scirs2_optimize/neuromorphic/
mod.rs

1//! Neuromorphic Optimization Module
2//!
3//! This module implements optimization algorithms inspired by neuromorphic computing
4//! and neural network architectures. These methods leverage principles from
5//! biological neural networks and neuromorphic hardware for efficient optimization.
6//!
7//! # Key Features
8//!
9//! - **Spiking Neural Network Optimization**: Event-driven optimization using spike trains
10//! - **Memristive Optimization**: Algorithms that mimic memristor behavior for adaptive optimization
11//! - **Spike-Timing Dependent Plasticity (STDP)**: Learning rules based on spike timing
12//! - **Neuromorphic Gradient Descent**: Event-driven gradient computation
13//! - **Liquid State Machines**: Reservoir computing for optimization
14//! - **Neural ODE Optimization**: Continuous-time neural network optimization
15//!
16//! # Applications
17//!
18//! - Low-power optimization for edge devices
19//! - Real-time adaptive control systems
20//! - Bio-inspired machine learning
21//! - Neuromorphic hardware optimization
22//! - Event-driven optimization problems
23
24use crate::error::OptimizeResult;
25use crate::result::OptimizeResults;
26use ndarray::{Array1, Array2, ArrayView1};
27use rand::Rng;
28use scirs2_core::error::CoreResult as Result;
29
30pub mod event_driven;
31pub mod liquid_state_machines;
32pub mod memristive_optimization;
33pub mod neural_ode_optimization;
34pub mod spiking_networks;
35pub mod stdp_learning;
36
37// Use glob re-exports with allow for ambiguous names
38#[allow(ambiguous_glob_reexports)]
39pub use event_driven::*;
40#[allow(ambiguous_glob_reexports)]
41pub use liquid_state_machines::*;
42#[allow(ambiguous_glob_reexports)]
43pub use memristive_optimization::*;
44#[allow(ambiguous_glob_reexports)]
45pub use neural_ode_optimization::*;
46#[allow(ambiguous_glob_reexports)]
47pub use spiking_networks::*;
48#[allow(ambiguous_glob_reexports)]
49pub use stdp_learning::*;
50
51/// Configuration for neuromorphic optimization algorithms
52#[derive(Debug, Clone)]
53pub struct NeuromorphicConfig {
54    /// Time step for discrete-time simulations
55    pub dt: f64,
56    /// Total simulation time
57    pub total_time: f64,
58    /// Number of neurons/nodes in the network
59    pub num_neurons: usize,
60    /// Spike threshold for spiking neurons
61    pub spike_threshold: f64,
62    /// Refractory period after spike
63    pub refractory_period: f64,
64    /// Learning rate for synaptic plasticity
65    pub learning_rate: f64,
66    /// Decay rate for membrane potential
67    pub membrane_decay: f64,
68    /// Noise level for stochastic processes
69    pub noise_level: f64,
70    /// Whether to use event-driven simulation
71    pub event_driven: bool,
72}
73
74impl Default for NeuromorphicConfig {
75    fn default() -> Self {
76        Self {
77            dt: 0.001,                // 1ms time step
78            total_time: 1.0,          // 1 second simulation
79            num_neurons: 100,         // 100 neurons
80            spike_threshold: 1.0,     // Normalized threshold
81            refractory_period: 0.002, // 2ms refractory period
82            learning_rate: 0.01,
83            membrane_decay: 0.95, // Exponential decay factor
84            noise_level: 0.01,
85            event_driven: true,
86        }
87    }
88}
89
90/// Spike event in neuromorphic simulation
91#[derive(Debug, Clone, Copy)]
92pub struct SpikeEvent {
93    /// Time of the spike
94    pub time: f64,
95    /// ID of the neuron that spiked
96    pub neuron_id: usize,
97    /// Strength/weight of the spike
98    pub weight: f64,
99}
100
101/// State of a neuromorphic neuron
102#[derive(Debug, Clone)]
103pub struct NeuronState {
104    /// Membrane potential
105    pub potential: f64,
106    /// Last spike time
107    pub last_spike_time: Option<f64>,
108    /// Synaptic weights (connections to other neurons)
109    pub weights: Array1<f64>,
110    /// Current input current
111    pub input_current: f64,
112    /// Adaptation variable (for adaptive neurons)
113    pub adaptation: f64,
114}
115
116impl NeuronState {
117    /// Create a new neuron state
118    pub fn new(num_connections: usize) -> Self {
119        Self {
120            potential: 0.0,
121            last_spike_time: None,
122            weights: Array1::zeros(num_connections),
123            input_current: 0.0,
124            adaptation: 0.0,
125        }
126    }
127
128    /// Check if neuron is in refractory period
129    pub fn is_refractory(&self, current_time: f64, refractory_period: f64) -> bool {
