scirs2_ndimage/advanced_fusion_algorithms/
meta_learning.rs

1//! Meta-Learning Module for Advanced Fusion Algorithms
2//!
3//! This module provides sophisticated meta-learning capabilities that enable the system
4//! to learn how to learn, adapting processing strategies based on input patterns,
5//! temporal contexts, and performance feedback. It implements:
6//!
7//! # Key Features
8//! * **Temporal Memory Fusion**: Integrates short-term and long-term memory patterns
9//! * **Hierarchical Learning**: Multi-level learning abstraction and strategy development
10//! * **Strategy Evolution**: Evolutionary optimization of learning strategies
11//! * **Adaptive Memory Consolidation**: Intelligent memory management and consolidation
12//! * **Performance Tracking**: Comprehensive learning curve analysis and strategy effectiveness
13//!
14//! # Meta-Learning Components
15//! * Pattern analysis for optimal strategy adaptation
16//! * Memory attention mechanisms for relevant experience retrieval
17//! * Hierarchical learning structures with cross-level communication
18//! * Evolutionary strategy optimization with multiple selection mechanisms
19//! * Adaptive parameter updates based on performance feedback
20//!
21//! # Usage
22//! The module provides both basic meta-learning adaptation (`meta_learning_adaptation`)
23//! and advanced temporal fusion capabilities (`enhanced_meta_learning_with_temporal_fusion`)
24//! for different complexity requirements.
25
26use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
27use scirs2_core::random::Rng;
28use std::collections::{HashMap, VecDeque};
29
30use super::config::*;
31use crate::NdimageResult;
32
33/// Basic Meta-Learning Adaptation
34///
35/// Implements meta-learning algorithms that learn how to learn, adapting
36/// the processing strategies based on the type of input and desired outcomes.
37/// This function analyzes input patterns, updates meta-learning parameters,
38/// and applies adaptive processing strategies.
39#[allow(dead_code)]
40pub fn meta_learning_adaptation(
41    consciousness_response: &Array2<f64>,
42    neural_response: &Array2<f64>,
43    causal_response: &Array2<f64>,
44    advanced_state: &mut AdvancedState,
45    config: &AdvancedConfig,
46) -> NdimageResult<Array2<f64>> {
47    let (height, width) = consciousness_response.dim();
48    let mut adapted_output = Array2::zeros((height, width));
49
50    // Analyze input patterns to determine optimal adaptation strategy
51    let pattern_analysis = analyze_input_patterns(
52        consciousness_response,
53        neural_response,
54        causal_response,
55        config,
56    )?;
57
58    // Update meta-learning parameters based on pattern analysis
59    update_meta_learning_parameters(
60        &mut advanced_state.meta_parameters,
61        &pattern_analysis,
62        config,
63    )?;
64
65    // Apply adaptive processing strategies
66    for y in 0..height {
67        for x in 0..width {
68            let consciousness_val = consciousness_response[(y, x)];
69            let neural_val = neural_response[(y, x)];
70            let causal_val = causal_response[(y, x)];
71
72            // Determine optimal combination weights using meta-learning
73            let combination_weights = determine_optimal_weights(
74                (consciousness_val, neural_val, causal_val),
75                &advanced_state.meta_parameters,
76                (y, x),
77                config,
78            )?;
79
80            // Apply adaptive combination
81            let adapted_value = consciousness_val * combination_weights.0
82                + neural_val * combination_weights.1
83                + causal_val * combination_weights.2;
84
85            adapted_output[(y, x)] = adapted_value;
86        }
87    }
88
89    // Apply meta-learning update to improve future adaptations
90    apply_meta_learning_update(advanced_state, &adapted_output, config)?;
91
92    Ok(adapted_output)
93}
94
95/// Enhanced Meta-Learning with Temporal Memory Fusion
96///
97/// This advanced function implements sophisticated meta-learning that incorporates
98/// temporal memory patterns, hierarchical learning, and evolutionary strategy optimization
99/// to achieve superior learning performance and generalization.
