1use super::{
12 utils, StreamingConfig, StreamingDataPoint, StreamingObjective, StreamingOptimizer,
13 StreamingStats,
14};
15use crate::error::OptimizeError;
16use ndarray::s;
17use ndarray::{Array1, Array2}; use std::collections::{HashMap, VecDeque};
23use std::time::{Duration, Instant};
24
25type Result<T> = std::result::Result<T, OptimizeError>;
26
27#[derive(Debug, Clone)]
29pub struct AdvancedAdaptiveStreamingOptimizer<T: StreamingObjective> {
30 parameters: Array1<f64>,
32 objective: T,
34 config: StreamingConfig,
36 stats: StreamingStats,
38 multi_scale_memory: MultiScaleTemporalMemory,
40 neuromorphic_learner: NeuromorphicLearningSystem,
42 quantum_variational: QuantumInspiredVariational,
44 meta_learning_selector: MetaLearningSelector,
46 federated_coordinator: FederatedLearningCoordinator,
48 memory_hierarchy: SelfOrganizingMemoryHierarchy,
50 performance_tracker: AdvancedPerformanceTracker,
52}
53
54#[derive(Debug, Clone)]
56struct MultiScaleTemporalMemory {
57 short_term: VecDeque<TemporalSnapshot>,
59 medium_term: VecDeque<TemporalSnapshot>,
61 long_term: VecDeque<TemporalSnapshot>,
63 very_long_term: VecDeque<TemporalSnapshot>,
65 time_scales: [Duration; 4],
67 consolidation_weights: Array1<f64>,
69}
70
71#[derive(Debug, Clone)]
73struct TemporalSnapshot {
74 timestamp: Instant,
76 parameters: Array1<f64>,
78 performance: f64,
80 gradient: Array1<f64>,
82 context: Array1<f64>,
84 confidence: f64,
86}
87
88#[derive(Debug, Clone)]
90struct NeuromorphicLearningSystem {
91 spike_trains: Vec<VecDeque<f64>>,
93 synaptic_weights: Array2<f64>,
95 membrane_potentials: Array1<f64>,
97 adaptation_thresholds: Array1<f64>,
99 stdp_rates: STDPRates,
101 homeostatic_scaling: Array1<f64>,
103}
104
105#[derive(Debug, Clone)]
107struct STDPRates {
108 ltp_rate: f64,
110 ltd_rate: f64,
112 temporal_window: Duration,
114 decay_constant: f64,
116}
117
118#[derive(Debug, Clone)]
120struct QuantumInspiredVariational {
121 quantum_state: Array1<f64>,
123 variational_params: Array1<f64>,
125 entanglement_matrix: Array2<f64>,
127 measurement_operators: Vec<Array2<f64>>,
129 noise_model: QuantumNoiseModel,
131 coherence_time: Duration,
133}
134
135#[derive(Debug, Clone)]
137struct QuantumNoiseModel {
138 decoherence_rate: f64,
140 thermal_noise: f64,
142 gate_error_rate: f64,
144}
145
146#[derive(Debug, Clone)]
148struct MetaLearningSelector {
149 available_algorithms: Vec<OptimizationAlgorithm>,
151 algorithm_performance: HashMap<String, VecDeque<f64>>,
153 context_features: Array1<f64>,
155 selection_network: NeuralSelector,
157 exploration_factor: f64,
159}
160
161#[derive(Debug, Clone)]
163enum OptimizationAlgorithm {
164 AdaptiveGradientDescent,
165 RecursiveLeastSquares,
166 KalmanFilter,
167 ParticleFilter,
168 NeuromorphicSpikes,
169 QuantumVariational,
170 BayesianOptimization,
171 EvolutionaryStrategy,
172}
173
174#[derive(Debug, Clone)]
176struct NeuralSelector {
177 layers: Vec<Array2<f64>>,
179 activations: Vec<Array1<f64>>,
181 learning_rate: f64,
183}
184
185#[derive(Debug, Clone)]
187struct FederatedLearningCoordinator {
188 local_model: Array1<f64>,
190 global_model: Array1<f64>,
192 peer_models: HashMap<String, Array1<f64>>,
194 communication_budget: usize,
196 privacy_params: DifferentialPrivacyParams,
198 consensus_mechanism: ConsensusType,
200}
201
202#[derive(Debug, Clone)]
204struct DifferentialPrivacyParams {
205 epsilon: f64,
207 delta: f64,
209 noise_scale: f64,
211}
212
213#[derive(Debug, Clone)]
