scirs2_optimize/constrained/mod.rs
1//! Constrained optimization algorithms
2//!
3//! This module provides methods for constrained optimization of scalar
4//! functions of one or more variables.
5//!
6//! ## Example
7//!
8//! ```no_run
9//! use ndarray::{array, Array1};
10//! use scirs2_optimize::constrained::{minimize_constrained, Method, Constraint};
11//!
12//! // Define a simple function to minimize
13//! fn objective(x: &[f64]) -> f64 {
14//! (x[0] - 1.0).powi(2) + (x[1] - 2.5).powi(2)
15//! }
16//!
17//! // Define a constraint: x[0] + x[1] <= 3
18//! fn constraint(x: &[f64]) -> f64 {
19//! 3.0 - x[0] - x[1] // Should be >= 0
20//! }
21//!
22//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
23//! // Minimize the function starting at [0.0, 0.0]
24//! let initial_point = array![0.0, 0.0];
25//! let constraints = vec![Constraint::new(constraint, Constraint::INEQUALITY)];
26//!
27//! let result = minimize_constrained(
28//! objective,
29//! &initial_point,
30//! &constraints,
31//! Method::SLSQP,
32//! None
33//! )?;
34//!
35//! // The constrained minimum should be at [0.5, 2.5]
36//! # Ok(())
37//! # }
38//! ```
39//!
40//! Note: This function requires LAPACK libraries to be linked for certain optimization methods.
41
42use crate::error::OptimizeResult;
43use crate::result::OptimizeResults;
44use ndarray::{Array1, ArrayBase, Data, Ix1};
45use std::fmt;
46
47// Re-export optimization methods
48pub mod augmented_lagrangian;
49pub mod cobyla;
50pub mod interior_point;
51pub mod slsqp;
52pub mod trust_constr;
53
54// Re-export main functions
55pub use augmented_lagrangian::{
56 minimize_augmented_lagrangian, minimize_equality_constrained, minimize_inequality_constrained,
57 AugmentedLagrangianOptions, AugmentedLagrangianResult,
58};
59pub use cobyla::minimize_cobyla;
60pub use interior_point::{
61 minimize_interior_point, minimize_interior_point_constrained, InteriorPointOptions,
62 InteriorPointResult,
63};
64pub use slsqp::minimize_slsqp;
65pub use trust_constr::minimize_trust_constr;
66
67#[cfg(test)]
68mod tests;
69
70/// Type alias for constraint functions that take a slice of f64 and return f64
71pub type ConstraintFn = fn(&[f64]) -> f64;
72
73/// Optimization methods for constrained minimization.
74#[derive(Debug, Clone, Copy, PartialEq, Eq)]
75pub enum Method {
76 /// Sequential Least SQuares Programming
77 SLSQP,
78
79 /// Trust-region constrained algorithm
80 TrustConstr,
81
82 /// Linear programming using the simplex algorithm
83 COBYLA,
84
85 /// Interior point method
86 InteriorPoint,
87
88 /// Augmented Lagrangian method
89 AugmentedLagrangian,
90}
91
92impl fmt::Display for Method {
93 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94 match self {
95 Method::SLSQP => write!(f, "SLSQP"),
96 Method::TrustConstr => write!(f, "trust-constr"),
97 Method::COBYLA => write!(f, "COBYLA"),
98 Method::InteriorPoint => write!(f, "interior-point"),
99 Method::AugmentedLagrangian => write!(f, "augmented-lagrangian"),
100 }
101 }
102}
103
104/// Options for the constrained optimizer.
105#[derive(Debug, Clone)]
106pub struct Options {
107 /// Maximum number of iterations to perform
108 pub maxiter: Option<usize>,
109
110 /// Precision goal for the value in the stopping criterion
111 pub ftol: Option<f64>,
112
113 /// Precision goal for the gradient in the stopping criterion (relative)
114 pub gtol: Option<f64>,
115
116 /// Precision goal for constraint violation
117 pub ctol: Option<f64>,
118
119 /// Step size used for numerical approximation of the jacobian
120 pub eps: Option<f64>,
121
122 /// Whether to print convergence messages
123 pub disp: bool,
124
125 /// Return the optimization result after each iteration
126 pub return_all: bool,
127}
128
129impl Default for Options {
130 fn default() -> Self {
131 Options {
132 maxiter: None,
133 ftol: Some(1e-8),
134 gtol: Some(1e-8),
135 ctol: Some(1e-8),
136 eps: Some(1e-8),
137 disp: false,
138 return_all: false,
139 }
140 }
141}
142
143/// Constraint type for constrained optimization
144pub struct Constraint<F> {
145 /// The constraint function
146 pub fun: F,
147
148 /// The type of constraint (equality or inequality)
149 pub kind: ConstraintKind,
150
151 /// Lower bound for a box constraint
152 pub lb: Option<f64>,
153
154 /// Upper bound for a box constraint
155 pub ub: Option<f64>,
156}
157
158/// The kind of constraint
159#[derive(Debug, Clone, Copy, PartialEq, Eq)]
160pub enum ConstraintKind {
161 /// Equality constraint: fun(x) = 0
162 Equality,
163
164 /// Inequality constraint: fun(x) >= 0
165 Inequality,
166}
167
168impl Constraint<fn(&[f64]) -> f64> {
169 /// Constant for equality constraint
170 pub const EQUALITY: ConstraintKind = ConstraintKind::Equality;
171
172 /// Constant for inequality constraint
173 pub const INEQUALITY: ConstraintKind = ConstraintKind::Inequality;
174
175 /// Create a new constraint
176 pub fn new(fun: fn(&[f64]) -> f64, kind: ConstraintKind) -> Self {
177 Constraint {
178 fun,
179 kind,
180 lb: None,
181 ub: None,
182 }
183 }
184
185 /// Create a new box constraint
186 pub fn new_bounds(lb: Option<f64>, ub: Option<f64>) -> Self {
187 Constraint {
188 fun: |_| 0.0, // Dummy function for box constraints
189 kind: ConstraintKind::Inequality,
190 lb,
191 ub,
192 }
193 }
194}
195
196impl<F> Constraint<F> {
197 /// Check if this is a box constraint
198 pub fn is_bounds(&self) -> bool {
199 self.lb.is_some() || self.ub.is_some()
200 }
201}
202
203/// Minimizes a scalar function of one or more variables with constraints.
