scirs2_optimize/
distributed.rs

1//! Distributed optimization using MPI for large-scale parallel computation
2//!
3//! This module provides distributed optimization algorithms that can scale across
4//! multiple nodes using Message Passing Interface (MPI), enabling optimization
5//! of computationally expensive problems across compute clusters.
6
7use crate::error::{ScirsError, ScirsResult};
8use ndarray::{Array1, Array2, ArrayView1};
9use scirs2_core::Rng;
10use statrs::statistics::Statistics;
11
12/// MPI interface abstraction for distributed optimization
13pub trait MPIInterface {
14    /// Get the rank of this process
15    fn rank(&self) -> i32;
16
17    /// Get the total number of processes
18    fn size(&self) -> i32;
19
20    /// Broadcast data from root to all processes
21    fn broadcast<T>(&self, data: &mut [T], root: i32) -> ScirsResult<()>
22    where
23        T: Clone + Send + Sync;
24
25    /// Gather data from all processes to root
26    fn gather<T>(&self, send_data: &[T], recv_data: Option<&mut [T]>, root: i32) -> ScirsResult<()>
27    where
28        T: Clone + Send + Sync;
29
30    /// All-to-all reduction operation
31    fn allreduce<T>(
32        &self,
33        send_data: &[T],
34        recv_data: &mut [T],
35        op: ReductionOp,
36    ) -> ScirsResult<()>
37    where
38        T: Clone + Send + Sync + std::ops::Add<Output = T> + PartialOrd;
39
40    /// Barrier synchronization
41    fn barrier(&self) -> ScirsResult<()>;
42
43    /// Send data to specific process
44    fn send<T>(&self, data: &[T], dest: i32, tag: i32) -> ScirsResult<()>
45    where
46        T: Clone + Send + Sync;
47
48    /// Receive data from specific process
49    fn recv<T>(&self, data: &mut [T], source: i32, tag: i32) -> ScirsResult<()>
50    where
51        T: Clone + Send + Sync;
52}
53
54/// Reduction operations for MPI
55#[derive(Debug, Clone, Copy)]
56pub enum ReductionOp {
57    Sum,
58    Min,
59    Max,
60    Prod,
61}
62
63/// Configuration for distributed optimization
64#[derive(Debug, Clone)]
65pub struct DistributedConfig {
66    /// Strategy for distributing work
67    pub distribution_strategy: DistributionStrategy,
68    /// Load balancing configuration
69    pub load_balancing: LoadBalancingConfig,
70    /// Communication optimization settings
71    pub communication: CommunicationConfig,
72    /// Fault tolerance configuration
73    pub fault_tolerance: FaultToleranceConfig,
74}
75
76impl Default for DistributedConfig {
77    fn default() -> Self {
78        Self {
79            distribution_strategy: DistributionStrategy::DataParallel,
80            load_balancing: LoadBalancingConfig::default(),
81            communication: CommunicationConfig::default(),
82            fault_tolerance: FaultToleranceConfig::default(),
83        }
84    }
85}
86
87/// Work distribution strategies
88#[derive(Debug, Clone, Copy, PartialEq)]
89pub enum DistributionStrategy {
90    /// Distribute data across processes
91    DataParallel,
92    /// Distribute parameters across processes
93    ModelParallel,
94    /// Hybrid data and model parallelism
95    Hybrid,
96    /// Master-worker with dynamic task assignment
97    MasterWorker,
98}
99
100/// Load balancing configuration
101#[derive(Debug, Clone)]
102pub struct LoadBalancingConfig {
103    /// Whether to enable dynamic load balancing
104    pub dynamic: bool,
105    /// Threshold for load imbalance (0.0 to 1.0)
106    pub imbalance_threshold: f64,
107    /// Rebalancing interval (in iterations)
108    pub rebalance_interval: usize,
109}
110
111impl Default for LoadBalancingConfig {
112    fn default() -> Self {
113        Self {
114            dynamic: true,
115            imbalance_threshold: 0.2,
116            rebalance_interval: 100,
117        }
118    }
119}
120
121/// Communication optimization configuration
122#[derive(Debug, Clone)]
123pub struct CommunicationConfig {
124    /// Whether to use asynchronous communication
125    pub async_communication: bool,
126    /// Communication buffer size
127    pub buffer_size: usize,
128    /// Compression for large data transfers
129    pub use_compression: bool,
130    /// Overlap computation with communication
131    pub overlap_computation: bool,
132}
133
134impl Default for CommunicationConfig {
135    fn default() -> Self {
136        Self {
137            async_communication: true,
138            buffer_size: 1024 * 1024, // 1MB
139            use_compression: false,
140            overlap_computation: true,
141        }
142    }
143}
144
145/// Fault tolerance configuration
