tile_size: 16, use_amp: true,
32 loss_scale: 65536.0,
33 gradient_clip_threshold: Some(1.0),
34 }
35 }
36}
37
38pub struct TensorCoreOptimizer {
40 context: Arc<GpuContext>,
41 config: TensorCoreOptimizationConfig,
42 gemm_kernel: GpuKernelHandle,
43 batch_gemm_kernel: GpuKernelHandle,
44 gradient_kernel: GpuKernelHandle,
45}
46
47impl TensorCoreOptimizer {
48 pub fn new(
50 context: Arc<GpuContext>,
51 config: TensorCoreOptimizationConfig,
52 ) -> ScirsResult<Self> {
53 let _supports_tensor_cores = true; if !_supports_tensor_cores {
57 return Err(ScirsError::NotImplementedError(
58 scirs2_core::error::ErrorContext::new(
59 "Tensor Cores not available on this device".to_string(),
60 ),
61 ));
62 }
63
64 let gemm_kernel = Self::create_gemm_kernel(&context, &config)?;
65 let batch_gemm_kernel = Self::create_batch_gemm_kernel(&context, &config)?;
66 let gradient_kernel = Self::create_gradient_kernel(&context, &config)?;
67
68 Ok(Self {
69 context,
70 config,
71 gemm_kernel,
72 batch_gemm_kernel,
73 gradient_kernel,
74 })
75 }
76
77 fn create_gemm_kernel(
79 context: &Arc<GpuContext>,
80 config: &TensorCoreOptimizationConfig,
81 ) -> ScirsResult<GpuKernelHandle> {
82 let kernel_source = if config.mixed_precision {
83 format!(
84 r#"
85 #include <cuda_fp16.h>
86 #include <mma.h>
87
88 using namespace nvcuda;
89
90 extern "C" __global__ void tensor_core_gemm_mixed(
91 const half* A,
92 const half* B,
93 float* C,
94 int M, int N, int K,
95 float alpha, float beta
96 ) {{
97 const int WMMA_M = 16;
98 const int WMMA_N = 16;
99 const int WMMA_K = 16;
100
101 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
102 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
103
104 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
105 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
106 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
107 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
108
109 wmma::fill_fragment(acc_frag, 0.0f);
110
111 for (int i = 0; i < K; i += WMMA_K) {{
112 int aRow = warpM * WMMA_M;
113 int aCol = i;
114 int bRow = i;
115 int bCol = warpN * WMMA_N;
116
117 if (aRow < M && aCol < K && bRow < K && bCol < N) {{
118 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
119 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
120 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
121 }}
122 }}
123
124 int cRow = warpM * WMMA_M;
125 int cCol = warpN * WMMA_N;
126
127 if (cRow < M && cCol < N) {{
128 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
129 for (int i = 0; i < c_frag.num_elements; i++) {{
130 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
131 }}
132 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
133 }}
134 }}
135 "#,
136 )
137 } else {
138 format!(
139 r#"
140 #include <mma.h>
141
142 using namespace nvcuda;
143
144 extern "C" __global__ void tensor_core_gemm_fp32(
145 const float* A,
146 const float* B,
147 float* C,
148 int M, int N, int K,
149 float alpha, float beta
150 ) {{
151 // Standard FP32 Tensor Core implementation
152 const int WMMA_M = 16;
153 const int WMMA_N = 16;
154 const int WMMA_K = 8;
155
156 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
157 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
158
159 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::row_major> a_frag;
160 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::col_major> b_frag;
161 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
162 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
163
164 wmma::fill_fragment(acc_frag, 0.0f);
165
166 for (int i = 0; i < K; i += WMMA_K) {{
167 int aRow = warpM * WMMA_M;
168 int aCol = i;
169 int bRow = i;
170 int bCol = warpN * WMMA_N;
171
172 if (aRow < M && aCol < K && bRow < K && bCol < N) {{
173 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
174 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
175 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
176 }}
177 }}
178
179 int cRow = warpM * WMMA_M;
180 int cCol = warpN * WMMA_N;
181
182 if (cRow < M && cCol < N) {{
