scirs2_optimize/gpu/
tensor_core_optimization.rs

1//! Tensor Core optimizations for high-performance GPU acceleration
2//!
3//! This module leverages NVIDIA Tensor Cores for accelerated matrix operations
4//! in optimization algorithms, providing significant speedup for suitable workloads.
5
6use crate::error::{ScirsError, ScirsResult};
7use ndarray::{Array1, Array2};
8use scirs2_core::gpu::{GpuContext, GpuKernelHandle};
9use std::sync::Arc;
10
11/// Tensor Core acceleration configuration
12#[derive(Debug, Clone)]
13pub struct TensorCoreOptimizationConfig {
14    /// Use mixed precision (FP16 for computation, FP32 for accumulation)
15    pub mixed_precision: bool,
16    /// Tile size for matrix operations
17    pub tile_size: usize,
18    /// Whether to use automatic mixed precision (AMP)
19    pub use_amp: bool,
20    /// Loss scaling for numerical stability in mixed precision
21    pub loss_scale: f32,
22    /// Gradient clipping threshold
23    pub gradient_clip_threshold: Option<f32>,
24}
25
26impl Default for TensorCoreOptimizationConfig {
27    fn default() -> Self {
28        Self {
29            mixed_precision: true,
30            tile_size: 16, // Optimal for most Tensor Core operations
31            use_amp: true,
32            loss_scale: 65536.0,
33            gradient_clip_threshold: Some(1.0),
34        }
35    }
36}
37
38/// Tensor Core-accelerated matrix operations for optimization
39pub struct TensorCoreOptimizer {
40    context: Arc<GpuContext>,
41    config: TensorCoreOptimizationConfig,
42    gemm_kernel: GpuKernelHandle,
43    batch_gemm_kernel: GpuKernelHandle,
44    gradient_kernel: GpuKernelHandle,
45}
46
47impl TensorCoreOptimizer {
48    /// Create a new Tensor Core optimizer
49    pub fn new(
50        context: Arc<GpuContext>,
51        config: TensorCoreOptimizationConfig,
52    ) -> ScirsResult<Self> {
53        // Check Tensor Core capability
54        // TODO: Add proper tensor core capability check when available in scirs2_core
55        let _supports_tensor_cores = true; // Assume tensor cores are available for now
56        if !_supports_tensor_cores {
57            return Err(ScirsError::NotImplementedError(
58                scirs2_core::error::ErrorContext::new(
59                    "Tensor Cores not available on this device".to_string(),
60                ),
61            ));
62        }
63
64        let gemm_kernel = Self::create_gemm_kernel(&context, &config)?;
65        let batch_gemm_kernel = Self::create_batch_gemm_kernel(&context, &config)?;
66        let gradient_kernel = Self::create_gradient_kernel(&context, &config)?;
67
68        Ok(Self {
69            context,
70            config,
71            gemm_kernel,
72            batch_gemm_kernel,
73            gradient_kernel,
74        })
75    }
76
77    /// Create optimized GEMM kernel using Tensor Cores
78    fn create_gemm_kernel(
79        context: &Arc<GpuContext>,
80        config: &TensorCoreOptimizationConfig,
81    ) -> ScirsResult<GpuKernelHandle> {
82        let kernel_source = if config.mixed_precision {
83            format!(
84                r#"
85                #include <cuda_fp16.h>
86                #include <mma.h>
87                
88                using namespace nvcuda;
89                
90                extern "C" __global__ void tensor_core_gemm_mixed(
91                    const half* A,
92                    const half* B,
93                    float* C,
94                    int M, int N, int K,
95                    float alpha, float beta
96                ) {{
97                    const int WMMA_M = 16;
98                    const int WMMA_N = 16;
99                    const int WMMA_K = 16;
100                    
101                    int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
102                    int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
103                    
104                    wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
105                    wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
106                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
107                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
108                    
109                    wmma::fill_fragment(acc_frag, 0.0f);
110                    
111                    for (int i = 0; i < K; i += WMMA_K) {{
112                        int aRow = warpM * WMMA_M;
113                        int aCol = i;
114                        int bRow = i;
115                        int bCol = warpN * WMMA_N;
116                        
117                        if (aRow < M && aCol < K && bRow < K && bCol < N) {{
118                            wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
119                            wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
120                            wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
121                        }}
122                    }}
123                    
124                    int cRow = warpM * WMMA_M;
125                    int cCol = warpN * WMMA_N;
