1use crate::error::ScirsResult;
8use ndarray::{Array1, Array2, ArrayView1};
9
10use crate::distributed::{
11 DistributedConfig, DistributedOptimizationContext, DistributedStats, MPIInterface,
12};
13use crate::gpu::{
14 acceleration::{AccelerationConfig, AccelerationManager},
15 cuda_kernels::DifferentialEvolutionKernel,
16 tensor_core_optimization::{AMPManager, TensorCoreOptimizationConfig, TensorCoreOptimizer},
17 GpuOptimizationConfig, GpuOptimizationContext,
18};
19use crate::result::OptimizeResults;
20use statrs::statistics::Statistics;
21
22#[derive(Clone)]
24pub struct DistributedGpuConfig {
25 pub distributed_config: DistributedConfig,
27 pub gpu_config: GpuOptimizationConfig,
29 pub acceleration_config: AccelerationConfig,
31 pub use_tensor_cores: bool,
33 pub tensor_config: Option<TensorCoreOptimizationConfig>,
35 pub gpu_communication_strategy: GpuCommunicationStrategy,
37 pub gpu_cpu_load_balance: f64, }
40
41impl Default for DistributedGpuConfig {
42 fn default() -> Self {
43 Self {
44 distributed_config: DistributedConfig::default(),
45 gpu_config: GpuOptimizationConfig::default(),
46 acceleration_config: AccelerationConfig::default(),
47 use_tensor_cores: true,
48 tensor_config: Some(TensorCoreOptimizationConfig::default()),
49 gpu_communication_strategy: GpuCommunicationStrategy::Direct,
50 gpu_cpu_load_balance: 0.8, }
52 }
53}
54
55#[derive(Debug, Clone, Copy, PartialEq)]
57pub enum GpuCommunicationStrategy {
58 Direct,
60 Staged,
62 AsyncOverlapped,
64 Hierarchical,
66}
67
68pub struct DistributedGpuOptimizer<M: MPIInterface> {
70 distributed_context: DistributedOptimizationContext<M>,
71 gpu_context: GpuOptimizationContext,
72 acceleration_manager: AccelerationManager,
73 tensor_optimizer: Option<TensorCoreOptimizer>,
74 amp_manager: Option<AMPManager>,
75 config: DistributedGpuConfig,
76 performance_stats: DistributedGpuStats,
77}
78
79impl<M: MPIInterface> DistributedGpuOptimizer<M> {
80 pub fn new(mpi: M, config: DistributedGpuConfig) -> ScirsResult<Self> {
82 let distributed_context =
83 DistributedOptimizationContext::new(mpi, config.distributed_config.clone());
84 let gpu_context = GpuOptimizationContext::new(config.gpu_config.clone())?;
85 let acceleration_manager = AccelerationManager::new(config.acceleration_config.clone());
86
87 let tensor_optimizer = if config.use_tensor_cores {
88 match config.tensor_config.as_ref() {
89 Some(tensor_config) => {
90 match TensorCoreOptimizer::new(
91 gpu_context.context().clone(),
92 tensor_config.clone(),
93 ) {
94 Ok(optimizer) => Some(optimizer),
95 Err(_) => {
96 None
98 }
99 }
100 }
101 None => None,
102 }
103 } else {
104 None
105 };
106
107 let amp_manager = if config
108 .tensor_config
109 .as_ref()
110 .map(|tc| tc.use_amp)
111 .unwrap_or(false)
112 {
113 Some(AMPManager::new())
114 } else {
115 None
116 };
117
118 Ok(Self {
119 distributed_context,
120 gpu_context,
121 acceleration_manager,
122 tensor_optimizer,
123 amp_manager,
124 config,
125 performance_stats: DistributedGpuStats::new(),
126 })
127 }
128
129 pub fn differential_evolution<F>(
131 &mut self,
132 function: F,
133 bounds: &[(f64, f64)],
134 population_size: usize,
135 max_nit: usize,
136 ) -> ScirsResult<DistributedGpuResults>
137 where
138 F: Fn(&ArrayView1<f64>) -> f64 + Clone + Send + Sync,
139 {
140 let start_time = std::time::Instant::now();
141
142 let work_assignment = self.distributed_context.distribute_work(population_size);
144 let local_pop_size = work_assignment.count;
145
146 if local_pop_size == 0 {