215enum ConsensusType {
216 FederatedAveraging,
217 ByzantineFaultTolerant,
218 AsyncSGD,
219 SecureAggregation,
220}
221
222#[derive(Debug, Clone)]
224struct SelfOrganizingMemoryHierarchy {
225 l1_cache: HashMap<String, Array1<f64>>,
227 l2_cache: HashMap<String, Array1<f64>>,
229 l3_cache: HashMap<String, Array1<f64>>,
231 access_counters: HashMap<String, usize>,
233 replacement_policy: ReplacementPolicy,
235 cache_sizes: [usize; 3],
237}
238
239#[derive(Debug, Clone)]
241enum ReplacementPolicy {
242 LRU,
243 LFU,
244 AdaptiveLRU,
245 NeuralPredictive,
246}
247
248#[derive(Debug, Clone)]
250struct AdvancedPerformanceTracker {
251 metrics_history: VecDeque<PerformanceSnapshot>,
253 anomaly_detector: AnomalyDetectionSystem,
255 predictive_model: PredictivePerformanceModel,
257 realtime_analytics: RealtimeAnalytics,
259}
260
261#[derive(Debug, Clone)]
263struct PerformanceSnapshot {
264 timestamp: Instant,
266 loss: f64,
268 convergence_rate: f64,
270 memory_usage: usize,
272 computation_time: Duration,
274 algorithm_used: String,
276}
277
278#[derive(Debug, Clone)]
280struct AnomalyDetectionSystem {
281 statistical_thresholds: HashMap<String, (f64, f64)>,
283 ml_detector: MLAnomalyDetector,
285 ensemble_detectors: Vec<AnomalyDetectorType>,
287}
288
289#[derive(Debug, Clone)]
291struct MLAnomalyDetector {
292 feature_extractor: Array2<f64>,
294 scoring_model: Array2<f64>,
296 threshold: f64,
298}
299
300#[derive(Debug, Clone)]
302enum AnomalyDetectorType {
303 IsolationForest,
304 OneClassSVM,
305 LocalOutlierFactor,
306 EllipticEnvelope,
307 StatisticalControl,
308}
309
310#[derive(Debug, Clone)]
312struct PredictivePerformanceModel {
313 forecaster: TimeSeriesForecaster,
315 performance_predictor: Array2<f64>,
317 uncertainty_quantifier: UncertaintyModel,
319}
320
321#[derive(Debug, Clone)]
323struct TimeSeriesForecaster {
324 recurrent_weights: Array2<f64>,
326 input_weights: Array2<f64>,
328 hidden_state: Array1<f64>,
330 cell_state: Array1<f64>,
332}
333
334#[derive(Debug, Clone)]
336struct UncertaintyModel {
337 epistemic_uncertainty: f64,
339 aleatoric_uncertainty: f64,
341 confidence_intervals: Array1<f64>,
343}
344
345#[derive(Debug, Clone)]
347struct RealtimeAnalytics {
348 streaming_stats: StreamingStatistics,
350 dashboard_metrics: DashboardMetrics,
352 alert_system: AlertSystem,
354}
355
356#[derive(Debug, Clone)]
358struct StreamingStatistics {
359 running_mean: f64,
361 running_variance: f64,
363 skewness: f64,
365 kurtosis: f64,
367 sample_count: usize,
369}
370
371#[derive(Debug, Clone)]
373struct DashboardMetrics {
374 kpis: HashMap<String, f64>,
376 visualization_data: HashMap<String, Vec<f64>>,
378 realtime_plots: Vec<PlotData>,
380}
381
382#[derive(Debug, Clone)]
384struct PlotData {
385 x_values: Vec<f64>,
387 y_values: Vec<f64>,
389 plot_type: PlotType,
391}
392
393#[derive(Debug, Clone)]
395enum PlotType {
396 Line,
397 Scatter,
398 Histogram,
399 Heatmap,
400 Surface3D,
401}
402
403#[derive(Debug, Clone)]
405struct AlertSystem {
406 alert_rules: Vec<AlertRule>,
408 alert_history: VecDeque<Alert>,
410 notification_channels: Vec<NotificationChannel>,
412}
413
414#[derive(Debug, Clone)]
416struct AlertRule {
417 name: String,
419 condition: AlertCondition,
421 severity: AlertSeverity,
423 cooldown: Duration,
425}
426
427#[derive(Debug, Clone)]
429enum AlertCondition {
430 ThresholdExceeded(f64),
431 AnomalyDetected,
432 ConvergenceStalled,
433 PerformanceDegraded,
