Expand description
Visualization tools module Visualization tools for neural networks
This module provides comprehensive visualization capabilities including:
- Network architecture visualization with interactive graphs
- Training curves and metrics plotting
- Layer activation maps and feature visualization
- Attention mechanisms visualization
- Interactive dashboards and real-time monitoring
§Module Organization
- [
config
] - Configuration types and settings for all visualization aspects - [
network
] - Network architecture visualization and layout algorithms training
- Training metrics, curves, and performance monitoringactivations
- Layer activation analysis and feature map visualization- [
attention
] - Attention mechanism visualization and analysis
§Basic Usage
use scirs2_neural::visualization::{VisualizationConfig, NetworkVisualizer};
use scirs2_neural::models::Sequential;
use scirs2_neural::layers::Dense;
use rand::SeedableRng;
// Create a simple model
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
let mut model = Sequential::<f32>::new();
model.add_layer(Dense::new(784, 128, Some("relu"), &mut rng).unwrap());
model.add_layer(Dense::new(128, 10, Some("softmax"), &mut rng).unwrap());
// Configure visualization
let config = VisualizationConfig::default();
// Create network visualizer
let mut visualizer = NetworkVisualizer::new(model, config);
// Generate architecture visualization
// Note: This is a placeholder - actual implementation coming soon
// let output_path = visualizer.visualize_architecture()?;
// println!("Network visualization saved to: {:?}", output_path);
Re-exports§
pub use config::ColorPalette;
pub use config::CustomTheme;
pub use config::DownsamplingStrategy;
pub use config::FontConfig;
pub use config::GridConfig;
pub use config::ImageFormat;
pub use config::InteractiveConfig;
pub use config::LayoutConfig;
pub use config::Margins;
pub use config::PerformanceConfig;
pub use config::StyleConfig;
pub use config::Theme;
pub use config::VisualizationConfig;
pub use network::ArrowStyle;
pub use network::BoundingBox;
pub use network::Connection;
pub use network::ConnectionType;
pub use network::ConnectionVisualProps;
pub use network::DataFlowInfo;
pub use network::LayerIOInfo;
pub use network::LayerInfo;
pub use network::LayerPosition;
pub use network::LayerVisualProps;
pub use network::LayoutAlgorithm;
pub use network::LineStyle;
pub use network::NetworkLayout;
pub use network::NetworkVisualizer;
pub use network::Point2D;
pub use network::Size2D;
pub use network::ThroughputInfo;
pub use training::AxisConfig;
pub use training::AxisScale;
pub use training::LineStyleConfig;
pub use training::MarkerConfig;
pub use training::MarkerShape;
pub use training::PlotConfig;
pub use training::PlotType;
pub use training::SeriesConfig;
pub use training::SystemMetrics;
pub use training::TickConfig;
pub use training::TickFormat;
pub use training::TrainingMetrics;
pub use training::TrainingVisualizer;
pub use training::UpdateMode;
pub use activations::ActivationHistogram;
pub use activations::ActivationNormalization;
pub use activations::ActivationStatistics;
pub use activations::ActivationVisualizationOptions;
pub use activations::ActivationVisualizationType;
pub use activations::ActivationVisualizer;
pub use activations::ChannelAggregation;
pub use activations::Colormap;
pub use activations::FeatureMapInfo;
pub use attention::AttentionData;
pub use attention::AttentionStatistics;
pub use attention::AttentionVisualizationOptions;
pub use attention::AttentionVisualizationType;
pub use attention::AttentionVisualizer;
pub use attention::CompressionSettings;
pub use attention::DataFormat;
pub use attention::ExportFormat;
pub use attention::ExportOptions;
pub use attention::ExportQuality;
pub use attention::HeadAggregation;
pub use attention::HeadInfo;
pub use attention::HeadSelection;
pub use attention::HighlightConfig;
pub use attention::HighlightStyle;
pub use attention::Resolution;
pub use attention::VideoFormat;
Modules§
- activations
- Layer activation and feature visualization for neural networks
- attention
- Attention mechanism visualization for neural networks
- config
- Configuration types and settings for neural network visualization
- network
- Network architecture visualization for neural networks
- training
- Training metrics and curve visualization for neural networks
- utils
- Utility functions for visualization
Structs§
- Visualization
Config Builder - Builder pattern for creating visualization configurations
- Visualization
Suite - Combined visualization suite for comprehensive neural network analysis
Type Aliases§
- Activation
Viz - Convenient type alias for activation visualization
- Attention
Viz - Convenient type alias for attention visualization
- Network
Viz - Convenient type alias for network visualization
- Training
Viz - Convenient type alias for training visualization