126                    
127                    if (cRow < M && cCol < N) {{
128                        wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
129                        for (int i = 0; i < c_frag.num_elements; i++) {{
130                            c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
131                        }}
132                        wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
133                    }}
134                }}
135            "#,
136            )
137        } else {
138            format!(
139                r#"
140                #include <mma.h>
141                
142                using namespace nvcuda;
143                
144                extern "C" __global__ void tensor_core_gemm_fp32(
145                    const float* A,
146                    const float* B,
147                    float* C,
148                    int M, int N, int K,
149                    float alpha, float beta
150                ) {{
151                    // Standard FP32 Tensor Core implementation
152                    const int WMMA_M = 16;
153                    const int WMMA_N = 16;
154                    const int WMMA_K = 8;
155                    
156                    int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
157                    int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
158                    
159                    wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::row_major> a_frag;
160                    wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::precision::tf32, wmma::col_major> b_frag;
161                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
162                    wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
163                    
164                    wmma::fill_fragment(acc_frag, 0.0f);
165                    
166                    for (int i = 0; i < K; i += WMMA_K) {{
167                        int aRow = warpM * WMMA_M;
168                        int aCol = i;
169                        int bRow = i;
170                        int bCol = warpN * WMMA_N;
171                        
172                        if (aRow < M && aCol < K && bRow < K && bCol < N) {{
173                            wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
174                            wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
175                            wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
176                        }}
177                    }}
178                    
179                    int cRow = warpM * WMMA_M;
180                    int cCol = warpN * WMMA_N;
181                    
182                    if (cRow < M && cCol < N) {{
183                        wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
184                        for (int i = 0; i < c_frag.num_elements; i++) {{
185                            c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
186                        }}
187                        wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
188                    }}
189                }}
190            "#,
191            )
192        };
193
194        let kernel_name = if config.mixed_precision {
195            "tensor_core_gemm_mixed"
196        } else {
197            "tensor_core_gemm_fp32"
198        };
199
200        context
201            .execute(|compiler| compiler.compile(&kernel_source))
202            .map_err(|e| {
203                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
204                    "Failed to compile kernel: {}",
205                    e
206                )))
207            })
208    }
209
210    /// Create batch GEMM kernel for multiple matrix multiplications
211    fn create_batch_gemm_kernel(
212        context: &Arc<GpuContext>,
213        config: &TensorCoreOptimizationConfig,
214    ) -> ScirsResult<GpuKernelHandle> {
215        let kernel_source = r#"
216            #include <cuda_fp16.h>
217            #include <mma.h>
218            
219            using namespace nvcuda;
220            
221            extern "C" __global__ void tensor_core_batch_gemm(
222                const half** A_array,
223                const half** B_array,
224                float** C_array,
225                int* M_array,
226                int* N_array,
227                int* K_array,
228                float* alpha_array,
229                float* beta_array,
230                int batch_count
231            ) {
232                int batch_id = blockIdx.z;
233                if (batch_id >= batch_count) return;
234                
235                const half* A = A_array[batch_id];
236                const half* B = B_array[batch_id];
237                float* C = C_array[batch_id];
238                int M = M_array[batch_id];
239                int N = N_array[batch_id];
240                int K = K_array[batch_id];
241                float alpha = alpha_array[batch_id];
242                float beta = beta_array[batch_id];
243                