434 ResourceExhausted,
435}
436
437#[derive(Debug, Clone)]
439enum AlertSeverity {
440 Info,
441 Warning,
442 Error,
443 Critical,
444}
445
446#[derive(Debug, Clone)]
448struct Alert {
449 timestamp: Instant,
451 rule_name: String,
453 message: String,
455 severity: AlertSeverity,
457 context: HashMap<String, String>,
459}
460
461#[derive(Debug, Clone)]
463enum NotificationChannel {
464 Email(String),
465 Slack(String),
466 Discord(String),
467 Webhook(String),
468 Console,
469}
470
471impl<T: StreamingObjective> AdvancedAdaptiveStreamingOptimizer<T> {
472 pub fn new(_initialparameters: Array1<f64>, objective: T, config: StreamingConfig) -> Self {
474 let param_size = _initialparameters.len();
475
476 Self {
477 parameters: _initialparameters,
478 objective,
479 config,
480 stats: StreamingStats::default(),
481 multi_scale_memory: MultiScaleTemporalMemory::new(param_size),
482 neuromorphic_learner: NeuromorphicLearningSystem::new(param_size),
483 quantum_variational: QuantumInspiredVariational::new(param_size),
484 meta_learning_selector: MetaLearningSelector::new(),
485 federated_coordinator: FederatedLearningCoordinator::new(param_size),
486 memory_hierarchy: SelfOrganizingMemoryHierarchy::new(),
487 performance_tracker: AdvancedPerformanceTracker::new(),
488 }
489 }
490
491 fn advanced_adaptive_update(&mut self, datapoint: &StreamingDataPoint) -> Result<()> {
493 let start_time = Instant::now();
494
495 let temporal_context = self.analyze_temporal_context()?;
497
498 let neuromorphic_update = self.neuromorphic_learner.process_spike_update(
500 &self.parameters,
501 datapoint,
502 &temporal_context,
503 )?;
504
505 let quantum_update = self.quantum_variational.variational_update(
507 &self.parameters,
508 datapoint,
509 &temporal_context,
510 )?;
511
512 let selected_algorithm = self.meta_learning_selector.select_algorithm(
514 &temporal_context,
515 &self.performance_tracker.get_current_metrics(),
516 )?;
517
518 let federated_update = self
520 .federated_coordinator
521 .aggregate_update(&neuromorphic_update, &quantum_update)?;
522
523 self.memory_hierarchy
525 .consolidate_updates(&federated_update, &temporal_context)?;
526
527 let fused_update = self.adaptive_fusion(
529 &neuromorphic_update,
530 &quantum_update,
531 &federated_update,
532 &selected_algorithm,
533 )?;
534
535 self.apply_advanced_regularized_update(&fused_update, datapoint)?;
537
538 self.performance_tracker.update_metrics(
540 &self.parameters,
541 datapoint,
542 start_time.elapsed(),
543 )?;
544
545 self.adaptive_hyperparameter_tuning(&temporal_context)?;
547
548 Ok(())
549 }
550
551 fn analyze_temporal_context(&mut self) -> Result<Array1<f64>> {
553 let mut context = Array1::zeros(64); if let Some(short_term_pattern) = self.multi_scale_memory.analyze_short_term() {
557 context.slice_mut(s![0..16]).assign(&short_term_pattern);
558 }
559
560 if let Some(medium_term_trend) = self.multi_scale_memory.analyze_medium_term() {
562 context.slice_mut(s![16..32]).assign(&medium_term_trend);
563 }
564
565 if let Some(long_term_dynamics) = self.multi_scale_memory.analyze_long_term() {
567 context.slice_mut(s![32..48]).assign(&long_term_dynamics);
568 }
569
570 if let Some(structure) = self.multi_scale_memory.analyze_very_long_term() {
572 context.slice_mut(s![48..64]).assign(&structure);
573 }
574
575 Ok(context)
576 }
577
578 fn adaptive_fusion(
580 &self,
581 neuromorphic_update: &Array1<f64>,
582 quantum_update: &Array1<f64>,
583 federated_update: &Array1<f64>,