147 return Ok(DistributedGpuResults::empty()); }
149
150 let dims = bounds.len();
152 let local_population = self.initialize_gpu_population(local_pop_size, bounds)?;
153 let local_fitness = self.evaluate_population_gpu(&function, &local_population)?;
154
155 let evolution_kernel = todo!("Fix GpuContext type conversion");
162
163 #[allow(unreachable_code)]
164 let mut best_individual = Array1::zeros(dims);
165 let mut best_fitness = f64::INFINITY;
166 let mut total_evaluations = local_pop_size;
167
168 for iteration in 0..max_nit {
170 let trial_population = self.gpu_mutation_crossover(
172 &evolution_kernel,
173 &local_population,
174 0.8, 0.7, )?;
177
178 let trial_fitness = self.evaluate_population_gpu(&function, &trial_population)?;
180 total_evaluations += local_pop_size;
181
182 self.gpu_selection(
184 &evolution_kernel,
185 &mut local_population,
186 &trial_population,
187 &mut local_fitness,
188 &trial_fitness,
189 )?;
190
191 let (local_best_idx, local_best_fitness) = self.find_local_best(&local_fitness)?;
193
194 if local_best_fitness < best_fitness {
195 best_fitness = local_best_fitness;
196 best_individual = local_population.row(local_best_idx).to_owned();
197 }
198
199 if iteration % 10 == 0 {
201 let global_best =
202 self.communicate_best_individuals(&best_individual, best_fitness)?;
203
204 if let Some((global_best_individual, global_best_fitness)) = global_best {
205 if global_best_fitness < best_fitness {
206 best_individual = global_best_individual;
207 best_fitness = global_best_fitness;
208 }
209 }
210
211 self.gpu_migration(&mut local_population, &mut local_fitness)?;
213 }
214
215 self.performance_stats.record_iteration(
217 iteration,
218 local_pop_size,
219 best_fitness,
220 start_time.elapsed().as_secs_f64(),
221 );
222
223 if self.check_convergence(&local_fitness, iteration)? {
225 break;
226 }
227 }
228
229 let final_global_best =
231 self.communicate_best_individuals(&best_individual, best_fitness)?;
232
233 if let Some((final_best_individual, final_best_fitness)) = final_global_best {
234 best_individual = final_best_individual;
235 best_fitness = final_best_fitness;
236 }
237
238 let total_time = start_time.elapsed().as_secs_f64();
239
240 Ok(DistributedGpuResults {
241 base_result: OptimizeResults::<f64> {
242 x: best_individual,
243 fun: best_fitness,
244 success: true,
245 message: "Distributed GPU differential evolution completed".to_string(),
246 nit: max_nit,
247 nfev: total_evaluations,
248 ..OptimizeResults::default()
249 },
250 gpu_stats: crate::gpu::acceleration::PerformanceStats::default(),
251 distributed_stats: self.distributed_context.stats().clone(),
252 performance_stats: self.performance_stats.clone(),
253 total_time,
254 })
255 }
256
257 fn initialize_gpu_population(
259 &self,
260 pop_size: usize,
261 bounds: &[(f64, f64)],
262 ) -> ScirsResult<Array2<f64>> {
263 use rand::Rng;
264 let mut rng = rand::rng();
265
266 let dims = bounds.len();
267 let mut population = Array2::zeros((pop_size, dims));
268
269 for i in 0..pop_size {
270 for j in 0..dims {
271 let (low, high) = bounds[j];
272 population[[i, j]] = rng.gen_range(low..=high);
273 }
274 }
275
276 Ok(population)
277 }
278
279 fn evaluate_population_gpu<F>(
281 &mut self,
282 function: &F,
283 population: &Array2<f64>,
284 ) -> ScirsResult<Array1<f64>>
285 where
286 F: Fn(&ArrayView1<f64>) -> f64,
287 {
288 let pop_size = population.nrows();
289 let mut fitness = Array1::zeros(pop_size);
290
291 let use_gpu = pop_size >= 100 && self.config.gpu_cpu_load_balance > 0.5;
293
294 if use_gpu {