204///
205/// # Arguments
206///
207/// * `func` - A function that takes a slice of values and returns a scalar
208/// * `x0` - The initial guess
209/// * `constraints` - Vector of constraints
210/// * `method` - The optimization method to use
211/// * `options` - Options for the optimizer
212///
213/// # Returns
214///
215/// * `OptimizeResults` containing the optimization results
216///
217/// # Example
218///
219/// ```no_run
220/// use ndarray::array;
221/// use scirs2_optimize::constrained::{minimize_constrained, Method, Constraint};
222///
223/// // Function to minimize
224/// fn objective(x: &[f64]) -> f64 {
225/// (x[0] - 1.0).powi(2) + (x[1] - 2.5).powi(2)
226/// }
227///
228/// // Constraint: x[0] + x[1] <= 3
229/// fn constraint(x: &[f64]) -> f64 {
230/// 3.0 - x[0] - x[1] // Should be >= 0
231/// }
232///
233/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
234/// let initial_point = array![0.0, 0.0];
235/// let constraints = vec![Constraint::new(constraint, Constraint::INEQUALITY)];
236///
237/// let result = minimize_constrained(
238/// objective,
239/// &initial_point,
240/// &constraints,
241/// Method::SLSQP,
242/// None
243/// )?;
244/// # Ok(())
245/// # }
246/// ```
247#[allow(dead_code)]
248pub fn minimize_constrained<F, S>(
249 func: F,
250 x0: &ArrayBase<S, Ix1>,
251 constraints: &[Constraint<ConstraintFn>],
252 method: Method,
253 options: Option<Options>,
254) -> OptimizeResult<OptimizeResults<f64>>
255where
256 F: Fn(&[f64]) -> f64 + Clone,
257 S: Data<Elem = f64>,
258{
259 let options = options.unwrap_or_default();
260
261 // Implementation of various methods will go here
262 match method {
263 Method::SLSQP => minimize_slsqp(func, x0, constraints, &options),
264 Method::TrustConstr => minimize_trust_constr(func, x0, constraints, &options),
265 Method::COBYLA => minimize_cobyla(func, x0, constraints, &options),
266 Method::InteriorPoint => {
267 // Convert constraints to interior point format
268 let x0_arr = Array1::from_vec(x0.to_vec());
269
270 // Create interior point options from general options
271 let ip_options = InteriorPointOptions {
272 max_iter: options.maxiter.unwrap_or(100),
273 tol: options.gtol.unwrap_or(1e-8),
274 feas_tol: options.ctol.unwrap_or(1e-8),
275 ..Default::default()
276 };
277
278 // Convert to OptimizeResults format
279 match minimize_interior_point_constrained(func, x0_arr, constraints, Some(ip_options)) {
280 Ok(result) => {
281 let opt_result = OptimizeResults::<f64> {
282 x: result.x,
283 fun: result.fun,
284 nit: result.nit,
285 nfev: result.nfev,
286 success: result.success,
287 message: result.message,
288 jac: None,
289 hess: None,
290 constr: None,
291 njev: 0, // Not tracked by interior point method
292 nhev: 0, // Not tracked by interior point method
293 maxcv: 0, // Not applicable for interior point
294 status: if result.success { 0 } else { 1 },
295 };
296 Ok(opt_result)
297 }
298 Err(e) => Err(e),
299 }
300 }
301 Method::AugmentedLagrangian => {
302 // Convert to augmented Lagrangian method format (simplified for now)
303 Err(crate::error::OptimizeError::NotImplementedError(
304 "Augmented Lagrangian method integration with minimize_constrained not yet implemented"
305 .to_string(),
306 ))
307 }
308 }
309}