Expand description
Utility functions for neural networks
This module provides various utility functions for neural networks, such as weight initialization strategies, metric calculations, positional encoding for transformer models, etc.
Re-exports§
pub use colors::color_legend;
pub use colors::colored_metric_cell;
pub use colors::colorize;
pub use colors::colorize_and_style;
pub use colors::colorize_bg;
pub use colors::gradient_color;
pub use colors::stylize;
pub use colors::Color;
pub use colors::ColorOptions;
pub use colors::Style;
pub use evaluation::ConfusionMatrix;
pub use evaluation::FeatureImportance;
pub use evaluation::LearningCurve;
pub use evaluation::ROCCurve;
pub use model_viz::sequential_model_dataflow;
pub use model_viz::sequential_model_summary;
pub use model_viz::ModelVizOptions;
pub use initializers::*;
pub use metrics::*;
Modules§
- colors
- Terminal color utilities for visualization Terminal color utilities for visualization output
- datasets
- Placeholder for datasets module
- evaluation
- Evaluation utilities and visualizations for model performance Evaluation utilities and visualizations for model performance
- initializers
- Weight initialization strategies for neural networks
- metrics
- Evaluation metrics for neural networks
- model_
viz - Model architecture visualization utilities Model architecture visualization utilities
Functions§
- one_
hot_ encode - Calculate the one-hot encoding of a vector of indices
- random_
normal - Generate a random vector or matrix with values from a normal distribution
- train_
test_ split - This function splits input and target data into training and testing sets.
Type Aliases§
- Train
Test Split Result - Split data into training and testing sets