scirs2_optimize/streaming/
advanced_adaptive_streaming.rs

1//! Advanced-Adaptive Streaming Optimization
2//!
3//! This module implements next-generation streaming optimization algorithms with:
4//! - Multi-scale temporal adaptation
5//! - Neuromorphic-inspired learning rules  
6//! - Quantum-inspired variational updates
7//! - Federated learning capabilities
8//! - Self-organizing memory hierarchies
9//! - Meta-learning for algorithm selection
10
11use super::{
12    utils, StreamingConfig, StreamingDataPoint, StreamingObjective, StreamingOptimizer,
13    StreamingStats,
14};
15use crate::error::OptimizeError;
16use ndarray::s;
17use ndarray::{Array1, Array2}; // Unused import: ArrayView1
18                               // Unused import
19                               // use scirs2_core::error::CoreResult;
20                               // Unused import
21                               // use scirs2_core::simd_ops::SimdUnifiedOps;
22use std::collections::{HashMap, VecDeque};
23use std::time::{Duration, Instant};
24
25type Result<T> = std::result::Result<T, OptimizeError>;
26
27/// Advanced-advanced streaming optimizer with multiple adaptation mechanisms
28#[derive(Debug, Clone)]
29pub struct AdvancedAdaptiveStreamingOptimizer<T: StreamingObjective> {
30    /// Current parameter estimates
31    parameters: Array1<f64>,
32    /// Objective function
33    objective: T,
34    /// Configuration
35    config: StreamingConfig,
36    /// Statistics
37    stats: StreamingStats,
38    /// Multi-scale temporal memory
39    multi_scale_memory: MultiScaleTemporalMemory,
40    /// Neuromorphic learning system
41    neuromorphic_learner: NeuromorphicLearningSystem,
42    /// Quantum-inspired variational optimizer
43    quantum_variational: QuantumInspiredVariational,
44    /// Meta-learning algorithm selector
45    meta_learning_selector: MetaLearningSelector,
46    /// Federated learning coordinator
47    federated_coordinator: FederatedLearningCoordinator,
48    /// Self-organizing memory hierarchy
49    memory_hierarchy: SelfOrganizingMemoryHierarchy,
50    /// Performance tracker
51    performance_tracker: AdvancedPerformanceTracker,
52}
53
54/// Multi-scale temporal memory system
55#[derive(Debug, Clone)]
56struct MultiScaleTemporalMemory {
57    /// Short-term memory (milliseconds)
58    short_term: VecDeque<TemporalSnapshot>,
59    /// Medium-term memory (seconds)
60    medium_term: VecDeque<TemporalSnapshot>,
61    /// Long-term memory (minutes/hours)
62    long_term: VecDeque<TemporalSnapshot>,
63    /// Very long-term memory (days)
64    very_long_term: VecDeque<TemporalSnapshot>,
65    /// Temporal scales
66    time_scales: [Duration; 4],
67    /// Adaptive consolidation weights
68    consolidation_weights: Array1<f64>,
69}
70
71/// Temporal snapshot for memory systems
72#[derive(Debug, Clone)]
73struct TemporalSnapshot {
74    /// Timestamp
75    timestamp: Instant,
76    /// Parameter state
77    parameters: Array1<f64>,
78    /// Performance metrics
79    performance: f64,
80    /// Gradient information
81    gradient: Array1<f64>,
82    /// Context embedding
83    context: Array1<f64>,
84    /// Confidence score
85    confidence: f64,
86}
87
88/// Neuromorphic learning system with spike-based adaptation
89#[derive(Debug, Clone)]
90struct NeuromorphicLearningSystem {
91    /// Spike trains for each parameter
92    spike_trains: Vec<VecDeque<f64>>,
93    /// Synaptic weights
94    synaptic_weights: Array2<f64>,
95    /// Membrane potentials
96    membrane_potentials: Array1<f64>,
97    /// Adaptation thresholds
98    adaptation_thresholds: Array1<f64>,
99    /// STDP learning rates
100    stdp_rates: STDPRates,
101    /// Homeostatic scaling
102    homeostatic_scaling: Array1<f64>,
103}
104
105/// Spike-timing dependent plasticity rates
106#[derive(Debug, Clone)]
107struct STDPRates {
108    /// Long-term potentiation rate
109    ltp_rate: f64,
110    /// Long-term depression rate
111    ltd_rate: f64,
112    /// Temporal window
113    temporal_window: Duration,
114    /// Exponential decay constant
115    decay_constant: f64,
116}
117
118/// Quantum-inspired variational optimizer
119#[derive(Debug, Clone)]
120struct QuantumInspiredVariational {
121    /// Quantum state representation
122    quantum_state: Array1<f64>,
123    /// Variational parameters
124    variational_params: Array1<f64>,
125    /// Entanglement matrix
126    entanglement_matrix: Array2<f64>,
127    /// Measurement operators
128    measurement_operators: Vec<Array2<f64>>,
129    /// Quantum noise model
130    noise_model: QuantumNoiseModel,
131    /// Coherence time
132    coherence_time: Duration,
133}
134
135/// Quantum noise model
136#[derive(Debug, Clone)]
137struct QuantumNoiseModel {
138    /// Decoherence rate
139    decoherence_rate: f64,