100#[allow(dead_code)]
101pub fn enhanced_meta_learning_with_temporal_fusion(
102    consciousness_response: &Array2<f64>,
103    neural_response: &Array2<f64>,
104    causal_response: &Array2<f64>,
105    advanced_state: &mut AdvancedState,
106    config: &AdvancedConfig,
107    meta_learning_system: &mut EnhancedMetaLearningSystem,
108    task_context: &str,
109) -> NdimageResult<Array2<f64>> {
110    let (height, width) = consciousness_response.dim();
111    let mut enhanced_output = Array2::zeros((height, width));
112
113    // Step 1: Temporal Memory Fusion
114    let temporal_memory_output = apply_temporal_memory_fusion(
115        consciousness_response,
116        neural_response,
117        causal_response,
118        &mut meta_learning_system.temporal_memory_fusion,
119        task_context,
120    )?;
121
122    // Step 2: Hierarchical Learning Processing
123    let hierarchical_output = apply_hierarchical_learning(
124        &temporal_memory_output,
125        &mut meta_learning_system.hierarchical_learner,
126        advanced_state,
127        config,
128    )?;
129
130    // Step 3: Strategy Evolution and Selection
131    let evolved_strategies = evolve_learning_strategies(
132        &mut meta_learning_system.strategy_evolution,
133        &temporal_memory_output,
134        &hierarchical_output,
135        task_context,
136    )?;
137
138    // Step 4: Apply Best Evolved Strategies
139    let strategy_enhanced_output = apply_evolved_strategies(
140        &hierarchical_output,
141        &evolved_strategies,
142        advanced_state,
143        config,
144    )?;
145
146    // Step 5: Memory Consolidation
147    perform_adaptive_memory_consolidation(
148        &mut meta_learning_system.memory_consolidation,
149        &strategy_enhanced_output,
150        task_context,
151    )?;
152
153    // Step 6: Update Meta-Learning Performance Tracking
154    update_meta_learning_performance(
155        &mut meta_learning_system.performance_tracker,
156        &strategy_enhanced_output,
157        task_context,
158    )?;
159
160    // Step 7: Final Integration and Output
161    for y in 0..height {
162        for x in 0..width {
163            let temporal_val = temporal_memory_output[(y, x)];
164            let hierarchical_val = hierarchical_output[(y, x)];
165            let strategy_val = strategy_enhanced_output[(y, x)];
166
167            // Intelligent weighted combination based on meta-learning insights
168            let fusion_weights = calculate_adaptive_fusion_weights(
169                (temporal_val, hierarchical_val, strategy_val),
170                meta_learning_system,
171                (y, x),
172            )?;
173
174            enhanced_output[(y, x)] = temporal_val * fusion_weights.0
175                + hierarchical_val * fusion_weights.1
176                + strategy_val * fusion_weights.2;
177        }
178    }
179
180    // Step 8: Update meta-parameters for future learning
181    update_meta_learning_parameters_enhanced(
182        &mut advanced_state.meta_parameters,
183        &enhanced_output,
184        config,
185    )?;
186
187    Ok(enhanced_output)
188}
189
190/// Apply Temporal Memory Fusion
191///
192/// Integrates past learning experiences through temporal memory fusion,
193/// combining short-term and long-term memory with attention mechanisms.
194#[allow(dead_code)]
195pub fn apply_temporal_memory_fusion(
196    consciousness_response: &Array2<f64>,
197    neural_response: &Array2<f64>,
198    causal_response: &Array2<f64>,
199    temporal_fusion: &mut TemporalMemoryFusion,
200    task_context: &str,
201) -> NdimageResult<Array2<f64>> {
202    let (height, width) = consciousness_response.dim();
203    let mut fused_output = Array2::zeros((height, width));
204
205    // Create current memory trace
206    let current_trace = create_memory_trace(
207        consciousness_response,
208        neural_response,
209        causal_response,
210        task_context,
211    )?;
212
213    // Add to short-term memory
214    temporal_fusion.short_term_memory.push_back(current_trace);
215
216    // Maintain short-term memory window
217    if temporal_fusion.short_term_memory.len() > 20 {
218        // Move oldest memory to long-term consolidation
219        if let Some(old_trace) = temporal_fusion.short_term_memory.pop_front() {
220            consolidate_to_long_term_memory(&old_trace, &mut temporal_fusion.long_term_memory)?;
221        }
222    }
223
224    // Apply memory attention and fusion
225    for y in 0..height {
226        for x in 0..width {
227            let current_val = consciousness_response[(y, x)];
228
229            // Retrieve relevant memories
230            let relevant_memories = retrieve_relevant_memories(
231                &temporal_fusion.short_term_memory,
232                &temporal_fusion.long_term_memory,
233                (y, x),
234                task_context,
235            )?;
236
237            // Apply temporal fusion
238            let fused_val = apply_memory_fusion(
239                current_val,
240                &relevant_memories,
241                &temporal_fusion.fusion_weights,
242                &temporal_fusion.decay_factors,
243            )?;
244
245            fused_output[(y, x)] = fused_val;
246        }
247    }
248
249    // Update attention mechanism
250    update_memory_attention(&mut temporal_fusion.attention_mechanism, &fused_output)?;
251
252    Ok(fused_output)
253}
254
255// ================================
256// Helper Functions Implementation
257// ================================
258
259/// Analyze Input Patterns for Meta-Learning Strategy Selection
260///
261/// Performs comprehensive pattern analysis to determine optimal meta-learning strategies.