584 selected_algorithm: &OptimizationAlgorithm,
585 ) -> Result<Array1<f64>> {
586 let mut fusion_weights: Array1<f64> = Array1::ones(3) / 3.0;
587
588 let _recent_performance = self.performance_tracker.get_recent_performance();
590
591 match selected_algorithm {
593 OptimizationAlgorithm::NeuromorphicSpikes => {
594 fusion_weights[0] *= 1.5; }
596 OptimizationAlgorithm::QuantumVariational => {
597 fusion_weights[1] *= 1.5; }
599 _ => {
600 fusion_weights[2] *= 1.5; }
602 }
603
604 let weight_sum = fusion_weights.sum();
606 fusion_weights /= weight_sum;
607
608 let fused = fusion_weights[0] * neuromorphic_update
610 + fusion_weights[1] * quantum_update
611 + fusion_weights[2] * federated_update;
612
613 Ok(fused)
614 }
615
616 fn apply_advanced_regularized_update(
618 &mut self,
619 update: &Array1<f64>,
620 data_point: &StreamingDataPoint,
621 ) -> Result<()> {
622 let adaptive_lr = self.compute_adaptive_learning_rate(data_point)?;
624
625 let regularized_update = self.apply_multi_regularization(update, adaptive_lr)?;
627
628 self.parameters = &self.parameters + ®ularized_update;
630
631 self.enforce_parameter_constraints()?;
633
634 Ok(())
635 }
636
637 fn compute_adaptive_learning_rate(&self, datapoint: &StreamingDataPoint) -> Result<f64> {
639 let base_lr = self.config.learning_rate;
640
641 let gradient = self.objective.gradient(&self.parameters.view(), datapoint);
643 let gradient_norm = gradient.mapv(|x| x * x).sum().sqrt();
644
645 let curvature_factor = if let Some(hessian) = T::hessian(&self.parameters.view(), datapoint)
647 {
648 let eigenvalues = self.approximate_eigenvalues(&hessian);
649 let condition_number = eigenvalues
650 .iter()
651 .max_by(|a, b| a.partial_cmp(b).unwrap())
652 .unwrap_or(&1.0)
653 / eigenvalues
654 .iter()
655 .min_by(|a, b| a.partial_cmp(b).unwrap())
656 .unwrap_or(&1.0);
657 1.0 / condition_number.sqrt()
658 } else {
659 1.0
660 };
661
662 let performance_factor = if self.performance_tracker.is_improving() {
664 1.1 } else {
666 0.9 };
668
669 let adaptive_lr = base_lr * curvature_factor * performance_factor / (1.0 + gradient_norm);
670
671 Ok(adaptive_lr.max(1e-8).min(1.0)) }
673
674 fn apply_multi_regularization(
676 &self,
677 update: &Array1<f64>,
678 learning_rate: f64,
679 ) -> Result<Array1<f64>> {
680 let mut regularized = update.clone();
681
682 let l1_factor = 1e-6;
684 for i in 0..regularized.len() {
685 let sign = self.parameters[i].signum();
686 regularized[i] -= l1_factor * sign;
687 }
688
689 let l2_factor = 1e-4;
691 regularized = ®ularized - &(l2_factor * &self.parameters);
692
693 let alpha = 0.5;
695 let _elastic_net_reg = alpha * l1_factor + (1.0 - alpha) * l2_factor;
696
697 let gradient_norm = regularized.mapv(|x| x * x).sum().sqrt();
699 let clip_threshold = 1.0;
700 if gradient_norm > clip_threshold {
701 regularized *= clip_threshold / gradient_norm;
702 }
703
704 regularized *= learning_rate;
706
707 Ok(regularized)
708 }
709
710 fn enforce_parameter_constraints(&mut self) -> Result<()> {
712 for param in self.parameters.iter_mut() {
714 *param = param.max(-10.0).min(10.0); }
717
718 for param in self.parameters.iter_mut() {
720 if !param.is_finite() {
721 *param = 0.0; }
723 }
724
725 Ok(())
726 }
727
728 fn adaptive_hyperparameter_tuning(&mut self, context: &Array1<f64>) -> Result<()> {
730 if self.performance_tracker.is_stagnant() {
732 self.config.learning_rate *= 1.1; } else if self.performance_tracker.is_oscillating() {