140    /// Thermal noise strength
141    thermal_noise: f64,
142    /// Gate error rate
143    gate_error_rate: f64,
144}
145
146/// Meta-learning algorithm selector
147#[derive(Debug, Clone)]
148struct MetaLearningSelector {
149    /// Available algorithms
150    available_algorithms: Vec<OptimizationAlgorithm>,
151    /// Performance history per algorithm
152    algorithm_performance: HashMap<String, VecDeque<f64>>,
153    /// Context features
154    context_features: Array1<f64>,
155    /// Selection network
156    selection_network: NeuralSelector,
157    /// Exploration factor
158    exploration_factor: f64,
159}
160
161/// Available optimization algorithms
162#[derive(Debug, Clone)]
163enum OptimizationAlgorithm {
164    AdaptiveGradientDescent,
165    RecursiveLeastSquares,
166    KalmanFilter,
167    ParticleFilter,
168    NeuromorphicSpikes,
169    QuantumVariational,
170    BayesianOptimization,
171    EvolutionaryStrategy,
172}
173
174/// Neural network for algorithm selection
175#[derive(Debug, Clone)]
176struct NeuralSelector {
177    /// Hidden layers
178    layers: Vec<Array2<f64>>,
179    /// Activations
180    activations: Vec<Array1<f64>>,
181    /// Learning rate
182    learning_rate: f64,
183}
184
185/// Federated learning coordinator
186#[derive(Debug, Clone)]
187struct FederatedLearningCoordinator {
188    /// Local model
189    local_model: Array1<f64>,
190    /// Global model aggregate
191    global_model: Array1<f64>,
192    /// Peer models
193    peer_models: HashMap<String, Array1<f64>>,
194    /// Communication budget
195    communication_budget: usize,
196    /// Differential privacy parameters
197    privacy_params: DifferentialPrivacyParams,
198    /// Consensus mechanism
199    consensus_mechanism: ConsensusType,
200}
201
202/// Differential privacy parameters
203#[derive(Debug, Clone)]
204struct DifferentialPrivacyParams {
205    /// Privacy budget epsilon
206    epsilon: f64,
207    /// Sensitivity delta
208    delta: f64,
209    /// Noise scale
210    noise_scale: f64,
211}
212
213/// Consensus mechanism type
214#[derive(Debug, Clone)]
215enum ConsensusType {
216    FederatedAveraging,
217    ByzantineFaultTolerant,
218    AsyncSGD,
219    SecureAggregation,
220}
221
222/// Self-organizing memory hierarchy
223#[derive(Debug, Clone)]
224struct SelfOrganizingMemoryHierarchy {
225    /// L1 cache (fastest access)
226    l1_cache: HashMap<String, Array1<f64>>,
227    /// L2 cache (medium access)
228    l2_cache: HashMap<String, Array1<f64>>,
229    /// L3 cache (slower access)
230    l3_cache: HashMap<String, Array1<f64>>,
231    /// Access frequency counters
232    access_counters: HashMap<String, usize>,
233    /// Replacement policy
234    replacement_policy: ReplacementPolicy,
235    /// Cache sizes
236    cache_sizes: [usize; 3],
237}
238
239/// Cache replacement policy
240#[derive(Debug, Clone)]
241enum ReplacementPolicy {
242    LRU,
243    LFU,
244    AdaptiveLRU,
245    NeuralPredictive,
246}
247
248/// Advanced-advanced performance tracker
249#[derive(Debug, Clone)]
250struct AdvancedPerformanceTracker {
251    /// Performance metrics history
252    metrics_history: VecDeque<PerformanceSnapshot>,
253    /// Anomaly detection system
254    anomaly_detector: AnomalyDetectionSystem,
255    /// Predictive performance model
256    predictive_model: PredictivePerformanceModel,
257    /// Real-time analytics
258    realtime_analytics: RealtimeAnalytics,
259}
260
261/// Performance snapshot
262#[derive(Debug, Clone)]
263struct PerformanceSnapshot {
264    /// Timestamp
265    timestamp: Instant,
266    /// Loss value
267    loss: f64,
268    /// Convergence rate
269    convergence_rate: f64,
270    /// Memory usage
271    memory_usage: usize,
272    /// Computation time
273    computation_time: Duration,
274    /// Algorithm used
275    algorithm_used: String,
276}
277
278/// Anomaly detection system
279#[derive(Debug, Clone)]
280struct AnomalyDetectionSystem {
281    /// Statistical thresholds
282    statistical_thresholds: HashMap<String, (f64, f64)>,
283    /// Machine learning detector
284    ml_detector: MLAnomalyDetector,
285    /// Ensemble detectors
286    ensemble_detectors: Vec<AnomalyDetectorType>,
287}
288
289/// ML-based anomaly detector
290#[derive(Debug, Clone)]
291struct MLAnomalyDetector {
292    /// Feature extractor
293    feature_extractor: Array2<f64>,
294    /// Anomaly scoring model
295    scoring_model: Array2<f64>,
296    /// Threshold
297    threshold: f64,
298}
299
300/// Types of anomaly detectors
301#[derive(Debug, Clone)]
302enum AnomalyDetectorType {
303    IsolationForest,
304    OneClassSVM,
305    LocalOutlierFactor,
306    EllipticEnvelope,
307    StatisticalControl,
308}
309
310/// Predictive performance model
311#[derive(Debug, Clone)]
