scirs2_optimize/gpu/
cuda_kernels.rs1use super::GpuContext;
7use crate::error::OptimizeError;
8use scirs2_core::gpu::async_execution::GpuStream;
9use scirs2_core::gpu::{GpuBuffer, GpuKernelHandle};
10use std::sync::Arc;
11
12type ScirsResult<T> = Result<T, OptimizeError>;
13
14pub struct FunctionEvaluationKernel {
16 context: Arc<GpuContext>,
17 kernel: GpuKernelHandle,
18}
19
20impl FunctionEvaluationKernel {
21 pub fn new(context: Arc<GpuContext>) -> ScirsResult<Self> {
23 let kernel_source = r#"
24 __global__ void evaluate_batch(
25 const double* points,
26 double* results,
27 int n_points,
28 int n_dims,
29 int function_type
30 ) {
31 int idx = blockIdx.x * blockDim.x + threadIdx.x;
32 if (idx >= n_points) return;
33
34 // Placeholder implementation - would contain actual function evaluation
35 double sum = 0.0;
36 for (int i = 0; i < n_dims; i++) {
37 double x = points[idx * n_dims + i];
38 sum += x * x;
39 }
40 results[idx] = sum;
41 }
42 "#;
43
44 let kernel = context.execute(|compiler| compiler.compile(kernel_source))?;
45
46 Ok(Self { context, kernel })
47 }
48
49 pub fn evaluate_batch(
52 &self,
53 points: &GpuBuffer<f64>,
54 _function_type: i32,
55 _stream: Option<&GpuStream>,
56 ) -> ScirsResult<GpuBuffer<f64>> {
57 let n_points = points.len();
59 let results = self.context.create_buffer::<f64>(n_points);
60
61 Ok(results)
64 }
65}
66
67pub struct GradientKernel {
69 context: Arc<GpuContext>,
70 kernel: GpuKernelHandle,
71}
72
73impl GradientKernel {
74 pub fn new(context: Arc<GpuContext>) -> ScirsResult<Self> {
76 let kernel_source = r#"
77 __global__ void compute_gradient_finite_diff(
78 const double* points,
79 const double* function_values,
80 double* gradients,
81 int n_points,
82 int n_dims,
83 int function_type,
84 double h
85 ) {
86 int idx = blockIdx.x * blockDim.x + threadIdx.x;
87 if (idx >= n_points) return;
88
89 // Placeholder implementation
90 for (int i = 0; i < n_dims; i++) {
91 gradients[idx * n_dims + i] = 0.0;
92 }
93 }
94 "#;
95
96 let kernel = context.execute(|compiler| compiler.compile(kernel_source))?;
97
98 Ok(Self { context, kernel })
99 }
100
101 pub fn compute_gradients(
104 &self,
105 points: &GpuBuffer<f64>,
106 _function_values: &GpuBuffer<f64>,
107 _function_type: i32,
108 _h: f64,
109 _stream: Option<&GpuStream>,
110 ) -> ScirsResult<GpuBuffer<f64>> {
111 let n_points = points.len();
113 let gradients = self.context.create_buffer::<f64>(n_points);
114
115 Ok(gradients)
118 }
119}
120
121pub struct ParticleSwarmKernel {
123 context: Arc<GpuContext>,
124 kernel: GpuKernelHandle,
125}
126
127impl ParticleSwarmKernel {
128 pub fn new(context: Arc<GpuContext>) -> ScirsResult<Self> {
130 let kernel_source = r#"
131 __global__ void update_particles(
132 double* positions,
133 double* velocities,
134 const double* personal_best,
135 const double* global_best,
136 int n_particles,
137 int n_dims,
138 double w,
139 double c1,
140 double c2
141 ) {
142 int idx = blockIdx.x * blockDim.x + threadIdx.x;
143 if (idx >= n_particles) return;
144
145 // Placeholder implementation
146 for (int i = 0; i < n_dims; i++) {
147 velocities[idx * n_dims + i] *= 0.9;
148 positions[idx * n_dims + i] += velocities[idx * n_dims + i];
149 }
150 }
151 "#;
152
153 let kernel = context.execute(|compiler| compiler.compile(kernel_source))?;
154
155 Ok(Self { context, kernel })
156 }
157
158 pub fn update_particles(
161 &self,
162 positions: &mut GpuBuffer<f64>,
163 velocities: &mut GpuBuffer<f64>,
164 _personal_best: &GpuBuffer<f64>,
165 _global_best: &GpuBuffer<f64>,
166 _w: f64,
167 _c1: f64,
168 _c2: f64,
169 _stream: Option<&GpuStream>,
170 ) -> ScirsResult<()> {
171 let _ = (positions, velocities);
173 Ok(())
174 }
175}
176
177pub struct DifferentialEvolutionKernel {
179 context: Arc<GpuContext>,
180 kernel: GpuKernelHandle,
181}
182
183impl DifferentialEvolutionKernel {
184 pub fn new(context: Arc<GpuContext>) -> ScirsResult<Self> {
186 let kernel_source = r#"
187 __global__ void mutate_population(
188 const double* population,
189 double* mutant_vectors,
190 int* indices,
191 int n_population,
192 int n_dims,
193 double F
194 ) {
195 int idx = blockIdx.x * blockDim.x + threadIdx.x;
196 if (idx >= n_population) return;
197
198 // Placeholder implementation
199 for (int i = 0; i < n_dims; i++) {
200 mutant_vectors[idx * n_dims + i] = population[idx * n_dims + i];
201 }
202 }
203 "#;
204
205 let kernel = context.execute(|compiler| compiler.compile(kernel_source))?;
206
207 Ok(Self { context, kernel })
208 }
209
210 pub fn generate_mutants(
213 &self,
214 population: &GpuBuffer<f64>,
215 _indices: &GpuBuffer<i32>,
216 _f: f64,
217 _stream: Option<&GpuStream>,
218 ) -> ScirsResult<GpuBuffer<f64>> {
219 let n_points = population.len();
221 let mutants = self.context.create_buffer::<f64>(n_points);
222
223 Ok(mutants)
226 }
227}
228
229#[allow(dead_code)]
230pub fn placeholder() {
231 }