146#[derive(Debug, Clone)]
147pub struct FaultToleranceConfig {
148    /// Enable checkpointing
149    pub checkpointing: bool,
150    /// Checkpoint interval (in iterations)
151    pub checkpoint_interval: usize,
152    /// Maximum number of retries for failed operations
153    pub max_retries: usize,
154    /// Timeout for MPI operations (in seconds)
155    pub timeout: f64,
156}
157
158impl Default for FaultToleranceConfig {
159    fn default() -> Self {
160        Self {
161            checkpointing: false,
162            checkpoint_interval: 1000,
163            max_retries: 3,
164            timeout: 30.0,
165        }
166    }
167}
168
169/// Distributed optimization context
170pub struct DistributedOptimizationContext<M: MPIInterface> {
171    mpi: M,
172    config: DistributedConfig,
173    rank: i32,
174    size: i32,
175    work_distribution: WorkDistribution,
176    performance_stats: DistributedStats,
177}
178
179impl<M: MPIInterface> DistributedOptimizationContext<M> {
180    /// Create a new distributed optimization context
181    pub fn new(mpi: M, config: DistributedConfig) -> Self {
182        let rank = mpi.rank();
183        let size = mpi.size();
184        let work_distribution = WorkDistribution::new(rank, size, config.distribution_strategy);
185
186        Self {
187            mpi,
188            config,
189            rank,
190            size,
191            work_distribution,
192            performance_stats: DistributedStats::new(),
193        }
194    }
195
196    /// Get the MPI rank of this process
197    pub fn rank(&self) -> i32 {
198        self.rank
199    }
200
201    /// Get the total number of MPI processes
202    pub fn size(&self) -> i32 {
203        self.size
204    }
205
206    /// Check if this is the master process
207    pub fn is_master(&self) -> bool {
208        self.rank == 0
209    }
210
211    /// Distribute work among processes
212    pub fn distribute_work(&mut self, total_work: usize) -> WorkAssignment {
213        self.work_distribution.assign_work(total_work)
214    }
215
216    /// Synchronize all processes
217    pub fn synchronize(&self) -> ScirsResult<()> {
218        self.mpi.barrier()
219    }
220
221    /// Broadcast parameters from master to all workers
222    pub fn broadcast_parameters(&self, params: &mut Array1<f64>) -> ScirsResult<()> {
223        let data = params.as_slice_mut().unwrap();
224        self.mpi.broadcast(data, 0)
225    }
226
227    /// Gather results from all workers to master
228    pub fn gather_results(&self, local_result: &Array1<f64>) -> ScirsResult<Option<Array2<f64>>> {
229        if self.is_master() {
230            let total_size = local_result.len() * self.size as usize;
231            let mut gathered_data = vec![0.0; total_size];
232            self.mpi.gather(
233                local_result.as_slice().unwrap(),
234                Some(&mut gathered_data),
235                0,
236            )?;
237
238            // Reshape into 2D array
239            let result =
240                Array2::from_shape_vec((self.size as usize, local_result.len()), gathered_data)
241                    .map_err(|e| {
242                        ScirsError::InvalidInput(scirs2_core::error::ErrorContext::new(format!(
243                            "Failed to reshape gathered data: {}",
244                            e
245                        )))
246                    })?;
247            Ok(Some(result))
248        } else {
249            self.mpi.gather(local_result.as_slice().unwrap(), None, 0)?;
250            Ok(None)
251        }
252    }
253
254    /// Perform all-reduce operation (sum)
255    pub fn allreduce_sum(&self, local_data: &Array1<f64>) -> ScirsResult<Array1<f64>> {
256        let mut result = Array1::zeros(local_data.len());
257        self.mpi.allreduce(
258            local_data.as_slice().unwrap(),
259            result.as_slice_mut().unwrap(),
260            ReductionOp::Sum,
261        )?;
262        Ok(result)
263    }
264
265    /// Get performance statistics
266    pub fn stats(&self) -> &DistributedStats {
267        &self.performance_stats
268    }
269}
270
271/// Work distribution manager
272struct WorkDistribution {
273    rank: i32,
274    size: i32,
275    strategy: DistributionStrategy,
276}
277
278impl WorkDistribution {
279    fn new(rank: i32, size: i32, strategy: DistributionStrategy) -> Self {
280        Self {
281            rank,
282            size,
283            strategy,
284        }
285    }
286
287    fn assign_work(&self, total_work: usize) -> WorkAssignment {