295 self.performance_stats.gpu_evaluations += pop_size;
297
298 for i in 0..pop_size {
301 fitness[i] = function(&population.row(i));
302 }
303 } else {
304 self.performance_stats.cpu_evaluations += pop_size;
306 for i in 0..pop_size {
307 fitness[i] = function(&population.row(i));
308 }
309 }
310
311 Ok(fitness)
312 }
313
314 fn gpu_mutation_crossover(
316 &self,
317 _kernel: &DifferentialEvolutionKernel,
318 population: &Array2<f64>,
319 f_scale: f64,
320 crossover_rate: f64,
321 ) -> ScirsResult<Array2<f64>> {
322 let (pop_size, dims) = population.dim();
323 let mut trial_population = Array2::zeros((pop_size, dims));
324
325 use rand::Rng;
328 let mut rng = rand::rng();
329
330 for i in 0..pop_size {
331 let mut indices = Vec::new();
333 while indices.len() < 3 {
334 let idx = rng.gen_range(0..pop_size);
335 if idx != i && !indices.contains(&idx) {
336 indices.push(idx);
337 }
338 }
339
340 let a = indices[0];
341 let b = indices[1];
342 let c = indices[2];
343
344 let j_rand = rng.gen_range(0..dims);
346 for j in 0..dims {
347 if rng.gen_range(0.0..1.0) < crossover_rate || j == j_rand {
348 trial_population[[i, j]] =
349 population[[a, j]] + f_scale * (population[[b, j]] - population[[c, j]]);
350 } else {
351 trial_population[[i, j]] = population[[i, j]];
352 }
353 }
354 }
355
356 Ok(trial_population)
357 }
358
359 fn gpu_selection(
361 &self,
362 _kernel: &DifferentialEvolutionKernel,
363 population: &mut Array2<f64>,
364 trial_population: &Array2<f64>,
365 fitness: &mut Array1<f64>,
366 trial_fitness: &Array1<f64>,
367 ) -> ScirsResult<()> {
368 for i in 0..population.nrows() {
371 if trial_fitness[i] <= fitness[i] {
372 for j in 0..population.ncols() {
373 population[[i, j]] = trial_population[[i, j]];
374 }
375 fitness[i] = trial_fitness[i];
376 }
377 }
378
379 Ok(())
380 }
381
382 fn find_local_best(&self, fitness: &Array1<f64>) -> ScirsResult<(usize, f64)> {
384 let mut best_idx = 0;
385 let mut best_fitness = fitness[0];
386
387 for (i, &f) in fitness.iter().enumerate() {
388 if f < best_fitness {
389 best_fitness = f;
390 best_idx = i;
391 }
392 }
393
394 Ok((best_idx, best_fitness))
395 }
396
397 fn communicate_best_individuals(
399 &mut self,
400 local_best: &Array1<f64>,
401 local_best_fitness: f64,
402 ) -> ScirsResult<Option<(Array1<f64>, f64)>> {
403 if self.distributed_context.size() <= 1 {
404 return Ok(None);
405 }
406
407 Ok(Some((local_best.clone(), local_best_fitness)))
413 }
414
415 fn gpu_migration(
417 &mut self,
418 population: &mut Array2<f64>,
419 fitness: &mut Array1<f64>,
420 ) -> ScirsResult<()> {
421 match self.config.gpu_communication_strategy {
422 GpuCommunicationStrategy::Direct => {
423 self.gpu_direct_migration(population, fitness)
425 }
426 GpuCommunicationStrategy::Staged => {
427 self.staged_migration(population, fitness)
429 }
430 GpuCommunicationStrategy::AsyncOverlapped => {
431 self.async_migration(population, fitness)
433 }
434 GpuCommunicationStrategy::Hierarchical => {
435 self.hierarchical_migration(population, fitness)
437 }
438 }
439 }
440
441 fn gpu_direct_migration(
443 &mut self,
444 population: &mut Array2<f64>,
445 _fitness: &mut Array1<f64>,
446 ) -> ScirsResult<()> {
447 Ok(())
450 }
451
452 fn staged_migration(
454 &mut self,
455 population: &mut Array2<f64>,
456 _fitness: &mut Array1<f64>,
457 ) -> ScirsResult<()> {
458 Ok(())
461 }
462
463 fn async_migration(
465 &mut self,
466 population: &mut Array2<f64>,
467 _fitness: &mut Array1<f64>,
468 ) -> ScirsResult<()> {
469 Ok(())
471 }
472
473 fn hierarchical_migration(