130        if let Some(last_spike) = self.last_spike_time {
131            current_time - last_spike < refractory_period
132        } else {
133            false
134        }
135    }
136
137    /// Update membrane potential (integrate-and-fire dynamics)
138    pub fn update_potential(&mut self, dt: f64, decay: f64, input: f64) {
139        if !self.is_refractory(0.0, 0.0) {
140            // Simplified check
141            self.potential = self.potential * decay + input * dt;
142        }
143    }
144
145    /// Check if neuron should spike
146    pub fn should_spike(&self, threshold: f64) -> bool {
147        self.potential >= threshold
148    }
149
150    /// Fire a spike (reset potential and record time)
151    pub fn fire_spike(&mut self, time: f64) {
152        self.potential = 0.0; // Reset potential
153        self.last_spike_time = Some(time);
154    }
155}
156
157/// Neuromorphic optimization network
158#[derive(Debug, Clone)]
159pub struct NeuromorphicNetwork {
160    /// Network configuration
161    config: NeuromorphicConfig,
162    /// States of all neurons
163    neurons: Vec<NeuronState>,
164    /// Connectivity matrix (which neurons connect to which)
165    connectivity: Array2<f64>,
166    /// Current simulation time
167    current_time: f64,
168    /// Spike events queue for event-driven simulation
169    spike_queue: Vec<SpikeEvent>,
170    /// Objective function value history
171    objective_history: Vec<f64>,
172    /// Current parameter estimates
173    parameters: Array1<f64>,
174}
175
176impl NeuromorphicNetwork {
177    /// Create a new neuromorphic network
178    pub fn new(config: NeuromorphicConfig, num_parameters: usize) -> Self {
179        let mut neurons = Vec::with_capacity(config.num_neurons);
180        for _ in 0..config.num_neurons {
181            neurons.push(NeuronState::new(config.num_neurons));
182        }
183
184        // Initialize random connectivity
185        let mut connectivity = Array2::zeros((config.num_neurons, config.num_neurons));
186        for i in 0..config.num_neurons {
187            for j in 0..config.num_neurons {
188                if i != j {
189                    // Random connection strength
190                    connectivity[[i, j]] = rand::rng().random_range(-0.05..0.05);
191                }
192            }
193        }
194
195        Self {
196            config,
197            neurons,
198            connectivity,
199            current_time: 0.0,
200            spike_queue: Vec::new(),
201            objective_history: Vec::new(),
202            parameters: Array1::zeros(num_parameters),
203        }
204    }
205
206    /// Encode parameters as neural activity
207    pub fn encode_parameters(&mut self, parameters: &ArrayView1<f64>) {
208        let n_params = parameters.len();
209        let neurons_per_param = self.config.num_neurons / n_params;
210
211        for (i, &param) in parameters.iter().enumerate() {
212            let start_idx = i * neurons_per_param;
213            let end_idx = ((i + 1) * neurons_per_param).min(self.config.num_neurons);
214
215            // Rate coding: parameter value determines firing rate
216            let firing_rate = (param + 1.0) * 10.0; // Scale to reasonable firing rate
217
218            for j in start_idx..end_idx {
219                // Inject current proportional to desired firing rate
220                self.neurons[j].input_current = firing_rate * 0.01;
221            }
222        }
223    }
224
225    /// Decode parameters from neural activity
226    pub fn decode_parameters(&self) -> Array1<f64> {
227        let n_params = self.parameters.len();
228        let neurons_per_param = self.config.num_neurons / n_params;
229        let mut decoded = Array1::zeros(n_params);
230
231        for i in 0..n_params {
232            let start_idx = i * neurons_per_param;
233            let end_idx = ((i + 1) * neurons_per_param).min(self.config.num_neurons);
234
235            // Average membrane potential as parameter estimate
236            let mut sum = 0.0;
237            for j in start_idx..end_idx {
238                sum += self.neurons[j].potential;
239            }
240
241            if end_idx > start_idx {
242                decoded[i] = sum / (end_idx - start_idx) as f64;
243            }
244        }
245
246        decoded
247    }
248
249    /// Simulate one time step
250    pub fn simulate_step(&mut self, objective_value: f64) -> Result<()> {
251        // Process spike queue for event-driven simulation