244                const int WMMA_M = 16;
245                const int WMMA_N = 16;
246                const int WMMA_K = 16;
247                
248                int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
249                int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
250                
251                wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> a_frag;
252                wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
253                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
254                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;
255                
256                wmma::fill_fragment(acc_frag, 0.0f);
257                
258                for (int i = 0; i < K; i += WMMA_K) {
259                    int aRow = warpM * WMMA_M;
260                    int aCol = i;
261                    int bRow = i;
262                    int bCol = warpN * WMMA_N;
263                    
264                    if (aRow < M && aCol < K && bRow < K && bCol < N) {
265                        wmma::load_matrix_sync(a_frag, A + aRow * K + aCol, K);
266                        wmma::load_matrix_sync(b_frag, B + bRow * N + bCol, N);
267                        wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
268                    }
269                }
270                
271                int cRow = warpM * WMMA_M;
272                int cCol = warpN * WMMA_N;
273                
274                if (cRow < M && cCol < N) {
275                    wmma::load_matrix_sync(c_frag, C + cRow * N + cCol, N, wmma::mem_row_major);
276                    for (int i = 0; i < c_frag.num_elements; i++) {
277                        c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
278                    }
279                    wmma::store_matrix_sync(C + cRow * N + cCol, c_frag, N, wmma::mem_row_major);
280                }
281            }
282        "#;
283
284        context
285            .execute(|compiler| compiler.compile(kernel_source))
286            .map_err(|e| {
287                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
288                    "Failed to compile batch kernel: {}",
289                    e
290                )))
291            })
292    }
293
294    /// Create gradient computation kernel with Tensor Core acceleration
295    fn create_gradient_kernel(
296        context: &Arc<GpuContext>,
297        config: &TensorCoreOptimizationConfig,
298    ) -> ScirsResult<GpuKernelHandle> {
299        let kernel_source = r#"
300            #include <cuda_fp16.h>
301            #include <mma.h>
302            
303            using namespace nvcuda;
304            
305            extern "C" __global__ void tensor_core_gradient_computation(
306                const half* jacobian,
307                const half* residuals,
308                float* gradients,
309                int n_points,
310                int n_dims,
311                float loss_scale
312            ) {
313                // Use Tensor Cores to compute J^T * r efficiently
314                const int WMMA_M = 16;
315                const int WMMA_N = 16;
316                const int WMMA_K = 16;
317                
318                int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
319                int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
320                
321                wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::row_major> jt_frag;
322                wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> r_frag;
323                wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
324                
325                wmma::fill_fragment(acc_frag, 0.0f);
326                
327                // Compute J^T * r using Tensor Cores
328                for (int k = 0; k < n_points; k += WMMA_K) {
329                    if (warpM * WMMA_M < n_dims && k < n_points) {
330                        // Load transposed Jacobian and residuals
331                        wmma::load_matrix_sync(jt_frag, jacobian + k * n_dims + warpM * WMMA_M, n_dims);
332                        wmma::load_matrix_sync(r_frag, residuals + k, 1);
333                        wmma::mma_sync(acc_frag, jt_frag, r_frag, acc_frag);
334                    }
335                }
336                
337                // Store result with loss scaling
338                if (warpM * WMMA_M < n_dims) {
339                    for (int i = 0; i < WMMA_M && warpM * WMMA_M + i < n_dims; i++) {
340                        gradients[warpM * WMMA_M + i] = acc_frag.x[i] / loss_scale;
341                    }
342                }
343            }
344        "#;
345
346        context
347            .execute(|compiler| compiler.compile(kernel_source))
348            .map_err(|e| {
349                ScirsError::ComputationError(scirs2_core::error::ErrorContext::new(format!(
350                    "Failed to compile gradient kernel: {}",
351                    e
352                )))
353            })
354    }
355
356    /// Perform optimized matrix multiplication using Tensor Cores
