Expand description
Meta-Learning Module for Advanced Fusion Algorithms
This module provides sophisticated meta-learning capabilities that enable the system to learn how to learn, adapting processing strategies based on input patterns, temporal contexts, and performance feedback. It implements:
§Key Features
- Temporal Memory Fusion: Integrates short-term and long-term memory patterns
- Hierarchical Learning: Multi-level learning abstraction and strategy development
- Strategy Evolution: Evolutionary optimization of learning strategies
- Adaptive Memory Consolidation: Intelligent memory management and consolidation
- Performance Tracking: Comprehensive learning curve analysis and strategy effectiveness
§Meta-Learning Components
- Pattern analysis for optimal strategy adaptation
- Memory attention mechanisms for relevant experience retrieval
- Hierarchical learning structures with cross-level communication
- Evolutionary strategy optimization with multiple selection mechanisms
- Adaptive parameter updates based on performance feedback
§Usage
The module provides both basic meta-learning adaptation (meta_learning_adaptation)
and advanced temporal fusion capabilities (enhanced_meta_learning_with_temporal_fusion)
for different complexity requirements.
Functions§
- analyze_
input_ patterns - Analyze Input Patterns for Meta-Learning Strategy Selection
- apply_
evolved_ strategies - Apply Evolved Strategies
- apply_
hierarchical_ learning - Apply Hierarchical Learning
- apply_
memory_ fusion - Apply Memory Fusion with Temporal Decay
- apply_
meta_ learning_ update - Apply Meta-Learning Update
- apply_
temporal_ memory_ fusion - Apply Temporal Memory Fusion
- calculate_
adaptive_ fusion_ weights - Calculate Adaptive Fusion Weights
- consolidate_
to_ long_ term_ memory - Consolidate Memory Trace to Long-Term Storage
- create_
memory_ trace - Create Memory Trace from Processing Results
- determine_
optimal_ weights - Determine Optimal Combination Weights
- enhanced_
meta_ learning_ with_ temporal_ fusion - Enhanced Meta-Learning with Temporal Memory Fusion
- evolve_
learning_ strategies - Evolve Learning Strategies
- meta_
learning_ adaptation - Basic Meta-Learning Adaptation
- perform_
adaptive_ memory_ consolidation - Perform Adaptive Memory Consolidation
- retrieve_
relevant_ memories - Retrieve Relevant Memories for Current Context
- update_
memory_ attention - Update Memory Attention Mechanism
- update_
meta_ learning_ parameters - Update Meta-Learning Parameters
- update_
meta_ learning_ parameters_ enhanced - Enhanced Meta-Learning Parameter Update
- update_
meta_ learning_ performance - Update Meta-Learning Performance Tracking