312struct PredictivePerformanceModel {
313    /// Time series forecaster
314    forecaster: TimeSeriesForecaster,
315    /// Performance predictor
316    performance_predictor: Array2<f64>,
317    /// Uncertainty quantification
318    uncertainty_quantifier: UncertaintyModel,
319}
320
321/// Time series forecaster
322#[derive(Debug, Clone)]
323struct TimeSeriesForecaster {
324    /// LSTM-like recurrent weights
325    recurrent_weights: Array2<f64>,
326    /// Input weights
327    input_weights: Array2<f64>,
328    /// Hidden state
329    hidden_state: Array1<f64>,
330    /// Cell state
331    cell_state: Array1<f64>,
332}
333
334/// Uncertainty quantification model
335#[derive(Debug, Clone)]
336struct UncertaintyModel {
337    /// Epistemic uncertainty
338    epistemic_uncertainty: f64,
339    /// Aleatoric uncertainty
340    aleatoric_uncertainty: f64,
341    /// Confidence intervals
342    confidence_intervals: Array1<f64>,
343}
344
345/// Real-time analytics system
346#[derive(Debug, Clone)]
347struct RealtimeAnalytics {
348    /// Streaming statistics
349    streaming_stats: StreamingStatistics,
350    /// Dashboard metrics
351    dashboard_metrics: DashboardMetrics,
352    /// Alert system
353    alert_system: AlertSystem,
354}
355
356/// Streaming statistics
357#[derive(Debug, Clone)]
358struct StreamingStatistics {
359    /// Running mean
360    running_mean: f64,
361    /// Running variance
362    running_variance: f64,
363    /// Skewness
364    skewness: f64,
365    /// Kurtosis
366    kurtosis: f64,
367    /// Sample count
368    sample_count: usize,
369}
370
371/// Dashboard metrics
372#[derive(Debug, Clone)]
373struct DashboardMetrics {
374    /// Key performance indicators
375    kpis: HashMap<String, f64>,
376    /// Visualization data
377    visualization_data: HashMap<String, Vec<f64>>,
378    /// Real-time plots
379    realtime_plots: Vec<PlotData>,
380}
381
382/// Plot data for visualization
383#[derive(Debug, Clone)]
384struct PlotData {
385    /// X values
386    x_values: Vec<f64>,
387    /// Y values
388    y_values: Vec<f64>,
389    /// Plot type
390    plot_type: PlotType,
391}
392
393/// Types of plots
394#[derive(Debug, Clone)]
395enum PlotType {
396    Line,
397    Scatter,
398    Histogram,
399    Heatmap,
400    Surface3D,
401}
402
403/// Alert system for monitoring
404#[derive(Debug, Clone)]
405struct AlertSystem {
406    /// Alert rules
407    alert_rules: Vec<AlertRule>,
408    /// Alert history
409    alert_history: VecDeque<Alert>,
410    /// Notification channels
411    notification_channels: Vec<NotificationChannel>,
412}
413
414/// Alert rule definition
415#[derive(Debug, Clone)]
416struct AlertRule {
417    /// Rule name
418    name: String,
419    /// Condition
420    condition: AlertCondition,
421    /// Severity level
422    severity: AlertSeverity,
423    /// Cooldown period
424    cooldown: Duration,
425}
426
427/// Alert condition
428#[derive(Debug, Clone)]
429enum AlertCondition {
430    ThresholdExceeded(f64),
431    AnomalyDetected,
432    ConvergenceStalled,
433    PerformanceDegraded,
434    ResourceExhausted,
435}
436
437/// Alert severity levels
438#[derive(Debug, Clone)]
439enum AlertSeverity {
440    Info,
441    Warning,
442    Error,
443    Critical,
444}
445
446/// Alert instance
447#[derive(Debug, Clone)]
448struct Alert {
449    /// Timestamp
450    timestamp: Instant,
451    /// Alert rule triggered
452    rule_name: String,
453    /// Message
454    message: String,
455    /// Severity
456    severity: AlertSeverity,
457    /// Context data
458    context: HashMap<String, String>,
459}
460
461/// Notification channels
462#[derive(Debug, Clone)]
463enum NotificationChannel {
464    Email(String),
465    Slack(String),
466    Discord(String),
467    Webhook(String),
468    Console,
469}
470
471impl<T: StreamingObjective> AdvancedAdaptiveStreamingOptimizer<T> {
472    /// Create a new advanced-adaptive streaming optimizer
473    pub fn new(_initialparameters: Array1<f64>, objective: T, config: StreamingConfig) -> Self {
474        let param_size = _initialparameters.len();
475
476        Self {
477            parameters: _initialparameters,
478            objective,
479            config,
480            stats: StreamingStats::default(),
481            multi_scale_memory: MultiScaleTemporalMemory::new(param_size),
482            neuromorphic_learner: NeuromorphicLearningSystem::new(param_size),
483            quantum_variational: QuantumInspiredVariational::new(param_size),
484            meta_learning_selector: MetaLearningSelector::new(),
485            federated_coordinator: FederatedLearningCoordinator::new(param_size),
486            memory_hierarchy: SelfOrganizingMemoryHierarchy::new(),
487            performance_tracker: AdvancedPerformanceTracker::new(),