475 &mut self,
476 population: &mut Array2<f64>,
477 _fitness: &mut Array1<f64>,
478 ) -> ScirsResult<()> {
479 Ok(())
481 }
482
483 fn check_convergence(&self, fitness: &Array1<f64>, iteration: usize) -> ScirsResult<bool> {
485 if fitness.len() < 2 {
486 return Ok(false);
487 }
488
489 let mean = fitness.view().mean();
490 let variance =
491 fitness.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / fitness.len() as f64;
492
493 let std_dev = variance.sqrt();
494
495 Ok(std_dev < 1e-12 || iteration >= 1000)
497 }
498
499 fn generate_random_indices(&self, pop_size: usize) -> ScirsResult<Array2<i32>> {
501 use rand::Rng;
502 let mut rng = rand::rng();
503 let mut indices = Array2::zeros((pop_size, 3));
504
505 for i in 0..pop_size {
506 let mut selected = std::collections::HashSet::new();
507 selected.insert(i);
508
509 for j in 0..3 {
510 loop {
511 let idx = rng.gen_range(0..pop_size);
512 if !selected.contains(&idx) {
513 indices[[i, j]] = idx as i32;
514 selected.insert(idx);
515 break;
516 }
517 }
518 }
519 }
520
521 Ok(indices)
522 }
523
524 fn generate_random_values(&self, count: usize) -> ScirsResult<Array1<f64>> {
526 use rand::Rng;
527 let mut rng = rand::rng();
528 let mut values = Array1::zeros(count);
529
530 for i in 0..count {
531 values[i] = rng.gen_range(0.0..1.0);
532 }
533
534 Ok(values)
535 }
536
537 fn generate_j_rand(&self, pop_size: usize, dims: usize) -> ScirsResult<Array1<i32>> {
539 use rand::Rng;
540 let mut rng = rand::rng();
541 let mut j_rand = Array1::zeros(pop_size);
542
543 for i in 0..pop_size {
544 j_rand[i] = rng.gen_range(0..dims) as i32;
545 }
546
547 Ok(j_rand)
548 }
549
550 pub fn stats(&self) -> &DistributedGpuStats {
552 &self.performance_stats
553 }
554}
555
556#[derive(Debug, Clone)]
558pub struct DistributedGpuStats {
559 pub gpu_evaluations: usize,
561 pub cpu_evaluations: usize,
563 pub gpu_utilization: f64,
565 pub communication_time: f64,
567 pub gpu_memory_usage: f64,
569 pub nit: Vec<IterationStats>,
571}
572
573impl DistributedGpuStats {
574 fn new() -> Self {
575 Self {
576 gpu_evaluations: 0,
577 cpu_evaluations: 0,
578 gpu_utilization: 0.0,
579 communication_time: 0.0,
580 gpu_memory_usage: 0.0,
581 nit: Vec::new(),
582 }
583 }
584
585 fn record_iteration(
586 &mut self,
587 iteration: usize,
588 pop_size: usize,
589 best_fitness: f64,
590 elapsed_time: f64,
591 ) {
592 self.nit.push(IterationStats {
593 iteration,
594 population_size: pop_size,
595 best_fitness,
596 elapsed_time,
597 });
598 }
599
600 pub fn generate_report(&self) -> String {
602 let mut report = String::from("Distributed GPU Optimization Performance Report\n");
603 report.push_str("==============================================\n\n");
604
605 report.push_str(&format!(
606 "GPU Function Evaluations: {}\n",
607 self.gpu_evaluations
608 ));
609 report.push_str(&format!(
610 "CPU Function Evaluations: {}\n",
611 self.cpu_evaluations
612 ));
613
614 let total_evaluations = self.gpu_evaluations + self.cpu_evaluations;
615 if total_evaluations > 0 {
616 let gpu_percentage = (self.gpu_evaluations as f64 / total_evaluations as f64) * 100.0;
617 report.push_str(&format!("GPU Usage: {:.1}%\n", gpu_percentage));
618 }
619
620 report.push_str(&format!(
621 "GPU Utilization: {:.1}%\n",
622 self.gpu_utilization * 100.0
623 ));
624 report.push_str(&format!(
625 "Communication Overhead: {:.3}s\n",
626 self.communication_time
627 ));
628 report.push_str(&format!(
629 "GPU Memory Usage: {:.1}%\n",
630 self.gpu_memory_usage * 100.0
631 ));
632
633 if let Some(last_iteration) = self.nit.last() {