252        if self.config.event_driven {
253            self.process_spike_events()?;
254        }
255
256        // Update all neurons
257        for i in 0..self.config.num_neurons {
258            // Calculate synaptic input from other neurons
259            let mut synaptic_input = 0.0;
260            for j in 0..self.config.num_neurons {
261                if i != j {
262                    synaptic_input += self.connectivity[[j, i]] * self.neurons[j].potential;
263                }
264            }
265
266            // Add external input (objective-based feedback)
267            let external_input = self.compute_external_input(i, objective_value);
268            let total_input = synaptic_input + external_input + self.neurons[i].input_current;
269
270            // Update membrane potential
271            self.neurons[i].update_potential(
272                self.config.dt,
273                self.config.membrane_decay,
274                total_input,
275            );
276
277            // Add noise
278            if self.config.noise_level > 0.0 {
279                let noise =
280                    rand::rng().random_range(-self.config.noise_level..self.config.noise_level);
281                self.neurons[i].potential += noise;
282            }
283
284            // Check for spike
285            if self.neurons[i].should_spike(self.config.spike_threshold)
286                && !self.neurons[i].is_refractory(self.current_time, self.config.refractory_period)
287            {
288                self.neurons[i].fire_spike(self.current_time);
289
290                // Add spike event to queue
291                self.spike_queue.push(SpikeEvent {
292                    time: self.current_time,
293                    neuron_id: i,
294                    weight: 1.0,
295                });
296            }
297        }
298
299        // Update connectivity based on STDP-like rules
300        self.update_connectivity(objective_value)?;
301
302        // Update time
303        self.current_time += self.config.dt;
304
305        // Store objective value
306        self.objective_history.push(objective_value);
307
308        Ok(())
309    }
310
311    /// Process spike events for event-driven dynamics
312    fn process_spike_events(&mut self) -> Result<()> {
313        // Sort spike events by time
314        self.spike_queue
315            .sort_by(|a, b| a.time.partial_cmp(&b.time).unwrap());
316
317        // Process events that should have occurred by now
318        while let Some(event) = self.spike_queue.first() {
319            if event.time <= self.current_time {
320                let event = self.spike_queue.remove(0);
321                self.process_spike_event(event)?;
322            } else {
323                break;
324            }
325        }
326
327        Ok(())
328    }
329
330    /// Process individual spike event
331    fn process_spike_event(&mut self, event: SpikeEvent) -> Result<()> {
332        // Propagate spike effects to connected neurons
333        for i in 0..self.config.num_neurons {
334            if i != event.neuron_id {
335                let connection_strength = self.connectivity[[event.neuron_id, i]];
336                self.neurons[i].potential += connection_strength * event.weight;
337            }
338        }
339
340        Ok(())
341    }
342
343    /// Compute external input for objective-based feedback
344    fn compute_external_input(&self, neuron_id: usize, objective_value: f64) -> f64 {
345        // Simple feedback: better objective values lead to positive input
346        let feedback_strength = 0.1;
347        let normalized_objective = -objective_value; // Assume minimization
348
349        // Different neurons can receive different feedback patterns
350        let phase = neuron_id as f64 / self.config.num_neurons as f64 * 2.0 * std::f64::consts::PI;
351        feedback_strength * normalized_objective * phase.sin()
352    }
353
354    /// Update connectivity using STDP-like plasticity rules
355    fn update_connectivity(&mut self, objective_value: f64) -> Result<()> {
356        // Simplified STDP: strengthen connections that led to better performance
357        let performance_factor = if self.objective_history.len() > 1 {
358            let prev_objective = self.objective_history[self.objective_history.len() - 2];
359            if objective_value < prev_objective {
360                1.0
361            } else {
362                -0.1
363            }
364        } else {
365            0.0
366        };
367
368        // Update connections based on recent spike correlations