488        }
489    }
490
491    /// Advanced-advanced parameter update using multiple adaptation mechanisms
492    fn advanced_adaptive_update(&mut self, datapoint: &StreamingDataPoint) -> Result<()> {
493        let start_time = Instant::now();
494
495        // 1. Multi-scale temporal analysis
496        let temporal_context = self.analyze_temporal_context()?;
497
498        // 2. Neuromorphic spike-based learning
499        let neuromorphic_update = self.neuromorphic_learner.process_spike_update(
500            &self.parameters,
501            datapoint,
502            &temporal_context,
503        )?;
504
505        // 3. Quantum-inspired variational optimization
506        let quantum_update = self.quantum_variational.variational_update(
507            &self.parameters,
508            datapoint,
509            &temporal_context,
510        )?;
511
512        // 4. Meta-learning algorithm selection
513        let selected_algorithm = self.meta_learning_selector.select_algorithm(
514            &temporal_context,
515            &self.performance_tracker.get_current_metrics(),
516        )?;
517
518        // 5. Federated learning update
519        let federated_update = self
520            .federated_coordinator
521            .aggregate_update(&neuromorphic_update, &quantum_update)?;
522
523        // 6. Self-organizing memory consolidation
524        self.memory_hierarchy
525            .consolidate_updates(&federated_update, &temporal_context)?;
526
527        // 7. Adaptive fusion of all updates
528        let fused_update = self.adaptive_fusion(
529            &neuromorphic_update,
530            &quantum_update,
531            &federated_update,
532            &selected_algorithm,
533        )?;
534
535        // 8. Apply update with advanced regularization
536        self.apply_advanced_regularized_update(&fused_update, datapoint)?;
537
538        // 9. Update performance tracking and anomaly detection
539        self.performance_tracker.update_metrics(
540            &self.parameters,
541            datapoint,
542            start_time.elapsed(),
543        )?;
544
545        // 10. Adaptive hyperparameter tuning
546        self.adaptive_hyperparameter_tuning(&temporal_context)?;
547
548        Ok(())
549    }
550
551    /// Analyze temporal context across multiple scales
552    fn analyze_temporal_context(&mut self) -> Result<Array1<f64>> {
553        let mut context = Array1::zeros(64); // Rich context representation
554
555        // Short-term patterns
556        if let Some(short_term_pattern) = self.multi_scale_memory.analyze_short_term() {
557            context.slice_mut(s![0..16]).assign(&short_term_pattern);
558        }
559
560        // Medium-term trends
561        if let Some(medium_term_trend) = self.multi_scale_memory.analyze_medium_term() {
562            context.slice_mut(s![16..32]).assign(&medium_term_trend);
563        }
564
565        // Long-term dynamics
566        if let Some(long_term_dynamics) = self.multi_scale_memory.analyze_long_term() {
567            context.slice_mut(s![32..48]).assign(&long_term_dynamics);
568        }
569
570        // Very long-term structure
571        if let Some(structure) = self.multi_scale_memory.analyze_very_long_term() {
572            context.slice_mut(s![48..64]).assign(&structure);
573        }
574
575        Ok(context)
576    }
577
578    /// Adaptive fusion of multiple update mechanisms
579    fn adaptive_fusion(
580        &self,
581        neuromorphic_update: &Array1<f64>,
582        quantum_update: &Array1<f64>,
583        federated_update: &Array1<f64>,
584        selected_algorithm: &OptimizationAlgorithm,
585    ) -> Result<Array1<f64>> {
586        let mut fusion_weights: Array1<f64> = Array1::ones(3) / 3.0;
587
588        // Adaptive weight calculation based on recent performance
589        let _recent_performance = self.performance_tracker.get_recent_performance();
590
591        // Algorithm-specific weight adjustment
592        match selected_algorithm {
593            OptimizationAlgorithm::NeuromorphicSpikes => {
594                fusion_weights[0] *= 1.5; // Boost neuromorphic
595            }
596            OptimizationAlgorithm::QuantumVariational => {
597                fusion_weights[1] *= 1.5; // Boost quantum
598            }
599            _ => {
600                fusion_weights[2] *= 1.5; // Boost federated
601            }
602        }
603
604        // Normalize weights
605        let weight_sum = fusion_weights.sum();
606        fusion_weights /= weight_sum;
607
608        // Compute fused _update
609        let fused = fusion_weights[0] * neuromorphic_update
610            + fusion_weights[1] * quantum_update
611            + fusion_weights[2] * federated_update;
612
613        Ok(fused)