288        match self.strategy {
289            DistributionStrategy::DataParallel => self.data_parallel_assignment(total_work),
290            DistributionStrategy::ModelParallel => self.model_parallel_assignment(total_work),
291            DistributionStrategy::Hybrid => self.hybrid_assignment(total_work),
292            DistributionStrategy::MasterWorker => self.master_worker_assignment(total_work),
293        }
294    }
295
296    fn data_parallel_assignment(&self, total_work: usize) -> WorkAssignment {
297        let work_per_process = total_work / self.size as usize;
298        let remainder = total_work % self.size as usize;
299
300        let start = self.rank as usize * work_per_process + (self.rank as usize).min(remainder);
301        let extra = if (self.rank as usize) < remainder {
302            1
303        } else {
304            0
305        };
306        let count = work_per_process + extra;
307
308        WorkAssignment {
309            start_index: start,
310            count,
311            strategy: DistributionStrategy::DataParallel,
312        }
313    }
314
315    fn model_parallel_assignment(&self, total_work: usize) -> WorkAssignment {
316        // For model parallelism, each process handles different parameters
317        WorkAssignment {
318            start_index: 0,
319            count: total_work, // Each process sees all data but handles different parameters
320            strategy: DistributionStrategy::ModelParallel,
321        }
322    }
323
324    fn hybrid_assignment(&self, total_work: usize) -> WorkAssignment {
325        // Simplified hybrid: use data parallel for now
326        self.data_parallel_assignment(total_work)
327    }
328
329    fn master_worker_assignment(&self, total_work: usize) -> WorkAssignment {
330        if self.rank == 0 {
331            // Master coordinates but may not do computation
332            WorkAssignment {
333                start_index: 0,
334                count: 0,
335                strategy: DistributionStrategy::MasterWorker,
336            }
337        } else {
338            // Workers split the work
339            let worker_count = self.size - 1;
340            let work_per_worker = total_work / worker_count as usize;
341            let remainder = total_work % worker_count as usize;
342            let worker_rank = self.rank - 1;
343
344            let start =
345                worker_rank as usize * work_per_worker + (worker_rank as usize).min(remainder);
346            let extra = if (worker_rank as usize) < remainder {
347                1
348            } else {
349                0
350            };
351            let count = work_per_worker + extra;
352
353            WorkAssignment {
354                start_index: start,
355                count,
356                strategy: DistributionStrategy::MasterWorker,
357            }
358        }
359    }
360}
361
362/// Work assignment for a process
363#[derive(Debug, Clone)]
364pub struct WorkAssignment {
365    /// Starting index for this process
366    pub start_index: usize,
367    /// Number of work items for this process
368    pub count: usize,
369    /// Distribution strategy used
370    pub strategy: DistributionStrategy,
371}
372
373impl WorkAssignment {
374    /// Get the range of indices assigned to this process
375    pub fn range(&self) -> std::ops::Range<usize> {
376        self.start_index..(self.start_index + self.count)
377    }
378
379    /// Check if this assignment is empty
380    pub fn is_empty(&self) -> bool {
381        self.count == 0
382    }
383}
384
385/// Distributed optimization algorithms
386pub mod algorithms {
387    use super::*;
388    use crate::result::OptimizeResults;
389
390    /// Distributed differential evolution
391    pub struct DistributedDifferentialEvolution<M: MPIInterface> {
392        context: DistributedOptimizationContext<M>,
393        population_size: usize,
394        max_nit: usize,
395        f_scale: f64,
396        crossover_rate: f64,
397    }
398
399    impl<M: MPIInterface> DistributedDifferentialEvolution<M> {
400        /// Create a new distributed differential evolution optimizer
401        pub fn new(
402            context: DistributedOptimizationContext<M>,
403            population_size: usize,
404            max_nit: usize,
405        ) -> Self {
406            Self {
407                context,
408                population_size,
409                max_nit,
410                f_scale: 0.8,
411                crossover_rate: 0.7,
412            }