369        for i in 0..self.config.num_neurons {
370            for j in 0..self.config.num_neurons {
371                if i != j {
372                    // Simplified plasticity rule
373                    let correlation = self.neurons[i].potential * self.neurons[j].potential;
374                    let weight_change =
375                        self.config.learning_rate * performance_factor * correlation;
376
377                    self.connectivity[[i, j]] += weight_change;
378
379                    // Bound weights
380                    self.connectivity[[i, j]] = self.connectivity[[i, j]].max(-1.0).min(1.0);
381                }
382            }
383        }
384
385        Ok(())
386    }
387}
388
389/// Trait for neuromorphic optimization algorithms
390pub trait NeuromorphicOptimizer {
391    /// Configuration
392    fn config(&self) -> &NeuromorphicConfig;
393
394    /// Run optimization for given objective function
395    fn optimize<F>(
396        &mut self,
397        objective: F,
398        initial_params: &ArrayView1<f64>,
399    ) -> OptimizeResult<OptimizeResults<f64>>
400    where
401        F: Fn(&ArrayView1<f64>) -> f64;
402
403    /// Get current network state
404    fn network(&self) -> &NeuromorphicNetwork;
405
406    /// Reset optimizer state
407    fn reset(&mut self);
408}
409
410/// Basic neuromorphic optimizer implementation
411#[derive(Debug, Clone)]
412pub struct BasicNeuromorphicOptimizer {
413    network: NeuromorphicNetwork,
414    best_params: Array1<f64>,
415    best_objective: f64,
416    nit: usize,
417}
418
419impl BasicNeuromorphicOptimizer {
420    /// Create a new basic neuromorphic optimizer
421    pub fn new(config: NeuromorphicConfig, num_parameters: usize) -> Self {
422        let network = NeuromorphicNetwork::new(config, num_parameters);
423
424        Self {
425            network,
426            best_params: Array1::zeros(num_parameters),
427            best_objective: f64::INFINITY,
428            nit: 0,
429        }
430    }
431}
432
433impl NeuromorphicOptimizer for BasicNeuromorphicOptimizer {
434    fn config(&self) -> &NeuromorphicConfig {
435        &self.network.config
436    }
437
438    fn optimize<F>(
439        &mut self,
440        objective: F,
441        initial_params: &ArrayView1<f64>,
442    ) -> OptimizeResult<OptimizeResults<f64>>
443    where
444        F: Fn(&ArrayView1<f64>) -> f64,
445    {
446        self.network.parameters = initial_params.to_owned();
447        self.best_params = initial_params.to_owned();
448        self.best_objective = objective(initial_params);
449
450        let max_nit = (self.network.config.total_time / self.network.config.dt) as usize;
451
452        for iteration in 0..max_nit {
453            // Encode current parameters into network
454            let params = self.network.parameters.clone();
455            self.network.encode_parameters(&params.view());
456
457            // Evaluate objective
458            let current_objective = objective(&self.network.parameters.view());
459
460            // Simulate network step
461            self.network.simulate_step(current_objective)?;
462
463            // Decode new parameters
464            self.network.parameters = self.network.decode_parameters();
465
466            // Update best solution
467            if current_objective < self.best_objective {
468                self.best_objective = current_objective;
469                self.best_params = self.network.parameters.clone();
470            }
471
472            self.nit = iteration + 1;
473
474            // Check convergence
475            if current_objective < 1e-6 {
476                break;
477            }
478        }
479
480        Ok(OptimizeResults::<f64> {
481            x: self.best_params.clone(),
482            fun: self.best_objective,
483            success: self.best_objective < 1e-3,
484            nit: self.nit,
485            nfev: self.nit,
486            njev: 0,
487            nhev: 0,
488            maxcv: 0,
489            status: 0,
490            jac: None,
491            hess: None,
492            constr: None,
493            message: "Neuromorphic optimization completed".to_string(),
494        })
495    }
496
497    fn network(&self) -> &NeuromorphicNetwork {
498        &self.network
499    }
500
501    fn reset(&mut self) {
502        self.network.current_time = 0.0;
503        self.network.spike_queue.clear();
504        self.network.objective_history.clear();
505        self.best_objective = f64::INFINITY;