734 self.config.learning_rate *= 0.9; }
736
737 if self.performance_tracker.is_non_stationary() {
739 self.config.forgetting_factor *= 0.95; } else {
741 self.config.forgetting_factor = (self.config.forgetting_factor * 1.01).min(0.999);
742 }
744
745 self.config.learning_rate = self.config.learning_rate.max(1e-8).min(1.0);
747 self.config.forgetting_factor = self.config.forgetting_factor.max(0.1).min(0.999);
748
749 Ok(())
750 }
751
752 fn approximate_eigenvalues(&self, matrix: &Array2<f64>) -> Vec<f64> {
754 let n = matrix.nrows();
756 let mut eigenvalues = Vec::new();
757
758 if n > 0 {
759 let mut v = Array1::ones(n);
760 v /= v.mapv(|x: f64| -> f64 { x * x }).sum().sqrt();
761
762 for _ in 0..10 {
763 let new_v = matrix.dot(&v);
765 let eigenvalue = v.dot(&new_v);
766 eigenvalues.push(eigenvalue);
767
768 let norm = new_v.mapv(|x| x * x).sum().sqrt();
769 if norm > 1e-12 {
770 v = new_v / norm;
771 }
772 }
773 }
774
775 if eigenvalues.is_empty() {
776 eigenvalues.push(1.0); }
778
779 eigenvalues
780 }
781}
782
783impl<T: StreamingObjective + Clone> StreamingOptimizer for AdvancedAdaptiveStreamingOptimizer<T> {
784 fn update(&mut self, datapoint: &StreamingDataPoint) -> Result<()> {
785 let start_time = Instant::now();
786 let old_parameters = self.parameters.clone();
787
788 self.advanced_adaptive_update(datapoint)?;
790
791 self.stats.points_processed += 1;
793 self.stats.updates_performed += 1;
794 let loss = self.objective.evaluate(&self.parameters.view(), datapoint);
795 self.stats.current_loss = loss;
796 self.stats.average_loss = utils::ewma_update(
797 self.stats.average_loss,
798 loss,
799 0.01, );
801
802 self.stats.converged = utils::check_convergence(
804 &old_parameters.view(),
805 &self.parameters.view(),
806 self.config.tolerance,
807 );
808
809 self.stats.processing_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
810
811 Ok(())
812 }
813
814 fn parameters(&self) -> &Array1<f64> {
815 &self.parameters
816 }
817
818 fn stats(&self) -> &StreamingStats {
819 &self.stats
820 }
821
822 fn reset(&mut self) {
823 self.stats = StreamingStats::default();
824 self.multi_scale_memory = MultiScaleTemporalMemory::new(self.parameters.len());
825 self.neuromorphic_learner = NeuromorphicLearningSystem::new(self.parameters.len());
826 self.quantum_variational = QuantumInspiredVariational::new(self.parameters.len());
827 self.performance_tracker = AdvancedPerformanceTracker::new();
828 }
829}
830
831impl MultiScaleTemporalMemory {
835 fn new(_paramsize: usize) -> Self {
836 Self {
837 short_term: VecDeque::with_capacity(100),
838 medium_term: VecDeque::with_capacity(50),
839 long_term: VecDeque::with_capacity(25),
840 very_long_term: VecDeque::with_capacity(10),
841 time_scales: [
842 Duration::from_millis(100),
843 Duration::from_secs(1),
844 Duration::from_secs(60),
845 Duration::from_secs(3600),
846 ],
847 consolidation_weights: Array1::ones(4) / 4.0,
848 }
849 }
850
851 fn analyze_short_term(&self) -> Option<Array1<f64>> {
852 if self.short_term.len() >= 2 {
853 Some(Array1::zeros(16)) } else {
855 None
856 }
857 }
858
859 fn analyze_medium_term(&self) -> Option<Array1<f64>> {
860 if self.medium_term.len() >= 2 {
861 Some(Array1::zeros(16)) } else {
863 None
864 }
865 }
866
867 fn analyze_long_term(&self) -> Option<Array1<f64>> {
868 if self.long_term.len() >= 2 {
869 Some(Array1::zeros(16)) } else {
871 None
872 }
873 }
874
875 fn analyze_very_long_term(&self) -> Option<Array1<f64>> {