413        }
414
415        /// Set mutation parameters
416        pub fn with_parameters(mut self, f_scale: f64, crossover_rate: f64) -> Self {
417            self.f_scale = f_scale;
418            self.crossover_rate = crossover_rate;
419            self
420        }
421
422        /// Optimize function using distributed differential evolution
423        pub fn optimize<F>(
424            &mut self,
425            function: F,
426            bounds: &[(f64, f64)],
427        ) -> ScirsResult<OptimizeResults<f64>>
428        where
429            F: Fn(&ArrayView1<f64>) -> f64 + Clone + Send + Sync,
430        {
431            let dims = bounds.len();
432
433            // Initialize local population
434            let local_pop_size = self.population_size / self.context.size() as usize;
435            let mut local_population = self.initialize_local_population(local_pop_size, bounds)?;
436            let mut local_fitness = self.evaluate_local_population(&function, &local_population)?;
437
438            // Find global best across all processes
439            let mut global_best = self.find_global_best(&local_population, &local_fitness)?;
440            let mut global_best_fitness = global_best.1;
441
442            let mut total_evaluations = self.population_size;
443
444            for iteration in 0..self.max_nit {
445                // Generate trial population
446                let trial_population = self.generate_trial_population(&local_population)?;
447                let trial_fitness = self.evaluate_local_population(&function, &trial_population)?;
448
449                // Selection
450                self.selection(
451                    &mut local_population,
452                    &mut local_fitness,
453                    &trial_population,
454                    &trial_fitness,
455                );
456
457                total_evaluations += local_pop_size;
458
459                // Exchange information between processes
460                if iteration % 10 == 0 {
461                    let new_global_best =
462                        self.find_global_best(&local_population, &local_fitness)?;
463                    if new_global_best.1 < global_best_fitness {
464                        global_best = new_global_best;
465                        global_best_fitness = global_best.1;
466                    }
467
468                    // Migration between processes
469                    self.migrate_individuals(&mut local_population, &mut local_fitness)?;
470                }
471
472                // Convergence check (simplified)
473                if iteration % 50 == 0 {
474                    let convergence = self.check_convergence(&local_fitness)?;
475                    if convergence {
476                        break;
477                    }
478                }
479            }
480
481            // Final global best search
482            let final_best = self.find_global_best(&local_population, &local_fitness)?;
483            if final_best.1 < global_best_fitness {
484                global_best = final_best.clone();
485                global_best_fitness = final_best.1;
486            }
487
488            Ok(OptimizeResults::<f64> {
489                x: global_best.0,
490                fun: global_best_fitness,
491                success: true,
492                message: "Distributed differential evolution completed".to_string(),
493                nit: self.max_nit,
494                nfev: total_evaluations,
495                ..OptimizeResults::default()
496            })
497        }
498
499        fn initialize_local_population(
500            &self,
501            local_size: usize,
502            bounds: &[(f64, f64)],
503        ) -> ScirsResult<Array2<f64>> {
504            let mut rng = rand::rng();
505
506            let dims = bounds.len();
507            let mut population = Array2::zeros((local_size, dims));
508
509            for i in 0..local_size {
510                for j in 0..dims {
511                    let (low, high) = bounds[j];
512                    population[[i, j]] = rng.gen_range(low..=high);
513                }
514            }
515
516            Ok(population)
517        }
518
519        fn evaluate_local_population<F>(
520            &self,
521            function: &F,
522            population: &Array2<f64>,
523        ) -> ScirsResult<Array1<f64>>
524        where
525            F: Fn(&ArrayView1<f64>) -> f64,
526        {
527            let mut fitness = Array1::zeros(population.nrows());
528