506        self.nit = 0;
507
508        // Reset neuron states
509        for neuron in &mut self.network.neurons {
510            neuron.potential = 0.0;
511            neuron.last_spike_time = None;
512            neuron.input_current = 0.0;
513            neuron.adaptation = 0.0;
514        }
515    }
516}
517
518impl BasicNeuromorphicOptimizer {
519    /// Get mutable reference to the network
520    pub fn network_mut(&mut self) -> &mut NeuromorphicNetwork {
521        &mut self.network
522    }
523}
524
525/// Convenience function to create and run neuromorphic optimization
526#[allow(dead_code)]
527pub fn neuromorphic_optimize<F>(
528    objective: F,
529    initial_params: &ArrayView1<f64>,
530    config: Option<NeuromorphicConfig>,
531) -> OptimizeResult<OptimizeResults<f64>>
532where
533    F: Fn(&ArrayView1<f64>) -> f64,
534{
535    let config = config.unwrap_or_default();
536    let mut optimizer = BasicNeuromorphicOptimizer::new(config, initial_params.len());
537    optimizer.optimize(objective, initial_params)
538}
539
540#[cfg(test)]
541mod tests {
542    use super::*;
543
544    #[test]
545    fn test_neuron_state_creation() {
546        let neuron = NeuronState::new(10);
547        assert_eq!(neuron.weights.len(), 10);
548        assert_eq!(neuron.potential, 0.0);
549        assert!(neuron.last_spike_time.is_none());
550    }
551
552    #[test]
553    fn test_neuron_spike_behavior() {
554        let mut neuron = NeuronState::new(5);
555        neuron.potential = 1.5;
556
557        assert!(neuron.should_spike(1.0));
558        neuron.fire_spike(0.1);
559
560        assert_eq!(neuron.potential, 0.0);
561        assert_eq!(neuron.last_spike_time, Some(0.1));
562    }
563
564    #[test]
565    fn test_neuromorphic_network_creation() {
566        let config = NeuromorphicConfig::default();
567        let network = NeuromorphicNetwork::new(config, 3);
568
569        assert_eq!(network.neurons.len(), 100); // Default num_neurons
570        assert_eq!(network.parameters.len(), 3);
571        assert_eq!(network.current_time, 0.0);
572    }
573
574    #[test]
575    fn test_parameter_encoding_decoding() {
576        let config = NeuromorphicConfig::default();
577        let mut network = NeuromorphicNetwork::new(config, 2);
578
579        let params = Array1::from(vec![0.5, -0.3]);
580        network.encode_parameters(&params.view());
581
582        // Check that neurons received input
583        assert!(network.neurons.iter().any(|n| n.input_current != 0.0));
584
585        // Decoding should give some result (though not exact due to neural dynamics)
586        let decoded = network.decode_parameters();
587        assert_eq!(decoded.len(), 2);
588    }
589
590    #[test]
591    fn test_basic_optimizer() {
592        let config = NeuromorphicConfig {
593            total_time: 0.1, // Short simulation for test
594            num_neurons: 20, // Fewer neurons for speed
595            ..Default::default()
596        };
597
598        let mut optimizer = BasicNeuromorphicOptimizer::new(config, 2);
599
600        // Simple quadratic objective
601        let objective = |x: &ArrayView1<f64>| x[0].powi(2) + x[1].powi(2);
602        let initial = Array1::from(vec![1.0, 1.0]);
603
604        let result = optimizer.optimize(objective, &initial.view()).unwrap();
605
606        assert!(result.nit > 0);
607        assert!(result.fun < 2.0); // Should improve from initial value of 2.0
608    }
609
610    #[test]
611    fn test_convenience_function() {
612        let config = NeuromorphicConfig {
613            total_time: 0.05,
614            num_neurons: 10,
615            ..Default::default()
616        };
617
618        let objective = |x: &ArrayView1<f64>| (x[0] - 1.0).powi(2);
619        let initial = Array1::from(vec![0.0]);
620
621        let result = neuromorphic_optimize(objective, &initial.view(), Some(config)).unwrap();
622
623        assert!(result.nit > 0);
624        assert!(result.x.len() == 1);
625    }
626
627    #[test]
628    fn test_spike_queue_processing() {
629        let config = NeuromorphicConfig::default();
630        let mut network = NeuromorphicNetwork::new(config, 2);
631
632        // Add some spike events
633        network.spike_queue.push(SpikeEvent {
634            time: 0.001,
635            neuron_id: 0,
636            weight: 1.0,
637        });
638
639        network.current_time = 0.002;
640        network.process_spike_events().unwrap();
641
642        // Spike queue should be processed
643        assert!(network.spike_queue.is_empty());
644    }
645}