357    #[allow(dead_code)]
358    pub fn gemm(
359        &self,
360        _a: &Array2<f64>,
361        _b: &Array2<f64>,
362        _c: &mut Array2<f64>,
363        _alpha: f64,
364        _beta: f64,
365    ) -> ScirsResult<()> {
366        // TODO: Implement when GPU buffer creation from arrays is supported
367        Err(ScirsError::NotImplementedError(
368            scirs2_core::error::ErrorContext::new("GEMM not yet implemented".to_string()),
369        ))
370    }
371
372    /// Perform batch matrix multiplication using Tensor Cores
373    #[allow(dead_code)]
374    pub fn batch_gemm(
375        &self,
376        _a_batch: &[&Array2<f64>],
377        _b_batch: &[&Array2<f64>],
378        _c_batch: &mut [&mut Array2<f64>],
379        _alpha_batch: &[f64],
380        _beta_batch: &[f64],
381    ) -> ScirsResult<()> {
382        // TODO: Implement when GPU API supports batch operations
383        Err(ScirsError::NotImplementedError(
384            scirs2_core::error::ErrorContext::new("Batch GEMM not yet implemented".to_string()),
385        ))
386    }
387
388    /// Compute gradients using Tensor Core acceleration
389    #[allow(dead_code)]
390    pub fn compute_gradients(
391        &self,
392        _jacobian: &Array2<f64>,
393        _residuals: &Array1<f64>,
394    ) -> ScirsResult<Array1<f64>> {
395        // TODO: Implement when GPU API supports gradient computation
396        Err(ScirsError::NotImplementedError(
397            scirs2_core::error::ErrorContext::new(
398                "Gradient computation not yet implemented".to_string(),
399            ),
400        ))
401    }
402
403    /// Check if gradient clipping is needed and apply it
404    #[allow(dead_code)]
405    pub fn clip_gradients(&self, _gradients: &mut Array1<f64>) -> ScirsResult<()> {
406        // TODO: Implement when GPU API supports array operations
407        Ok(())
408    }
409
410    /// Get the current configuration
411    pub fn config(&self) -> &TensorCoreOptimizationConfig {
412        &self.config
413    }
414
415    /// Update loss scale for automatic mixed precision
416    pub fn update_loss_scale(&mut self, loss_scale: f32) {
417        self.config.loss_scale = loss_scale;
418    }
419
420    /// Check if computation overflowed (for AMP)
421    #[allow(dead_code)]
422    pub fn check_overflow(&self, _tensor: &Array2<f64>) -> ScirsResult<bool> {
423        // TODO: Implement when GPU API supports NaN/Inf checking
424        Ok(false)
425    }
426}
427
428/// Automatic Mixed Precision (AMP) manager for optimization
429pub struct AMPManager {
430    loss_scale: f32,
431    growth_factor: f32,
432    backoff_factor: f32,
433    growth_interval: u32,
434    consecutive_unskipped: u32,
435}
436
437impl AMPManager {
438    /// Create a new AMP manager
439    pub fn new() -> Self {
440        Self {
441            loss_scale: 65536.0,
442            growth_factor: 2.0,
443            backoff_factor: 0.5,
444            growth_interval: 2000,
445            consecutive_unskipped: 0,
446        }
447    }
448
449    /// Update loss scale based on overflow detection
450    pub fn update(&mut self, found_overflow: bool) -> f32 {
451        if found_overflow {
452            self.loss_scale *= self.backoff_factor;
453            self.consecutive_unskipped = 0;
454        } else {
455            self.consecutive_unskipped += 1;
456            if self.consecutive_unskipped >= self.growth_interval {
457                self.loss_scale *= self.growth_factor;
458                self.consecutive_unskipped = 0;
459            }
460        }
461
462        // Clamp loss scale to reasonable bounds
463        self.loss_scale = self.loss_scale.max(1.0).min(2_f32.powi(20));
464        self.loss_scale
465    }
466
467    /// Get current loss scale
468    pub fn loss_scale(&self) -> f32 {
469        self.loss_scale
470    }
471}
472
473impl Default for AMPManager {
474    fn default() -> Self {
475        Self::new()
476    }
477}
478
479#[cfg(test)]
480mod tests {
481    use super::*;
482
483    #[test]
484    fn test_tensor_core_config() {
485        let config = TensorCoreOptimizationConfig::default();
486        assert!(config.mixed_precision);
487        assert_eq!(config.tile_size, 16);
488        assert!(config.use_amp);
489        assert_eq!(config.loss_scale, 65536.0);
490    }
491
492    #[test]
493    fn test_amp_manager() {
494        let mut manager = AMPManager::new();
495        assert_eq!(manager.loss_scale(), 65536.0);
496
497        // Test overflow handling
498        let new_scale = manager.update(true);
499        assert_eq!(new_scale, 32768.0);
500
501        // Test growth
502        for _ in 0..2000 {
503            manager.update(false);
504        }
505        let grown_scale = manager.loss_scale();
506        assert!(grown_scale > 32768.0);
507    }
508
509    #[test]
510    #[ignore = "Requires Tensor Core capable GPU"]
511    fn test_tensor_core_optimizer() {
512        // This would test the actual Tensor Core optimizer
513        // Implementation depends on the actual scirs2-core GPU infrastructure
514    }
515}