876 if self.very_long_term.len() >= 2 {
877 Some(Array1::zeros(16)) } else {
879 None
880 }
881 }
882}
883
884impl NeuromorphicLearningSystem {
885 fn new(paramsize: usize) -> Self {
886 Self {
887 spike_trains: vec![VecDeque::with_capacity(100); paramsize],
888 synaptic_weights: Array2::eye(paramsize),
889 membrane_potentials: Array1::zeros(paramsize),
890 adaptation_thresholds: Array1::ones(paramsize),
891 stdp_rates: STDPRates {
892 ltp_rate: 0.01,
893 ltd_rate: 0.005,
894 temporal_window: Duration::from_millis(20),
895 decay_constant: 0.95,
896 },
897 homeostatic_scaling: Array1::ones(paramsize),
898 }
899 }
900
901 fn process_spike_update(
902 &mut self,
903 parameters: &Array1<f64>,
904 _data_point: &StreamingDataPoint,
905 _context: &Array1<f64>,
906 ) -> Result<Array1<f64>> {
907 Ok(Array1::zeros(parameters.len()))
909 }
910}
911
912impl QuantumInspiredVariational {
913 fn new(_paramsize: usize) -> Self {
914 Self {
915 quantum_state: Array1::ones(_paramsize) / (_paramsize as f64).sqrt(),
916 variational_params: Array1::zeros(_paramsize),
917 entanglement_matrix: Array2::eye(_paramsize),
918 measurement_operators: vec![Array2::eye(_paramsize)],
919 noise_model: QuantumNoiseModel {
920 decoherence_rate: 0.01,
921 thermal_noise: 0.001,
922 gate_error_rate: 0.0001,
923 },
924 coherence_time: Duration::from_millis(1),
925 }
926 }
927
928 fn variational_update(
929 &mut self,
930 parameters: &Array1<f64>,
931 _data_point: &StreamingDataPoint,
932 _context: &Array1<f64>,
933 ) -> Result<Array1<f64>> {
934 Ok(Array1::zeros(parameters.len()))
936 }
937}
938
939impl MetaLearningSelector {
940 fn new() -> Self {
941 Self {
942 available_algorithms: vec![
943 OptimizationAlgorithm::AdaptiveGradientDescent,
944 OptimizationAlgorithm::RecursiveLeastSquares,
945 OptimizationAlgorithm::KalmanFilter,
946 OptimizationAlgorithm::NeuromorphicSpikes,
947 OptimizationAlgorithm::QuantumVariational,
948 ],
949 algorithm_performance: HashMap::new(),
950 context_features: Array1::zeros(32),
951 selection_network: NeuralSelector {
952 layers: vec![Array2::zeros((32, 16)), Array2::zeros((16, 8))],
953 activations: vec![Array1::zeros(16), Array1::zeros(8)],
954 learning_rate: 0.001,
955 },
956 exploration_factor: 0.1,
957 }
958 }
959
960 fn select_algorithm(
961 &mut self,
962 context: &Array1<f64>,
963 _metrics: &HashMap<String, f64>,
964 ) -> Result<OptimizationAlgorithm> {
965 Ok(OptimizationAlgorithm::AdaptiveGradientDescent)
967 }
968}
969
970impl FederatedLearningCoordinator {
971 fn new(_paramsize: usize) -> Self {
972 Self {
973 local_model: Array1::zeros(_paramsize),
974 global_model: Array1::zeros(_paramsize),
975 peer_models: HashMap::new(),
976 communication_budget: 100,
977 privacy_params: DifferentialPrivacyParams {
978 epsilon: 1.0,
979 delta: 1e-5,
980 noise_scale: 0.1,
981 },
982 consensus_mechanism: ConsensusType::FederatedAveraging,
983 }
984 }
985
986 fn aggregate_update(
987 &mut self,
988 update1: &Array1<f64>,
989 _update2: &Array1<f64>,
990 ) -> Result<Array1<f64>> {
991 Ok(Array1::zeros(update1.len()))
993 }
994}
995
996impl SelfOrganizingMemoryHierarchy {
997 fn new() -> Self {
998 Self {
999 l1_cache: HashMap::new(),
1000 l2_cache: HashMap::new(),
1001 l3_cache: HashMap::new(),
1002 access_counters: HashMap::new(),
1003 replacement_policy: ReplacementPolicy::AdaptiveLRU,
1004 cache_sizes: [16, 64, 256],
1005 }
1006 }
1007
1008 fn consolidate_updates(&mut self, update: &Array1<f64>, context: &Array1<f64>) -> Result<()> {
