Module utils

Source
Expand description

Utility functions for neural networks

This module provides various utility functions for neural networks, such as weight initialization strategies, metric calculations, positional encoding for transformer models, etc.

Re-exports§

pub use colors::color_legend;
pub use colors::colored_metric_cell;
pub use colors::colorize;
pub use colors::colorize_and_style;
pub use colors::colorize_bg;
pub use colors::gradient_color;
pub use colors::stylize;
pub use colors::Color;
pub use colors::ColorOptions;
pub use colors::Style;
pub use evaluation::ConfusionMatrix;
pub use evaluation::FeatureImportance;
pub use evaluation::LearningCurve;
pub use evaluation::ROCCurve;
pub use model_viz::sequential_model_dataflow;
pub use model_viz::sequential_model_summary;
pub use model_viz::ModelVizOptions;
pub use positional_encoding::LearnedPositionalEncoding;
pub use positional_encoding::PositionalEncoding;
pub use positional_encoding::PositionalEncodingFactory;
pub use positional_encoding::PositionalEncodingType;
pub use positional_encoding::RelativePositionalEncoding;
pub use positional_encoding::SinusoidalPositionalEncoding;
pub use visualization::analyze_training_history;
pub use visualization::ascii_plot;
pub use visualization::export_history_to_csv;
pub use visualization::LearningRateSchedule;
pub use visualization::PlotOptions;
pub use initializers::*;
pub use metrics::*;

Modules§

colors
Terminal color utilities for visualization Terminal color utilities for visualization output
datasets
Placeholder for datasets module
evaluation
Evaluation utilities and visualizations for model performance Evaluation utilities and visualizations for model performance
initializers
Weight initialization strategies for neural networks
metrics
Evaluation metrics for neural networks
model_viz
Model architecture visualization utilities Model architecture visualization utilities
positional_encoding
Positional encoding utilities for transformer models
visualization
Visualization utilities for neural networks

Functions§

one_hot_encode
Calculate the one-hot encoding of a vector of indices
random_normal
Generate a random vector or matrix with values from a normal distribution
train_test_split
Split data into training and testing sets

Type Aliases§

TrainTestSplitResult
Split data into training and testing sets