529            for i in 0..population.nrows() {
530                let individual = population.row(i);
531                fitness[i] = function(&individual);
532            }
533
534            Ok(fitness)
535        }
536
537        fn find_global_best(
538            &mut self,
539            local_population: &Array2<f64>,
540            local_fitness: &Array1<f64>,
541        ) -> ScirsResult<(Array1<f64>, f64)> {
542            // Find local best
543            let mut best_idx = 0;
544            let mut best_fitness = local_fitness[0];
545            for (i, &fitness) in local_fitness.iter().enumerate() {
546                if fitness < best_fitness {
547                    best_fitness = fitness;
548                    best_idx = i;
549                }
550            }
551
552            let local_best = local_population.row(best_idx).to_owned();
553
554            // Find global best across all processes
555            let global_fitness = Array1::from_elem(1, best_fitness);
556            let global_fitness_sum = self.context.allreduce_sum(&global_fitness)?;
557
558            // For simplicity, we'll use the local best for now
559            // In a full implementation, we'd need to communicate the actual best individual
560            Ok((local_best, best_fitness))
561        }
562
563        fn generate_trial_population(&self, population: &Array2<f64>) -> ScirsResult<Array2<f64>> {
564            let mut rng = rand::rng();
565
566            let (pop_size, dims) = population.dim();
567            let mut trial_population = Array2::zeros((pop_size, dims));
568
569            for i in 0..pop_size {
570                // Select three random individuals
571                let mut indices = Vec::new();
572                while indices.len() < 3 {
573                    let idx = rng.gen_range(0..pop_size);
574                    if idx != i && !indices.contains(&idx) {
575                        indices.push(idx);
576                    }
577                }
578
579                let a = indices[0];
580                let b = indices[1];
581                let c = indices[2];
582
583                // Mutation and crossover
584                let j_rand = rng.gen_range(0..dims);
585                for j in 0..dims {
586                    if rng.random::<f64>() < self.crossover_rate || j == j_rand {
587                        trial_population[[i, j]] = population[[a, j]]
588                            + self.f_scale * (population[[b, j]] - population[[c, j]]);
589                    } else {
590                        trial_population[[i, j]] = population[[i, j]];
591                    }
592                }
593            }
594
595            Ok(trial_population)
596        }
597
598        fn selection(
599            &self,
600            population: &mut Array2<f64>,
601            fitness: &mut Array1<f64>,
602            trial_population: &Array2<f64>,
603            trial_fitness: &Array1<f64>,
604        ) {
605            for i in 0..population.nrows() {
606                if trial_fitness[i] <= fitness[i] {
607                    for j in 0..population.ncols() {
608                        population[[i, j]] = trial_population[[i, j]];
609                    }
610                    fitness[i] = trial_fitness[i];
611                }
612            }
613        }
614
615        fn migrate_individuals(
616            &mut self,
617            population: &mut Array2<f64>,
618            fitness: &mut Array1<f64>,
619        ) -> ScirsResult<()> {
620            // Simple migration: send best individual to next process
621            if self.context.size() <= 1 {
622                return Ok(());
623            }
624
625            let best_idx = fitness
626                .iter()
627                .enumerate()
628                .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
629                .map(|(i, _)| i)
630                .unwrap_or(0);
631
632            let _next_rank = (self.context.rank() + 1) % self.context.size();
633            let _prev_rank = (self.context.rank() - 1 + self.context.size()) % self.context.size();
634
635            // Send best individual to next process
636            let _best_individual = population.row(best_idx).to_owned();
637            let _best_fitness_val = fitness[best_idx];
638
639            // In a real implementation, we would use MPI send/recv here
640            // For now, we'll skip the actual communication
641
642            Ok(())
643        }
644
645        fn check_convergence(&mut self, local_fitness: &Array1<f64>) -> ScirsResult<bool> {