262/// Analyzes statistical properties, frequency characteristics, and spatial patterns.
263#[allow(dead_code)]
264pub fn analyze_input_patterns(
265    consciousness: &Array2<f64>,
266    neural: &Array2<f64>,
267    causal: &Array2<f64>,
268    config: &AdvancedConfig,
269) -> NdimageResult<Array2<f64>> {
270    let (height, width) = consciousness.dim();
271    let mut pattern_analysis = Array2::zeros((4, 3)); // 4 metrics, 3 inputs
272
273    // Statistical Analysis
274    let consciousness_stats = calculate_statistical_metrics(consciousness);
275    let neural_stats = calculate_statistical_metrics(neural);
276    let causal_stats = calculate_statistical_metrics(causal);
277
278    pattern_analysis[(0, 0)] = consciousness_stats.0; // Mean
279    pattern_analysis[(0, 1)] = neural_stats.0;
280    pattern_analysis[(0, 2)] = causal_stats.0;
281
282    pattern_analysis[(1, 0)] = consciousness_stats.1; // Variance
283    pattern_analysis[(1, 1)] = neural_stats.1;
284    pattern_analysis[(1, 2)] = causal_stats.1;
285
286    // Frequency Domain Analysis
287    let consciousness_freq = analyze_frequency_characteristics(consciousness);
288    let neural_freq = analyze_frequency_characteristics(neural);
289    let causal_freq = analyze_frequency_characteristics(causal);
290
291    pattern_analysis[(2, 0)] = consciousness_freq;
292    pattern_analysis[(2, 1)] = neural_freq;
293    pattern_analysis[(2, 2)] = causal_freq;
294
295    // Spatial Correlation Analysis
296    let consciousness_corr = calculate_spatial_correlation(consciousness);
297    let neural_corr = calculate_spatial_correlation(neural);
298    let causal_corr = calculate_spatial_correlation(causal);
299
300    pattern_analysis[(3, 0)] = consciousness_corr;
301    pattern_analysis[(3, 1)] = neural_corr;
302    pattern_analysis[(3, 2)] = causal_corr;
303
304    Ok(pattern_analysis)
305}
306
307/// Update Meta-Learning Parameters
308///
309/// Updates meta-learning parameters based on pattern analysis results.
310/// Implements adaptive learning rate and strategy selection.
311#[allow(dead_code)]
312pub fn update_meta_learning_parameters(
313    meta_params: &mut Array2<f64>,
314    pattern_analysis: &Array2<f64>,
315    config: &AdvancedConfig,
316) -> NdimageResult<()> {
317    let (rows, cols) = meta_params.dim();
318
319    for i in 0..rows.min(pattern_analysis.nrows()) {
320        for j in 0..cols.min(pattern_analysis.ncols()) {
321            let analysis_value = pattern_analysis[(i, j)];
322            let current_param = meta_params[(i, j)];
323
324            // Adaptive parameter update based on pattern characteristics
325            let adaptation_factor = calculate_adaptation_factor(analysis_value, config);
326            meta_params[(i, j)] = current_param + config.meta_learning_rate * adaptation_factor;
327
328            // Ensure parameters stay within reasonable bounds
329            meta_params[(i, j)] = meta_params[(i, j)].max(-10.0).min(10.0);
330        }
331    }
332
333    Ok(())
334}
335
336/// Enhanced Meta-Learning Parameter Update
337///
338/// Advanced version with temporal consideration and performance feedback.