183 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
184 for (int i = 0; i < c_frag.num_elements; i++) {{
185 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
186 }}
187 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
188 }}
189 }}
190 "#,
191 )
192 };
193
194 let kernel_name = if config.mixed_precision {
195 "tensor_core_gemm_mixed"
196 } else {
197 "tensor_core_gemm_fp32"
198 };
199
200 context
201 .execute(|compiler| compiler.compile(&kernel_source))
202 .map_err(|e| {
203 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
204 "Failed to compile kernel: {}",
205 e
206 )))
207 })
208 }
209
210 fn create_batch_gemm_kernel(
212 context: &Arc<GpuContext>,
213 config: &TensorCoreOptimizationConfig,
214 ) -> ScirsResult<GpuKernelHandle> {
215 let kernel_source = r#"
216 #include <cuda_fp16.h>
217 #include <mma.h>
218
219 using namespace nvcuda;
220
221 extern "C" __global__ void tensor_core_batch_gemm(
222 const half** A_array,
223 const half** B_array,
224 float** C_array,
225 int* M_array,
226 int* N_array,
227 int* K_array,
228 float* alpha_array,
229 float* beta_array,
230 int batch_count
231 ) {
232 int batch_id = blockIdx.z;
233 if (batch_id >= batch_count) return;
234
235 const half* A = A_array[batch_id];
236 const half* B = B_array[batch_id];
237 float* C = C_array[batch_id];
238 int M = M_array[batch_id];
239 int N = N_array[batch_id];
240 int K = K_array[batch_id];
241 float alpha = alpha_array[batch_id];
242 float beta = beta_array[batch_id];
243
244 const int WMMA_M = 16;
245 const int WMMA_N = 16;
246 const int WMMA_K = 16;
247
248 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
249 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
250
251 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
252 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
253 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
254 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
255
256 wmma::fill_fragment(acc_frag, 0.0f);
257
258 for (int i = 0; i < K; i += WMMA_K) {
259 int aRow = warpM * WMMA_M;
260 int aCol = i;
261 int bRow = i;
262 int bCol = warpN * WMMA_N;
263
264 if (aRow < M && aCol < K && bRow < K && bCol < N) {
265 wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
266 wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
267 wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
268 }
269 }
270
271 int cRow = warpM * WMMA_M;
272 int cCol = warpN * WMMA_N;
273
274 if (cRow < M && cCol < N) {
275 wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
276 for (int i = 0; i < c_frag.num_elements; i++) {
277 c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
278 }
279 wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
280 }
281 }
282 "#;
283
284 context
285 .execute(|compiler| compiler.compile(kernel_source))
286 .map_err(|e| {
287 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
288 "Failed to compile batch kernel: {}",
289 e
290 )))
291 })
292 }
293
294 fn create_gradient_kernel(
296 context: &Arc<GpuContext>,
297 config: &TensorCoreOptimizationConfig,
298 ) -> ScirsResult<GpuKernelHandle> {
299 let kernel_source = r#"
300 #include <cuda_fp16.h>
301 #include <mma.h>
302
303 using namespace nvcuda;
304
305 extern "C" __global__ void tensor_core_gradient_computation(
306 const half* jacobian,
307 const half* residuals,
308 float* gradients,
309 int n_points,
310 int n_dims,
311 float loss_scale
312 ) {
313 // Use Tensor Cores to compute J^T * r efficiently
314 const int WMMA_M = 16;
315 const int WMMA_N = 16;
316 const int WMMA_K = 16;
317
318 int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
319 int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
320
321 wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> jt_frag;
322 wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> r_frag;
323 wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
324
325 wmma::fill_fragment(acc_frag, 0.0f);
326
327 // Compute J^T * r using Tensor Cores
328 for (int k = 0; k < n_points; k += WMMA_K) {