646            let mean = local_fitness.view().mean();
647            let variance = local_fitness
648                .iter()
649                .map(|&x| (x - mean).powi(2))
650                .sum::<f64>()
651                / local_fitness.len() as f64;
652
653            let std_dev = variance.sqrt();
654
655            // Simple convergence criterion
656            Ok(std_dev < 1e-12)
657        }
658    }
659
660    /// Distributed particle swarm optimization
661    pub struct DistributedParticleSwarm<M: MPIInterface> {
662        context: DistributedOptimizationContext<M>,
663        swarm_size: usize,
664        max_nit: usize,
665        w: f64,  // Inertia weight
666        c1: f64, // Cognitive parameter
667        c2: f64, // Social parameter
668    }
669
670    impl<M: MPIInterface> DistributedParticleSwarm<M> {
671        /// Create a new distributed particle swarm optimizer
672        pub fn new(
673            context: DistributedOptimizationContext<M>,
674            swarm_size: usize,
675            max_nit: usize,
676        ) -> Self {
677            Self {
678                context,
679                swarm_size,
680                max_nit,
681                w: 0.729,
682                c1: 1.49445,
683                c2: 1.49445,
684            }
685        }
686
687        /// Set PSO parameters
688        pub fn with_parameters(mut self, w: f64, c1: f64, c2: f64) -> Self {
689            self.w = w;
690            self.c1 = c1;
691            self.c2 = c2;
692            self
693        }
694
695        /// Optimize function using distributed particle swarm optimization
696        pub fn optimize<F>(
697            &mut self,
698            function: F,
699            bounds: &[(f64, f64)],
700        ) -> ScirsResult<OptimizeResults<f64>>
701        where
702            F: Fn(&ArrayView1<f64>) -> f64 + Clone + Send + Sync,
703        {
704            let dims = bounds.len();
705            let local_swarm_size = self.swarm_size / self.context.size() as usize;
706
707            // Initialize local swarm
708            let mut positions = self.initialize_positions(local_swarm_size, bounds)?;
709            let mut velocities = Array2::zeros((local_swarm_size, dims));
710            let mut personal_best = positions.clone();
711            let mut personal_best_fitness = self.evaluate_swarm(&function, &positions)?;
712
713            // Find global best
714            let mut global_best = self.find_global_best(&personal_best, &personal_best_fitness)?;
715            let mut global_best_fitness = global_best.1;
716
717            let mut function_evaluations = local_swarm_size;
718
719            for iteration in 0..self.max_nit {
720                // Update swarm
721                self.update_swarm(
722                    &mut positions,
723                    &mut velocities,
724                    &personal_best,
725                    &global_best.0,
726                    bounds,
727                )?;
728
729                // Evaluate new positions
730                let fitness = self.evaluate_swarm(&function, &positions)?;
731                function_evaluations += local_swarm_size;
732
733                // Update personal bests
734                for i in 0..local_swarm_size {
735                    if fitness[i] < personal_best_fitness[i] {
736                        personal_best_fitness[i] = fitness[i];
737                        for j in 0..dims {
738                            personal_best[[i, j]] = positions[[i, j]];
739                        }
740                    }
741                }
742
743                // Update global best
744                if iteration % 10 == 0 {
745                    let new_global_best =
746                        self.find_global_best(&personal_best, &personal_best_fitness)?;
747                    if new_global_best.1 < global_best_fitness {
748                        global_best = new_global_best;
749                        global_best_fitness = global_best.1;
750                    }
751                }
752            }
753
754            Ok(OptimizeResults::<f64> {
755                x: global_best.0,
756                fun: global_best_fitness,
757                success: true,
758                message: "Distributed particle swarm optimization completed".to_string(),
759                nit: self.max_nit,
760                nfev: function_evaluations,
761                ..OptimizeResults::default()
762            })
763        }
764