339#[allow(dead_code)]
340pub fn update_meta_learning_parameters_enhanced(
341    meta_params: &mut Array2<f64>,
342    output: &Array2<f64>,
343    config: &AdvancedConfig,
344) -> NdimageResult<()> {
345    let (rows, cols) = meta_params.dim();
346    let output_mean = output.mean().unwrap_or(0.0);
347    let output_std = output.std(0.0);
348
349    // Calculate performance-based adaptation
350    let performance_factor = (output_mean.abs() + output_std).tanh();
351
352    for i in 0..rows {
353        for j in 0..cols {
354            let gradient = calculate_meta_gradient(i, j, output, config);
355            let adaptive_rate = config.meta_learning_rate * performance_factor;
356
357            meta_params[(i, j)] += adaptive_rate * gradient;
358            meta_params[(i, j)] = meta_params[(i, j)].max(-5.0).min(5.0);
359        }
360    }
361
362    Ok(())
363}
364
365/// Determine Optimal Combination Weights
366///
367/// Uses meta-learning insights to determine optimal combination weights
368/// for different processing components based on current context.
369#[allow(dead_code)]
370pub fn determine_optimal_weights(
371    inputs: (f64, f64, f64),
372    meta_params: &Array2<f64>,
373    position: (usize, usize),
374    config: &AdvancedConfig,
375) -> NdimageResult<(f64, f64, f64)> {
376    let (consciousness_val, neural_val, causal_val) = inputs;
377    let (y, x) = position;
378
379    // Calculate contextual factors
380    let spatial_factor = ((y as f64 / 100.0).sin() + (x as f64 / 100.0).cos()) * 0.1;
381    let magnitude_factor = (consciousness_val.abs() + neural_val.abs() + causal_val.abs()) / 3.0;
382
383    // Extract relevant meta-parameters
384    let base_weights = if meta_params.nrows() >= 3 && meta_params.ncols() >= 1 {
385        (
386            meta_params[(0, 0)].tanh() * 0.5 + 0.5,
387            meta_params[(1, 0)].tanh() * 0.5 + 0.5,
388            meta_params[(2, 0)].tanh() * 0.5 + 0.5,
389        )
390    } else {
391        (0.33, 0.33, 0.34)
392    };
393
394    // Apply contextual adjustments
395    let consciousness_weight = base_weights.0 + spatial_factor * config.meta_learning_rate;
396    let neural_weight = base_weights.1 + magnitude_factor * config.meta_learning_rate;
397    let causal_weight =
398        base_weights.2 - (spatial_factor + magnitude_factor) * config.meta_learning_rate * 0.5;
399
400    // Normalize weights
401    let total_weight = consciousness_weight + neural_weight + causal_weight;
402    if total_weight > 0.0 {
403        Ok((
404            consciousness_weight / total_weight,
405            neural_weight / total_weight,
406            causal_weight / total_weight,
407        ))
408    } else {
409        Ok((0.33, 0.33, 0.34))
410    }
411}
412
413/// Apply Meta-Learning Update
414///
415/// Applies meta-learning updates to improve future adaptations based on current performance.
416#[allow(dead_code)]
417pub fn apply_meta_learning_update(
418    advanced_state: &mut AdvancedState,
419    output: &Array2<f64>,
420    config: &AdvancedConfig,
421) -> NdimageResult<()> {
422    // Calculate performance metrics
423    let performance_score = calculate_performance_score(output);
424
425    // Update processing cycles
426    advanced_state.processing_cycles += 1;
427
428    // Update efficiency metrics
429    advanced_state.efficiencymetrics.ops_per_second =
430        performance_score * config.meta_learning_rate * 1000.0;
431
432    // Store temporal memory if performance is significant
433    if performance_score > 0.5 {
434        let memory_snapshot = output
435            .slice(s![0..output.nrows().min(32), 0..output.ncols().min(32)])
436            .to_owned();
437        advanced_state
438            .temporal_memory
439            .push_back(memory_snapshot.insert_axis(Axis(2)));
440
441        // Maintain memory window
442        if advanced_state.temporal_memory.len() > config.temporal_window {
443            advanced_state.temporal_memory.pop_front();
444        }
445    }
446
447    Ok(())
448}
449
450/// Apply Hierarchical Learning
451///
452/// Implements hierarchical learning processing across multiple abstraction levels.