329 if (warpM * WMMA_M < n_dims && k < n_points) {
330 // Load transposed Jacobian and residuals
331 wmma::load_matrix_sync(jt_frag, jacobian + k * n_dims + warpM * WMMA_M, n_dims);
332 wmma::load_matrix_sync(r_frag, residuals + k, 1);
333 wmma::mma_sync(acc_frag, jt_frag, r_frag, acc_frag);
334 }
335 }
336
337 // Store result with loss scaling
338 if (warpM * WMMA_M < n_dims) {
339 for (int i = 0; i < WMMA_M && warpM * WMMA_M + i < n_dims; i++) {
340 gradients[warpM * WMMA_M + i] = acc_frag.x[i] / loss_scale;
341 }
342 }
343 }
344 "#;
345
346 context
347 .execute(|compiler| compiler.compile(kernel_source))
348 .map_err(|e| {
349 ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
350 "Failed to compile gradient kernel: {}",
351 e
352 )))
353 })
354 }
355
356 #[allow(dead_code)]
358 pub fn gemm(
359 &self,
360 _a: &Array2<f64>,
361 _b: &Array2<f64>,
362 _c: &mut Array2<f64>,
363 _alpha: f64,
364 _beta: f64,
365 ) -> ScirsResult<()> {
366 Err(ScirsError::NotImplementedError(
368 scirs2_core::error::ErrorContext::new("GEMM not yet implemented".to_string()),
369 ))
370 }
371
372 #[allow(dead_code)]
374 pub fn batch_gemm(
375 &self,
376 _a_batch: &[&Array2<f64>],
377 _b_batch: &[&Array2<f64>],
378 _c_batch: &mut [&mut Array2<f64>],
379 _alpha_batch: &[f64],
380 _beta_batch: &[f64],
381 ) -> ScirsResult<()> {
382 Err(ScirsError::NotImplementedError(
384 scirs2_core::error::ErrorContext::new("Batch GEMM not yet implemented".to_string()),
385 ))
386 }
387
388 #[allow(dead_code)]
390 pub fn compute_gradients(
391 &self,
392 _jacobian: &Array2<f64>,
393 _residuals: &Array1<f64>,
394 ) -> ScirsResult<Array1<f64>> {
395 Err(ScirsError::NotImplementedError(
397 scirs2_core::error::ErrorContext::new(
398 "Gradient computation not yet implemented".to_string(),
399 ),
400 ))
401 }
402
403 #[allow(dead_code)]
405 pub fn clip_gradients(&self, _gradients: &mut Array1<f64>) -> ScirsResult<()> {
406 Ok(())
408 }
409
410 pub fn config(&self) -> &TensorCoreOptimizationConfig {
412 &self.config
413 }
414
415 pub fn update_loss_scale(&mut self, loss_scale: f32) {
417 self.config.loss_scale = loss_scale;
418 }
419
420 #[allow(dead_code)]
422 pub fn check_overflow(&self, _tensor: &Array2<f64>) -> ScirsResult<bool> {
423 Ok(false)
425 }
426}
427
428pub struct AMPManager {
430 loss_scale: f32,
431 growth_factor: f32,
432 backoff_factor: f32,
433 growth_interval: u32,
434 consecutive_unskipped: u32,
435}
436
437impl AMPManager {
438 pub fn new() -> Self {
440 Self {
441 loss_scale: 65536.0,
442 growth_factor: 2.0,
443 backoff_factor: 0.5,
444 growth_interval: 2000,
445 consecutive_unskipped: 0,
446 }
447 }
448
449 pub fn update(&mut self, found_overflow: bool) -> f32 {
451 if found_overflow {
452 self.loss_scale *= self.backoff_factor;
453 self.consecutive_unskipped = 0;
454 } else {
455 self.consecutive_unskipped += 1;
456 if self.consecutive_unskipped >= self.growth_interval {
457 self.loss_scale *= self.growth_factor;
458 self.consecutive_unskipped = 0;
459 }
460 }
461
462 self.loss_scale = self.loss_scale.max(1.0).min(2_f32.powi(20));
464 self.loss_scale
465 }
466
467 pub fn loss_scale(&self) -> f32 {
469 self.loss_scale
470 }
471}
472
473impl Default for AMPManager {
474 fn default() -> Self {
475 Self::new()
476 }
477}
478
479#[cfg(test)]
480mod tests {
481 use super::*;
482
483 #[test]
484 fn test_tensor_core_config() {
485 let config = TensorCoreOptimizationConfig::default();
486 assert!(config.mixed_precision);
487 assert_eq!(config.tile_size, 16);
488 assert!(config.use_amp);
489 assert_eq!(config.loss_scale, 65536.0);
490 }
491
492 #[test]
493 fn test_amp_manager() {
494 let mut manager = AMPManager::new();
495 assert_eq!(manager.loss_scale(), 65536.0);
496
497 let new_scale = manager.update(true);
499 assert_eq!(new_scale, 32768.0);
500
501 for _ in 0..2000 {
503 manager.update(false);
504 }
505 let grown_scale = manager.loss_scale();
506 assert!(grown_scale > 32768.0);
507 }
508
509 #[test]
510 #[ignore = "Requires Tensor Core capable GPU"]
511 fn test_tensor_core_optimizer() {
512 }
515}