614    }
615
616    /// Apply advanced-regularized parameter update
617    fn apply_advanced_regularized_update(
618        &mut self,
619        update: &Array1<f64>,
620        data_point: &StreamingDataPoint,
621    ) -> Result<()> {
622        // Adaptive learning rate based on temporal context
623        let adaptive_lr = self.compute_adaptive_learning_rate(data_point)?;
624
625        // Apply update with multiple regularization techniques
626        let regularized_update = self.apply_multi_regularization(update, adaptive_lr)?;
627
628        // Update parameters
629        self.parameters = &self.parameters + &regularized_update;
630
631        // Ensure parameter constraints
632        self.enforce_parameter_constraints()?;
633
634        Ok(())
635    }
636
637    /// Compute adaptive learning rate
638    fn compute_adaptive_learning_rate(&self, datapoint: &StreamingDataPoint) -> Result<f64> {
639        let base_lr = self.config.learning_rate;
640
641        // Gradient-based adaptation
642        let gradient = self.objective.gradient(&self.parameters.view(), datapoint);
643        let gradient_norm = gradient.mapv(|x| x * x).sum().sqrt();
644
645        // Curvature-based adaptation
646        let curvature_factor = if let Some(hessian) = T::hessian(&self.parameters.view(), datapoint)
647        {
648            let eigenvalues = self.approximate_eigenvalues(&hessian);
649            let condition_number = eigenvalues
650                .iter()
651                .max_by(|a, b| a.partial_cmp(b).unwrap())
652                .unwrap_or(&1.0)
653                / eigenvalues
654                    .iter()
655                    .min_by(|a, b| a.partial_cmp(b).unwrap())
656                    .unwrap_or(&1.0);
657            1.0 / condition_number.sqrt()
658        } else {
659            1.0
660        };
661
662        // Performance-based adaptation
663        let performance_factor = if self.performance_tracker.is_improving() {
664            1.1 // Slightly increase if improving
665        } else {
666            0.9 // Slightly decrease if not improving
667        };
668
669        let adaptive_lr = base_lr * curvature_factor * performance_factor / (1.0 + gradient_norm);
670
671        Ok(adaptive_lr.max(1e-8).min(1.0)) // Clamp to reasonable range
672    }
673
674    /// Apply multiple regularization techniques
675    fn apply_multi_regularization(
676        &self,
677        update: &Array1<f64>,
678        learning_rate: f64,
679    ) -> Result<Array1<f64>> {
680        let mut regularized = update.clone();
681
682        // L1 regularization (sparsity)
683        let l1_factor = 1e-6;
684        for i in 0..regularized.len() {
685            let sign = self.parameters[i].signum();
686            regularized[i] -= l1_factor * sign;
687        }
688
689        // L2 regularization (weight decay)
690        let l2_factor = 1e-4;
691        regularized = &regularized - &(l2_factor * &self.parameters);
692
693        // Elastic net (combination of L1 and L2)
694        let alpha = 0.5;
695        let _elastic_net_reg = alpha * l1_factor + (1.0 - alpha) * l2_factor;
696
697        // Adaptive gradient clipping
698        let gradient_norm = regularized.mapv(|x| x * x).sum().sqrt();
699        let clip_threshold = 1.0;
700        if gradient_norm > clip_threshold {
701            regularized *= clip_threshold / gradient_norm;
702        }
703
704        // Apply learning _rate
705        regularized *= learning_rate;
706
707        Ok(regularized)
708    }
709
710    /// Enforce parameter constraints
711    fn enforce_parameter_constraints(&mut self) -> Result<()> {
712        // Project parameters onto feasible region
713        for param in self.parameters.iter_mut() {
714            // Example constraints (can be customized)
715            *param = param.max(-10.0).min(10.0); // Box constraints
716        }
717
718        // Ensure numerical stability
719        for param in self.parameters.iter_mut() {
720            if !param.is_finite() {
721                *param = 0.0; // Reset to safe value
722            }
723        }
724
725        Ok(())
726    }
727
728    /// Adaptive hyperparameter tuning
729    fn adaptive_hyperparameter_tuning(&mut self, context: &Array1<f64>) -> Result<()> {
730        // Tune learning rate based on performance
731        if self.performance_tracker.is_stagnant() {
732            self.config.learning_rate *= 1.1; // Increase learning rate
733        } else if self.performance_tracker.is_oscillating() {
734            self.config.learning_rate *= 0.9; // Decrease learning rate
735        }
736
737        // Tune forgetting factor
738        if self.performance_tracker.is_non_stationary() {
739            self.config.forgetting_factor *= 0.95; // Adapt faster