453#[allow(dead_code)]
454pub fn apply_hierarchical_learning(
455    input: &Array2<f64>,
456    hierarchical_learner: &mut HierarchicalLearner,
457    state: &AdvancedState,
458    config: &AdvancedConfig,
459) -> NdimageResult<Array2<f64>> {
460    let mut processed_output = input.clone();
461
462    // Process through each hierarchy level
463    for level in hierarchical_learner.hierarchy_levels.iter_mut() {
464        processed_output = apply_level_processing(&processed_output, level, config)?;
465
466        // Update level performance metrics
467        update_level_performance_metrics(level, &processed_output)?;
468    }
469
470    // Apply hierarchical attention
471    let attention_weights = &hierarchical_learner.hierarchical_attention;
472    let final_output = apply_hierarchical_attention(&processed_output, attention_weights)?;
473
474    Ok(final_output)
475}
476
477/// Evolve Learning Strategies
478///
479/// Implements evolutionary optimization of learning strategies using genetic algorithms.
480#[allow(dead_code)]
481pub fn evolve_learning_strategies(
482    strategy_evolution: &mut StrategyEvolution,
483    temporal_output: &Array2<f64>,
484    hierarchical_output: &Array2<f64>,
485    task_context: &str,
486) -> NdimageResult<Vec<EvolutionaryStrategy>> {
487    let mut rng = scirs2_core::random::rng();
488
489    // Evaluate current population fitness
490    for strategy in strategy_evolution.strategy_population.iter_mut() {
491        strategy.fitness =
492            evaluate_strategy_fitness(strategy, temporal_output, hierarchical_output)?;
493    }
494
495    // Selection phase
496    let selected_strategies = apply_selection(
497        &strategy_evolution.strategy_population,
498        &strategy_evolution.selection_mechanisms,
499    )?;
500
501    // Mutation and crossover
502    let mut new_population = Vec::new();
503    for _ in 0..selected_strategies.len() {
504        let parent1 = &selected_strategies[rng.gen_range(0..selected_strategies.len())];
505        let parent2 = &selected_strategies[rng.gen_range(0..selected_strategies.len())];
506
507        let mut offspring = crossover_strategies(parent1, parent2)?;
508        mutate_strategy(&mut offspring, &strategy_evolution.mutation_params)?;
509
510        new_population.push(offspring);
511    }
512
513    // Update population
514    strategy_evolution.strategy_population = new_population;
515
516    // Record evolution generation
517    record_evolution_generation(strategy_evolution, task_context)?;
518
519    Ok(strategy_evolution.strategy_population.clone())
520}
521
522/// Apply Evolved Strategies
523///
524/// Applies the best evolved strategies to the input data.
525#[allow(dead_code)]
526pub fn apply_evolved_strategies(
527    input: &Array2<f64>,
528    strategies: &[EvolutionaryStrategy],
529    advanced_state: &AdvancedState,
530    config: &AdvancedConfig,
531) -> NdimageResult<Array2<f64>> {
532    if strategies.is_empty() {
533        return Ok(input.clone());
534    }
535
536    // Find best strategy
537    let best_strategy = strategies
538        .iter()
539        .max_by(|a, b| {
540            a.fitness
541                .partial_cmp(&b.fitness)
542                .unwrap_or(std::cmp::Ordering::Equal)
543        })
544        .unwrap();
545
546    // Apply best strategy transformation
547    let mut enhanced_output = input.clone();
548
549    // Apply genome-based transformations
550    for (i, gene) in best_strategy.genome.iter().enumerate() {
551        let transformation_factor = gene.tanh() * config.meta_learning_rate;
552
553        // Apply spatial transformations based on genome
554        for ((y, x), value) in enhanced_output.indexed_iter_mut() {
555            let spatial_influence = calculate_spatial_influence(y, x, i, &best_strategy.genome);
556            *value = *value * (1.0 + transformation_factor * spatial_influence);
557        }
558    }
559
560    Ok(enhanced_output)
561}
562
563/// Perform Adaptive Memory Consolidation
564///
565/// Implements sophisticated memory consolidation strategies to optimize learning retention.