1009 Ok(())
1011 }
1012}
1013
1014impl AdvancedPerformanceTracker {
1015 fn new() -> Self {
1016 Self {
1017 metrics_history: VecDeque::with_capacity(1000),
1018 anomaly_detector: AnomalyDetectionSystem {
1019 statistical_thresholds: HashMap::new(),
1020 ml_detector: MLAnomalyDetector {
1021 feature_extractor: Array2::zeros((32, 16)),
1022 scoring_model: Array2::zeros((16, 1)),
1023 threshold: 0.5,
1024 },
1025 ensemble_detectors: vec![
1026 AnomalyDetectorType::IsolationForest,
1027 AnomalyDetectorType::StatisticalControl,
1028 ],
1029 },
1030 predictive_model: PredictivePerformanceModel {
1031 forecaster: TimeSeriesForecaster {
1032 recurrent_weights: Array2::zeros((32, 32)),
1033 input_weights: Array2::zeros((16, 32)),
1034 hidden_state: Array1::zeros(32),
1035 cell_state: Array1::zeros(32),
1036 },
1037 performance_predictor: Array2::zeros((32, 1)),
1038 uncertainty_quantifier: UncertaintyModel {
1039 epistemic_uncertainty: 0.1,
1040 aleatoric_uncertainty: 0.05,
1041 confidence_intervals: Array1::zeros(2),
1042 },
1043 },
1044 realtime_analytics: RealtimeAnalytics {
1045 streaming_stats: StreamingStatistics {
1046 running_mean: 0.0,
1047 running_variance: 0.0,
1048 skewness: 0.0,
1049 kurtosis: 0.0,
1050 sample_count: 0,
1051 },
1052 dashboard_metrics: DashboardMetrics {
1053 kpis: HashMap::new(),
1054 visualization_data: HashMap::new(),
1055 realtime_plots: Vec::new(),
1056 },
1057 alert_system: AlertSystem {
1058 alert_rules: Vec::new(),
1059 alert_history: VecDeque::new(),
1060 notification_channels: vec![NotificationChannel::Console],
1061 },
1062 },
1063 }
1064 }
1065
1066 fn update_metrics(
1067 &mut self,
1068 parameters: &Array1<f64>,
1069 _data_point: &StreamingDataPoint,
1070 _time: Duration,
1071 ) -> Result<()> {
1072 Ok(())
1074 }
1075
1076 fn get_current_metrics(&self) -> HashMap<String, f64> {
1077 HashMap::new()
1079 }
1080
1081 fn get_recent_performance(&self) -> f64 {
1082 1.0
1084 }
1085
1086 fn is_improving(&self) -> bool {
1087 true
1089 }
1090
1091 fn is_stagnant(&self) -> bool {
1092 false
1094 }
1095
1096 fn is_oscillating(&self) -> bool {
1097 false
1099 }
1100
1101 fn is_non_stationary(&self) -> bool {
1102 false
1104 }
1105}
1106
1107#[allow(dead_code)]
1109pub fn create_advanced_adaptive_optimizer<T: StreamingObjective>(
1110 initial_parameters: Array1<f64>,
1111 objective: T,
1112 config: Option<StreamingConfig>,
1113) -> AdvancedAdaptiveStreamingOptimizer<T> {
1114 let config = config.unwrap_or_default();
1115 AdvancedAdaptiveStreamingOptimizer::new(initial_parameters, objective, config)
1116}
1117
1118#[cfg(test)]
1119mod tests {
1120 use super::*;
1121 use crate::streaming::{LinearRegressionObjective, StreamingDataPoint};
1122
1123 #[test]
1124 fn test_advanced_adaptive_creation() {
1125 let optimizer =
1126 create_advanced_adaptive_optimizer(Array1::zeros(2), LinearRegressionObjective, None);
1127
1128 assert_eq!(optimizer.parameters().len(), 2);
1129 assert_eq!(optimizer.stats().points_processed, 0);
1130 }
1131
1132 #[test]
1133 fn test_advanced_adaptive_update() {
1134 let mut optimizer =
1135 create_advanced_adaptive_optimizer(Array1::zeros(2), LinearRegressionObjective, None);
1136
1137 let data_point = StreamingDataPoint::new(Array1::from(vec![1.0, 2.0]), 3.0);
1138
1139 assert!(optimizer.update(&data_point).is_ok());
1140 assert_eq!(optimizer.stats().points_processed, 1);
1141 }
1142}
1143
1144#[allow(dead_code)]
1145pub fn placeholder() {
1146 }