Module unconstrained

Module unconstrained 

Source
Expand description

Unconstrained optimization algorithms

This module provides various algorithms for unconstrained minimization problems.

Re-exports§

pub use result::OptimizeResult;
pub use adaptive_convergence::check_convergence_adaptive;
pub use adaptive_convergence::create_adaptive_options_for_problem;
pub use adaptive_convergence::AdaptationStats;
pub use adaptive_convergence::AdaptiveToleranceOptions;
pub use adaptive_convergence::AdaptiveToleranceState;
pub use adaptive_convergence::ConvergenceStatus;
pub use advanced_line_search::create_non_monotone_state;
pub use advanced_line_search::AdvancedLineSearchOptions;
pub use advanced_line_search::InterpolationStrategy;
pub use advanced_line_search::LineSearchMethod;
pub use advanced_line_search::LineSearchResult;
pub use advanced_line_search::LineSearchStats;
pub use bfgs::minimize_bfgs;
pub use callback_diagnostics::minimize_with_diagnostics;
pub use callback_diagnostics::optimize_with_diagnostics;
pub use callback_diagnostics::CallbackInfo;
pub use callback_diagnostics::CallbackResult;
pub use callback_diagnostics::DiagnosticOptimizer;
pub use callback_diagnostics::OptimizationCallback;
pub use conjugate_gradient::minimize_conjugate_gradient;
pub use convergence_diagnostics::ConvergenceDiagnostics;
pub use convergence_diagnostics::DiagnosticCollector;
pub use convergence_diagnostics::DiagnosticOptions;
pub use convergence_diagnostics::DiagnosticWarning;
pub use convergence_diagnostics::ExportFormat;
pub use convergence_diagnostics::IterationDiagnostic;
pub use convergence_diagnostics::LineSearchDiagnostic;
pub use convergence_diagnostics::PerformanceMetrics;
pub use convergence_diagnostics::ProblemAnalysis;
pub use convergence_diagnostics::ProblemDifficulty;
pub use convergence_diagnostics::WarningSeverity;
pub use efficient_sparse::minimize_efficient_sparse_newton;
pub use efficient_sparse::EfficientSparseOptions;
pub use efficient_sparse::SparsityInfo;
pub use lbfgs::minimize_lbfgs;
pub use lbfgs::minimize_lbfgsb;
pub use memory_efficient::create_memory_efficient_optimizer;
pub use memory_efficient::minimize_memory_efficient_lbfgs;
pub use memory_efficient::MemoryOptions;
pub use memory_efficient_sparse::create_advanced_scale_optimizer;
pub use memory_efficient_sparse::minimize_advanced_scale;
pub use memory_efficient_sparse::AdvancedScaleOptions;
pub use nelder_mead::minimize_nelder_mead;
pub use newton::minimize_newton_cg;
pub use powell::minimize_powell;
pub use quasi_newton::minimize_dfp;
pub use quasi_newton::minimize_quasi_newton;
pub use quasi_newton::minimize_sr1;
pub use quasi_newton::UpdateFormula;
pub use robust_convergence::create_robust_options_for_problem;
pub use robust_convergence::RobustConvergenceOptions;
pub use robust_convergence::RobustConvergenceResult;
pub use robust_convergence::RobustConvergenceState;
pub use simd_bfgs::minimize_simd_bfgs;
pub use simd_bfgs::minimize_simd_bfgs_default;
pub use simd_bfgs::SimdBfgsOptions;
pub use sparse_optimization::auto_detect_sparsity;
pub use sparse_optimization::minimize_sparse_bfgs;
pub use sparse_optimization::SparseOptimizationOptions;
pub use strong_wolfe::create_strong_wolfe_options_for_method;
pub use strong_wolfe::StrongWolfeOptions;
pub use strong_wolfe::StrongWolfeResult;
pub use subspace_methods::minimize_adaptive_subspace;
pub use subspace_methods::minimize_block_coordinate_descent;
pub use subspace_methods::minimize_cyclical_coordinate_descent;
pub use subspace_methods::minimize_random_coordinate_descent;
pub use subspace_methods::minimize_random_subspace;
pub use subspace_methods::minimize_subspace;
pub use subspace_methods::SubspaceMethod;
pub use subspace_methods::SubspaceOptions;
pub use truncated_newton::minimize_truncated_newton;
pub use truncated_newton::minimize_trust_region_newton;
pub use truncated_newton::Preconditioner;
pub use truncated_newton::TruncatedNewtonOptions;
pub use trust_region::minimize_trust_exact;
pub use trust_region::minimize_trust_krylov;
pub use trust_region::minimize_trust_ncg;

Modules§

adaptive_convergence
Adaptive tolerance selection and convergence criteria
advanced_line_search
Advanced line search algorithms for optimization
bfgs
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm for unconstrained optimization
callback_diagnostics
Integration of convergence diagnostics with callback system
conjugate_gradient
Conjugate Gradient method for unconstrained optimization
convergence_diagnostics
Enhanced convergence diagnostics for optimization algorithms
efficient_sparse
Efficient sparse Jacobian and Hessian handling for optimization
lbfgs
Limited-memory BFGS algorithms for large-scale optimization
line_search
Line search algorithms for optimization
memory_efficient
Memory-efficient algorithms for large-scale optimization problems
memory_efficient_sparse
Memory-efficient sparse optimization for very large-scale problems
nelder_mead
Nelder-Mead simplex algorithm for unconstrained optimization
newton
Newton methods for unconstrained optimization
powell
Powell’s method for unconstrained optimization
quasi_newton
Quasi-Newton algorithms with different update formulas (SR1, DFP, BFGS)
result
Result structure for unconstrained optimization
robust_convergence
Robust convergence criteria with multiple stopping conditions
simd_bfgs
SIMD-accelerated BFGS algorithm
sparse_optimization
Sparse optimization algorithms for high-dimensional problems
strong_wolfe
Enhanced Strong Wolfe conditions line search implementation
subspace_methods
Subspace methods for very high-dimensional optimization
truncated_newton
Truncated Newton methods for large-scale optimization
trust_region
Trust region methods for unconstrained optimization
utils
Common utilities for unconstrained optimization algorithms

Structs§

Bounds
Bounds for optimization variables
Options
Options for optimization algorithms

Enums§

Method
Optimization methods for unconstrained minimization.

Functions§

minimize
Main minimize function for unconstrained optimization