566#[allow(dead_code)]
567pub fn perform_adaptive_memory_consolidation(
568    consolidation: &mut AdaptiveMemoryConsolidation,
569    output: &Array2<f64>,
570    task_context: &str,
571) -> NdimageResult<()> {
572    let performance_score = calculate_performance_score(output);
573
574    // Apply consolidation strategies based on performance
575    for strategy in consolidation.consolidation_strategies.iter() {
576        match strategy {
577            ConsolidationStrategy::ReplayBased { replay_frequency } => {
578                if performance_score > *replay_frequency {
579                    apply_replay_consolidation(output, *replay_frequency)?;
580                }
581            }
582            ConsolidationStrategy::ImportanceWeighted {
583                importance_threshold,
584            } => {
585                apply_importance_weighted_consolidation(output, *importance_threshold)?;
586            }
587            _ => {} // Handle other strategies as needed
588        }
589    }
590
591    // Update consolidation metrics
592    consolidation
593        .effectiveness_metrics
594        .consolidation_success_rate = (consolidation
595        .effectiveness_metrics
596        .consolidation_success_rate
597        * 0.9)
598        + (performance_score * 0.1);
599
600    Ok(())
601}
602
603/// Update Meta-Learning Performance Tracking
604///
605/// Updates performance tracking metrics for strategy effectiveness analysis.
606#[allow(dead_code)]
607pub fn update_meta_learning_performance(
608    tracker: &mut MetaLearningTracker,
609    output: &Array2<f64>,
610    task_context: &str,
611) -> NdimageResult<()> {
612    let performance_score = calculate_performance_score(output);
613    let learning_time = 1.0; // Simplified timing
614    let generalization_score = calculate_generalization_score(output);
615    let resource_usage = calculate_resource_usage(output);
616
617    // Create performance record
618    let performance = MetaLearningPerformance {
619        task_id: task_context.to_string(),
620        performance_score,
621        learning_time,
622        generalization_score,
623        resource_usage,
624    };
625
626    tracker.performancehistory.push_back(performance);
627
628    // Maintain performance history window
629    if tracker.performancehistory.len() > 100 {
630        tracker.performancehistory.pop_front();
631    }
632
633    // Update learning curves
634    update_learning_curves(tracker, task_context, performance_score)?;
635
636    Ok(())
637}
638
639/// Calculate Adaptive Fusion Weights
640///
641/// Calculates intelligent fusion weights based on meta-learning insights.
642#[allow(dead_code)]
643pub fn calculate_adaptive_fusion_weights(
644    values: (f64, f64, f64),
645    meta_system: &EnhancedMetaLearningSystem,
646    position: (usize, usize),
647) -> NdimageResult<(f64, f64, f64)> {
648    let (temporal_val, hierarchical_val, strategy_val) = values;
649    let (y, x) = position;
650
651    // Calculate attention-based weights
652    let attention_weights = &meta_system
653        .temporal_memory_fusion
654        .attention_mechanism
655        .attention_weights;
656
657    let temporal_weight = attention_weights.get("temporal").unwrap_or(&0.33);
658    let hierarchical_weight = attention_weights.get("hierarchical").unwrap_or(&0.33);
659    let strategy_weight = attention_weights.get("strategy").unwrap_or(&0.34);
660
661    // Apply positional influence
662    let position_factor = (y as f64 * x as f64).sqrt() / 1000.0;
663    let value_factor = (temporal_val.abs() + hierarchical_val.abs() + strategy_val.abs()) / 3.0;
664
665    // Calculate adaptive weights
666    let mut w1 = temporal_weight + position_factor * 0.1;
667    let mut w2 = hierarchical_weight + value_factor * 0.1;
668    let mut w3 = strategy_weight + (1.0 - position_factor - value_factor) * 0.1;
669
670    // Normalize weights
671    let total = w1 + w2 + w3;
672    if total > 0.0 {
673        w1 /= total;
674        w2 /= total;
675        w3 /= total;
676    } else {
677        w1 = 0.33;
678        w2 = 0.33;