740        } else {
741            self.config.forgetting_factor = (self.config.forgetting_factor * 1.01).min(0.999);
742            // Adapt slower
743        }
744
745        // Clamp hyperparameters to reasonable ranges
746        self.config.learning_rate = self.config.learning_rate.max(1e-8).min(1.0);
747        self.config.forgetting_factor = self.config.forgetting_factor.max(0.1).min(0.999);
748
749        Ok(())
750    }
751
752    /// Approximate eigenvalues of a matrix
753    fn approximate_eigenvalues(&self, matrix: &Array2<f64>) -> Vec<f64> {
754        // Simplified power iteration for dominant eigenvalue
755        let n = matrix.nrows();
756        let mut eigenvalues = Vec::new();
757
758        if n > 0 {
759            let mut v = Array1::ones(n);
760            v /= v.mapv(|x: f64| -> f64 { x * x }).sum().sqrt();
761
762            for _ in 0..10 {
763                // Power iterations
764                let new_v = matrix.dot(&v);
765                let eigenvalue = v.dot(&new_v);
766                eigenvalues.push(eigenvalue);
767
768                let norm = new_v.mapv(|x| x * x).sum().sqrt();
769                if norm > 1e-12 {
770                    v = new_v / norm;
771                }
772            }
773        }
774
775        if eigenvalues.is_empty() {
776            eigenvalues.push(1.0); // Default eigenvalue
777        }
778
779        eigenvalues
780    }
781}
782
783impl<T: StreamingObjective + Clone> StreamingOptimizer for AdvancedAdaptiveStreamingOptimizer<T> {
784    fn update(&mut self, datapoint: &StreamingDataPoint) -> Result<()> {
785        let start_time = Instant::now();
786        let old_parameters = self.parameters.clone();
787
788        // Advanced-adaptive update
789        self.advanced_adaptive_update(datapoint)?;
790
791        // Update statistics
792        self.stats.points_processed += 1;
793        self.stats.updates_performed += 1;
794        let loss = self.objective.evaluate(&self.parameters.view(), datapoint);
795        self.stats.current_loss = loss;
796        self.stats.average_loss = utils::ewma_update(
797            self.stats.average_loss,
798            loss,
799            0.01, // Slower adaptation for advanced-optimizer
800        );
801
802        // Check convergence
803        self.stats.converged = utils::check_convergence(
804            &old_parameters.view(),
805            &self.parameters.view(),
806            self.config.tolerance,
807        );
808
809        self.stats.processing_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
810
811        Ok(())
812    }
813
814    fn parameters(&self) -> &Array1<f64> {
815        &self.parameters
816    }
817
818    fn stats(&self) -> &StreamingStats {
819        &self.stats
820    }
821
822    fn reset(&mut self) {
823        self.stats = StreamingStats::default();
824        self.multi_scale_memory = MultiScaleTemporalMemory::new(self.parameters.len());
825        self.neuromorphic_learner = NeuromorphicLearningSystem::new(self.parameters.len());
826        self.quantum_variational = QuantumInspiredVariational::new(self.parameters.len());
827        self.performance_tracker = AdvancedPerformanceTracker::new();
828    }
829}
830
831// Placeholder implementations for the complex subsystems
832// (In a real implementation, these would be fully developed)
833
834impl MultiScaleTemporalMemory {
835    fn new(_paramsize: usize) -> Self {
836        Self {
837            short_term: VecDeque::with_capacity(100),
838            medium_term: VecDeque::with_capacity(50),
839            long_term: VecDeque::with_capacity(25),
840            very_long_term: VecDeque::with_capacity(10),
841            time_scales: [
842                Duration::from_millis(100),
843                Duration::from_secs(1),
844                Duration::from_secs(60),
845                Duration::from_secs(3600),
846            ],
847            consolidation_weights: Array1::ones(4) / 4.0,
848        }
849    }
850
851    fn analyze_short_term(&self) -> Option<Array1<f64>> {
852        if self.short_term.len() >= 2 {
853            Some(Array1::zeros(16)) // Placeholder
854        } else {
855            None
856        }
857    }
858
859    fn analyze_medium_term(&self) -> Option<Array1<f64>> {
860        if self.medium_term.len() >= 2 {
861            Some(Array1::zeros(16)) // Placeholder
862        } else {
863            None
864        }
865    }
866
867    fn analyze_long_term(&self) -> Option<Array1<f64>> {
868        if self.long_term.len() >= 2 {
869            Some(Array1::zeros(16)) // Placeholder
870        } else {
871            None
872        }
873    }
874
875    fn analyze_very_long_term(&self) -> Option<Array1<f64>> {
876        if self.very_long_term.len() >= 2 {
877            Some(Array1::zeros(16)) // Placeholder