765        fn initialize_positions(
766            &self,
767            local_size: usize,
768            bounds: &[(f64, f64)],
769        ) -> ScirsResult<Array2<f64>> {
770            let mut rng = rand::rng();
771
772            let dims = bounds.len();
773            let mut positions = Array2::zeros((local_size, dims));
774
775            for i in 0..local_size {
776                for j in 0..dims {
777                    let (low, high) = bounds[j];
778                    positions[[i, j]] = rng.gen_range(low..=high);
779                }
780            }
781
782            Ok(positions)
783        }
784
785        fn evaluate_swarm<F>(
786            &self,
787            function: &F,
788            positions: &Array2<f64>,
789        ) -> ScirsResult<Array1<f64>>
790        where
791            F: Fn(&ArrayView1<f64>) -> f64,
792        {
793            let mut fitness = Array1::zeros(positions.nrows());
794
795            for i in 0..positions.nrows() {
796                let particle = positions.row(i);
797                fitness[i] = function(&particle);
798            }
799
800            Ok(fitness)
801        }
802
803        fn find_global_best(
804            &mut self,
805            positions: &Array2<f64>,
806            fitness: &Array1<f64>,
807        ) -> ScirsResult<(Array1<f64>, f64)> {
808            // Find local best
809            let mut best_idx = 0;
810            let mut best_fitness = fitness[0];
811            for (i, &f) in fitness.iter().enumerate() {
812                if f < best_fitness {
813                    best_fitness = f;
814                    best_idx = i;
815                }
816            }
817
818            let local_best = positions.row(best_idx).to_owned();
819
820            // In a full implementation, we would find the global best across all processes
821            Ok((local_best, best_fitness))
822        }
823
824        fn update_swarm(
825            &self,
826            positions: &mut Array2<f64>,
827            velocities: &mut Array2<f64>,
828            personal_best: &Array2<f64>,
829            global_best: &Array1<f64>,
830            bounds: &[(f64, f64)],
831        ) -> ScirsResult<()> {
832            let mut rng = rand::rng();
833
834            let (swarm_size, dims) = positions.dim();
835
836            for i in 0..swarm_size {
837                for j in 0..dims {
838                    let r1: f64 = rng.random();
839                    let r2: f64 = rng.random();
840
841                    // Update velocity
842                    velocities[[i, j]] = self.w * velocities[[i, j]]
843                        + self.c1 * r1 * (personal_best[[i, j]] - positions[[i, j]])
844                        + self.c2 * r2 * (global_best[j] - positions[[i, j]]);
845
846                    // Update position
847                    positions[[i, j]] += velocities[[i, j]];
848
849                    // Apply bounds
850                    let (low, high) = bounds[j];
851                    if positions[[i, j]] < low {
852                        positions[[i, j]] = low;
853                        velocities[[i, j]] = 0.0;
854                    } else if positions[[i, j]] > high {
855                        positions[[i, j]] = high;
856                        velocities[[i, j]] = 0.0;
857                    }
858                }
859            }
860
861            Ok(())
862        }
863    }
864}
865
866/// Performance statistics for distributed optimization
867#[derive(Debug, Clone)]
868pub struct DistributedStats {
869    /// Communication time statistics
870    pub communication_time: f64,
871    /// Computation time statistics
872    pub computation_time: f64,
873    /// Load balancing statistics
874    pub load_balance_ratio: f64,
875    /// Number of synchronization points
876    pub synchronizations: usize,
877    /// Data transfer statistics (bytes)
878    pub bytes_transferred: usize,
879}
880
881impl DistributedStats {
882    fn new() -> Self {
883        Self {
884            communication_time: 0.0,
885            computation_time: 0.0,
886            load_balance_ratio: 1.0,
887            synchronizations: 0,
888            bytes_transferred: 0,
889        }
890    }
891
892    /// Calculate parallel efficiency
893    pub fn parallel_efficiency(&self) -> f64 {
894        if self.communication_time + self.computation_time == 0.0 {
895            1.0
896        } else {
897            self.computation_time / (self.communication_time + self.computation_time)
898        }
899    }
900
901    /// Generate performance report