634 report.push_str(&format!(
635 "Final Best Fitness: {:.6e}\n",
636 last_iteration.best_fitness
637 ));
638 report.push_str(&format!(
639 "Total Time: {:.3}s\n",
640 last_iteration.elapsed_time
641 ));
642 }
643
644 report
645 }
646}
647
648#[derive(Debug, Clone)]
650pub struct IterationStats {
651 pub iteration: usize,
652 pub population_size: usize,
653 pub best_fitness: f64,
654 pub elapsed_time: f64,
655}
656
657#[derive(Debug, Clone)]
659pub struct DistributedGpuResults {
660 pub base_result: OptimizeResults<f64>,
662 pub gpu_stats: crate::gpu::acceleration::PerformanceStats,
664 pub distributed_stats: DistributedStats,
666 pub performance_stats: DistributedGpuStats,
668 pub total_time: f64,
670}
671
672impl DistributedGpuResults {
673 fn empty() -> Self {
674 Self {
675 base_result: OptimizeResults::<f64> {
676 x: Array1::zeros(0),
677 fun: 0.0,
678 success: false,
679 message: "No work assigned to this process".to_string(),
680 nit: 0,
681 nfev: 0,
682 ..OptimizeResults::default()
683 },
684 gpu_stats: crate::gpu::acceleration::PerformanceStats::default(),
685 distributed_stats: DistributedStats {
686 communication_time: 0.0,
687 computation_time: 0.0,
688 load_balance_ratio: 1.0,
689 synchronizations: 0,
690 bytes_transferred: 0,
691 },
692 performance_stats: DistributedGpuStats::new(),
693 total_time: 0.0,
694 }
695 }
696
697 pub fn print_summary(&self) {
699 println!("Distributed GPU Optimization Results");
700 println!("===================================");
701 println!("Success: {}", self.base_result.success);
702 println!("Final function value: {:.6e}", self.base_result.fun);
703 println!("Iterations: {}", self.base_result.nit);
704 println!("Function evaluations: {}", self.base_result.nfev);
705 println!("Total time: {:.3}s", self.total_time);
706 println!();
707
708 println!("GPU Performance:");
709 println!("{}", self.gpu_stats.generate_report());
710 println!();
711
712 println!("Distributed Performance:");
713 println!("{}", self.distributed_stats.generate_report());
714 println!();
715
716 println!("Combined Performance:");
717 println!("{}", self.performance_stats.generate_report());
718 }
719}
720
721#[cfg(test)]
722mod tests {
723 use super::*;
724
725 #[test]
726 fn test_distributed_gpu_config() {
727 let config = DistributedGpuConfig::default();
728 assert!(config.use_tensor_cores);
729 assert_eq!(config.gpu_cpu_load_balance, 0.8);
730 assert_eq!(
731 config.gpu_communication_strategy,
732 GpuCommunicationStrategy::Direct
733 );
734 }
735
736 #[test]
737 fn test_gpu_communication_strategies() {
738 let strategies = [
739 GpuCommunicationStrategy::Direct,
740 GpuCommunicationStrategy::Staged,
741 GpuCommunicationStrategy::AsyncOverlapped,
742 GpuCommunicationStrategy::Hierarchical,
743 ];
744
745 for strategy in &strategies {
746 let mut config = DistributedGpuConfig::default();
747 config.gpu_communication_strategy = *strategy;
748 assert_eq!(config.gpu_communication_strategy, *strategy);
750 }
751 }
752
753 #[test]
754 fn test_performance_stats() {
755 let mut stats = DistributedGpuStats::new();
756 stats.gpu_evaluations = 1000;
757 stats.cpu_evaluations = 200;
758 stats.gpu_utilization = 0.85;
759
760 let report = stats.generate_report();
761 assert!(report.contains("GPU Function Evaluations: 1000"));
762 assert!(report.contains("CPU Function Evaluations: 200"));
763 assert!(report.contains("GPU Usage: 83.3%")); }
765
766 #[test]
767 #[ignore = "Requires MPI and GPU"]
768 fn test_distributed_gpu_optimization() {
769 }
772}