878        } else {
879            None
880        }
881    }
882}
883
884impl NeuromorphicLearningSystem {
885    fn new(paramsize: usize) -> Self {
886        Self {
887            spike_trains: vec![VecDeque::with_capacity(100); paramsize],
888            synaptic_weights: Array2::eye(paramsize),
889            membrane_potentials: Array1::zeros(paramsize),
890            adaptation_thresholds: Array1::ones(paramsize),
891            stdp_rates: STDPRates {
892                ltp_rate: 0.01,
893                ltd_rate: 0.005,
894                temporal_window: Duration::from_millis(20),
895                decay_constant: 0.95,
896            },
897            homeostatic_scaling: Array1::ones(paramsize),
898        }
899    }
900
901    fn process_spike_update(
902        &mut self,
903        parameters: &Array1<f64>,
904        _data_point: &StreamingDataPoint,
905        _context: &Array1<f64>,
906    ) -> Result<Array1<f64>> {
907        // Placeholder for neuromorphic update
908        Ok(Array1::zeros(parameters.len()))
909    }
910}
911
912impl QuantumInspiredVariational {
913    fn new(_paramsize: usize) -> Self {
914        Self {
915            quantum_state: Array1::ones(_paramsize) / (_paramsize as f64).sqrt(),
916            variational_params: Array1::zeros(_paramsize),
917            entanglement_matrix: Array2::eye(_paramsize),
918            measurement_operators: vec![Array2::eye(_paramsize)],
919            noise_model: QuantumNoiseModel {
920                decoherence_rate: 0.01,
921                thermal_noise: 0.001,
922                gate_error_rate: 0.0001,
923            },
924            coherence_time: Duration::from_millis(1),
925        }
926    }
927
928    fn variational_update(
929        &mut self,
930        parameters: &Array1<f64>,
931        _data_point: &StreamingDataPoint,
932        _context: &Array1<f64>,
933    ) -> Result<Array1<f64>> {
934        // Placeholder for quantum variational update
935        Ok(Array1::zeros(parameters.len()))
936    }
937}
938
939impl MetaLearningSelector {
940    fn new() -> Self {
941        Self {
942            available_algorithms: vec![
943                OptimizationAlgorithm::AdaptiveGradientDescent,
944                OptimizationAlgorithm::RecursiveLeastSquares,
945                OptimizationAlgorithm::KalmanFilter,
946                OptimizationAlgorithm::NeuromorphicSpikes,
947                OptimizationAlgorithm::QuantumVariational,
948            ],
949            algorithm_performance: HashMap::new(),
950            context_features: Array1::zeros(32),
951            selection_network: NeuralSelector {
952                layers: vec![Array2::zeros((32, 16)), Array2::zeros((16, 8))],
953                activations: vec![Array1::zeros(16), Array1::zeros(8)],
954                learning_rate: 0.001,
955            },
956            exploration_factor: 0.1,
957        }
958    }
959
960    fn select_algorithm(
961        &mut self,
962        context: &Array1<f64>,
963        _metrics: &HashMap<String, f64>,
964    ) -> Result<OptimizationAlgorithm> {
965        // Placeholder for meta-learning selection
966        Ok(OptimizationAlgorithm::AdaptiveGradientDescent)
967    }
968}
969
970impl FederatedLearningCoordinator {
971    fn new(_paramsize: usize) -> Self {
972        Self {
973            local_model: Array1::zeros(_paramsize),
974            global_model: Array1::zeros(_paramsize),
975            peer_models: HashMap::new(),
976            communication_budget: 100,
977            privacy_params: DifferentialPrivacyParams {
978                epsilon: 1.0,
979                delta: 1e-5,
980                noise_scale: 0.1,
981            },
982            consensus_mechanism: ConsensusType::FederatedAveraging,
983        }
984    }
985
986    fn aggregate_update(
987        &mut self,
988        update1: &Array1<f64>,
989        _update2: &Array1<f64>,
990    ) -> Result<Array1<f64>> {
991        // Placeholder for federated aggregation
992        Ok(Array1::zeros(update1.len()))
993    }
994}
995
996impl SelfOrganizingMemoryHierarchy {
997    fn new() -> Self {
998        Self {
999            l1_cache: HashMap::new(),
1000            l2_cache: HashMap::new(),
1001            l3_cache: HashMap::new(),
1002            access_counters: HashMap::new(),
1003            replacement_policy: ReplacementPolicy::AdaptiveLRU,
1004            cache_sizes: [16, 64, 256],
1005        }
1006    }
1007
1008    fn consolidate_updates(&mut self, update: &Array1<f64>, context: &Array1<f64>) -> Result<()> {
1009        // Placeholder for memory consolidation
1010        Ok(())
1011    }
1012}
1013
1014impl AdvancedPerformanceTracker {
1015    fn new() -> Self {
1016        Self {