902    pub fn generate_report(&self) -> String {
903        format!(
904            "Distributed Optimization Performance Report\n\
905             ==========================================\n\
906             Computation Time: {:.3}s\n\
907             Communication Time: {:.3}s\n\
908             Parallel Efficiency: {:.1}%\n\
909             Load Balance Ratio: {:.3}\n\
910             Synchronizations: {}\n\
911             Data Transferred: {} bytes\n",
912            self.computation_time,
913            self.communication_time,
914            self.parallel_efficiency() * 100.0,
915            self.load_balance_ratio,
916            self.synchronizations,
917            self.bytes_transferred
918        )
919    }
920}
921
922/// Mock MPI implementation for testing
923#[cfg(test)]
924pub struct MockMPI {
925    rank: i32,
926    size: i32,
927}
928
929#[cfg(test)]
930impl MockMPI {
931    pub fn new(rank: i32, size: i32) -> Self {
932        Self { rank, size }
933    }
934}
935
936#[cfg(test)]
937impl MPIInterface for MockMPI {
938    fn rank(&self) -> i32 {
939        self.rank
940    }
941    fn size(&self) -> i32 {
942        self.size
943    }
944
945    fn broadcast<T>(&self, data: &mut [T], root: i32) -> ScirsResult<()>
946    where
947        T: Clone + Send + Sync,
948    {
949        Ok(())
950    }
951
952    fn gather<T>(
953        &self,
954        _send_data: &[T],
955        _recv_data: Option<&mut [T]>,
956        _root: i32,
957    ) -> ScirsResult<()>
958    where
959        T: Clone + Send + Sync,
960    {
961        Ok(())
962    }
963
964    fn allreduce<T>(
965        &self,
966        send_data: &[T],
967        recv_data: &mut [T],
968        _op: ReductionOp,
969    ) -> ScirsResult<()>
970    where
971        T: Clone + Send + Sync + std::ops::Add<Output = T> + PartialOrd,
972    {
973        for (i, item) in send_data.iter().enumerate() {
974            if i < recv_data.len() {
975                recv_data[i] = item.clone();
976            }
977        }
978        Ok(())
979    }
980
981    fn barrier(&self) -> ScirsResult<()> {
982        Ok(())
983    }
984    fn send<T>(&self, _data: &[T], _dest: i32, tag: i32) -> ScirsResult<()>
985    where
986        T: Clone + Send + Sync,
987    {
988        Ok(())
989    }
990    fn recv<T>(&self, _data: &mut [T], _source: i32, tag: i32) -> ScirsResult<()>
991    where
992        T: Clone + Send + Sync,
993    {
994        Ok(())
995    }
996}
997
998#[cfg(test)]
999mod tests {
1000    use super::*;
1001
1002    #[test]
1003    fn test_work_distribution() {
1004        let distribution = WorkDistribution::new(0, 4, DistributionStrategy::DataParallel);
1005        let assignment = distribution.assign_work(100);
1006
1007        assert_eq!(assignment.count, 25);
1008        assert_eq!(assignment.start_index, 0);
1009        assert_eq!(assignment.range(), 0..25);
1010    }
1011
1012    #[test]
1013    fn test_work_assignment_remainder() {
1014        let distribution = WorkDistribution::new(3, 4, DistributionStrategy::DataParallel);
1015        let assignment = distribution.assign_work(10);
1016
1017        // 10 items, 4 processes: 2, 3, 3, 2
1018        assert_eq!(assignment.count, 2);
1019        assert_eq!(assignment.start_index, 8);
1020    }
1021
1022    #[test]
1023    fn test_master_worker_distribution() {
1024        let master_distribution = WorkDistribution::new(0, 4, DistributionStrategy::MasterWorker);
1025        let master_assignment = master_distribution.assign_work(100);
1026
1027        assert_eq!(master_assignment.count, 0); // Master doesn't do computation
1028
1029        let worker_distribution = WorkDistribution::new(1, 4, DistributionStrategy::MasterWorker);
1030        let worker_assignment = worker_distribution.assign_work(100);
1031
1032        assert!(worker_assignment.count > 0); // Worker does computation
1033    }
1034
1035    #[test]
1036    fn test_distributed_context() {
1037        let mpi = MockMPI::new(0, 4);
1038        let config = DistributedConfig::default();
1039        let context = DistributedOptimizationContext::new(mpi, config);
1040
1041        assert_eq!(context.rank(), 0);
1042        assert_eq!(context.size(), 4);
1043        assert!(context.is_master());
1044    }
1045
1046    #[test]
1047    fn test_distributed_stats() {
1048        let mut stats = DistributedStats::new();
1049        stats.computation_time = 80.0;
1050        stats.communication_time = 20.0;
1051
1052        assert_eq!(stats.parallel_efficiency(), 0.8);
1053    }
1054}