1017            metrics_history: VecDeque::with_capacity(1000),
1018            anomaly_detector: AnomalyDetectionSystem {
1019                statistical_thresholds: HashMap::new(),
1020                ml_detector: MLAnomalyDetector {
1021                    feature_extractor: Array2::zeros((32, 16)),
1022                    scoring_model: Array2::zeros((16, 1)),
1023                    threshold: 0.5,
1024                },
1025                ensemble_detectors: vec![
1026                    AnomalyDetectorType::IsolationForest,
1027                    AnomalyDetectorType::StatisticalControl,
1028                ],
1029            },
1030            predictive_model: PredictivePerformanceModel {
1031                forecaster: TimeSeriesForecaster {
1032                    recurrent_weights: Array2::zeros((32, 32)),
1033                    input_weights: Array2::zeros((16, 32)),
1034                    hidden_state: Array1::zeros(32),
1035                    cell_state: Array1::zeros(32),
1036                },
1037                performance_predictor: Array2::zeros((32, 1)),
1038                uncertainty_quantifier: UncertaintyModel {
1039                    epistemic_uncertainty: 0.1,
1040                    aleatoric_uncertainty: 0.05,
1041                    confidence_intervals: Array1::zeros(2),
1042                },
1043            },
1044            realtime_analytics: RealtimeAnalytics {
1045                streaming_stats: StreamingStatistics {
1046                    running_mean: 0.0,
1047                    running_variance: 0.0,
1048                    skewness: 0.0,
1049                    kurtosis: 0.0,
1050                    sample_count: 0,
1051                },
1052                dashboard_metrics: DashboardMetrics {
1053                    kpis: HashMap::new(),
1054                    visualization_data: HashMap::new(),
1055                    realtime_plots: Vec::new(),
1056                },
1057                alert_system: AlertSystem {
1058                    alert_rules: Vec::new(),
1059                    alert_history: VecDeque::new(),
1060                    notification_channels: vec![NotificationChannel::Console],
1061                },
1062            },
1063        }
1064    }
1065
1066    fn update_metrics(
1067        &mut self,
1068        parameters: &Array1<f64>,
1069        _data_point: &StreamingDataPoint,
1070        _time: Duration,
1071    ) -> Result<()> {
1072        // Placeholder for metrics update
1073        Ok(())
1074    }
1075
1076    fn get_current_metrics(&self) -> HashMap<String, f64> {
1077        // Placeholder for current metrics
1078        HashMap::new()
1079    }
1080
1081    fn get_recent_performance(&self) -> f64 {
1082        // Placeholder for recent performance
1083        1.0
1084    }
1085
1086    fn is_improving(&self) -> bool {
1087        // Placeholder for improvement detection
1088        true
1089    }
1090
1091    fn is_stagnant(&self) -> bool {
1092        // Placeholder for stagnation detection
1093        false
1094    }
1095
1096    fn is_oscillating(&self) -> bool {
1097        // Placeholder for oscillation detection
1098        false
1099    }
1100
1101    fn is_non_stationary(&self) -> bool {
1102        // Placeholder for non-stationarity detection
1103        false
1104    }
1105}
1106
1107/// Create advanced-adaptive streaming optimizer
1108#[allow(dead_code)]
1109pub fn create_advanced_adaptive_optimizer<T: StreamingObjective>(
1110    initial_parameters: Array1<f64>,
1111    objective: T,
1112    config: Option<StreamingConfig>,
1113) -> AdvancedAdaptiveStreamingOptimizer<T> {
1114    let config = config.unwrap_or_default();
1115    AdvancedAdaptiveStreamingOptimizer::new(initial_parameters, objective, config)
1116}
1117
1118#[cfg(test)]
1119mod tests {
1120    use super::*;
1121    use crate::streaming::{LinearRegressionObjective, StreamingDataPoint};
1122
1123    #[test]
1124    fn test_advanced_adaptive_creation() {
1125        let optimizer =
1126            create_advanced_adaptive_optimizer(Array1::zeros(2), LinearRegressionObjective, None);
1127
1128        assert_eq!(optimizer.parameters().len(), 2);
1129        assert_eq!(optimizer.stats().points_processed, 0);
1130    }
1131
1132    #[test]
1133    fn test_advanced_adaptive_update() {
1134        let mut optimizer =
1135            create_advanced_adaptive_optimizer(Array1::zeros(2), LinearRegressionObjective, None);
1136
1137        let data_point = StreamingDataPoint::new(Array1::from(vec![1.0, 2.0]), 3.0);
1138
1139        assert!(optimizer.update(&data_point).is_ok());
1140        assert_eq!(optimizer.stats().points_processed, 1);
1141    }
1142}
1143
1144#[allow(dead_code)]
1145pub fn placeholder() {
1146    // Placeholder function to prevent unused module warnings
1147}