679        w3 = 0.34;
680    }
681
682    Ok((w1, w2, w3))
683}
684
685// ================================
686// Memory Management Functions
687// ================================
688
689/// Create Memory Trace from Processing Results
690#[allow(dead_code)]
691pub fn create_memory_trace(
692    consciousness_response: &Array2<f64>,
693    neural_response: &Array2<f64>,
694    causal_response: &Array2<f64>,
695    task_context: &str,
696) -> NdimageResult<MemoryTrace> {
697    let (height, width) = consciousness_response.dim();
698    let mut content = Array2::zeros((height, width));
699
700    // Combine responses into memory content
701    for y in 0..height {
702        for x in 0..width {
703            content[(y, x)] = (consciousness_response[(y, x)]
704                + neural_response[(y, x)]
705                + causal_response[(y, x)])
706                / 3.0;
707        }
708    }
709
710    // Calculate importance score
711    let importance = content.mean().unwrap_or(0.0).abs() + content.std(0.0);
712
713    // Create memory context
714    let context = MemoryContext {
715        operation_type: task_context.to_string(),
716        data_characteristics: vec![
717            consciousness_response.mean().unwrap_or(0.0),
718            neural_response.mean().unwrap_or(0.0),
719            causal_response.mean().unwrap_or(0.0),
720        ],
721        performance_outcome: importance,
722        environment: HashMap::new(),
723    };
724
725    Ok(MemoryTrace {
726        content,
727        context,
728        importance,
729        timestamp: 0, // Would use actual timestamp in real implementation
730        access_count: 0,
731    })
732}
733
734/// Consolidate Memory Trace to Long-Term Storage
735#[allow(dead_code)]
736pub fn consolidate_to_long_term_memory(
737    trace: &MemoryTrace,
738    long_term_memory: &mut HashMap<String, ConsolidatedMemory>,
739) -> NdimageResult<()> {
740    let key = trace.context.operation_type.clone();
741
742    let consolidated = ConsolidatedMemory {
743        representation: trace.content.clone(),
744        strength: trace.importance,
745        generalization_scope: trace.importance * 0.8,
746        usage_stats: MemoryUsageStats {
747            total_accesses: trace.access_count,
748            success_rate: 0.5,
749            avg_improvement: trace.importance * 0.1,
750            last_access: trace.timestamp,
751        },
752    };
753
754    long_term_memory.insert(key, consolidated);
755    Ok(())
756}
757
758/// Retrieve Relevant Memories for Current Context
759#[allow(dead_code)]
760pub fn retrieve_relevant_memories(
761    short_term: &VecDeque<MemoryTrace>,
762    long_term: &HashMap<String, ConsolidatedMemory>,
763    position: (usize, usize),
764    context: &str,
765) -> NdimageResult<Vec<f64>> {
766    let mut relevant_memories = Vec::new();
767
768    // Retrieve from short-term memory
769    for trace in short_term.iter().rev().take(5) {
770        if trace.context.operation_type.contains(context) {
771            let (y, x) = position;
772            if y < trace.content.nrows() && x < trace.content.ncols() {
773                relevant_memories.push(trace.content[(y, x)]);
774            }
775        }
776    }
777
778    // Retrieve from long-term memory
779    if let Some(consolidated) = long_term.get(context) {
780        let (y, x) = position;
781        if y < consolidated.representation.nrows() && x < consolidated.representation.ncols() {
782            relevant_memories.push(consolidated.representation[(y, x)] * consolidated.strength);
783        }
784    }
785
786    // Ensure we return something even if no relevant memories found
787    if relevant_memories.is_empty() {
788        relevant_memories.push(0.0);
789    }
790
791    Ok(relevant_memories)
792}
793
794/// Apply Memory Fusion with Temporal Decay
795#[allow(dead_code)]
796pub fn apply_memory_fusion(
797    current_val: f64,
798    memories: &[f64],
799    fusion_weights: &Array1<f64>,
800    decay_factors: &Array1<f64>,
801) -> NdimageResult<f64> {
802    if memories.is_empty() {
803        return Ok(current_val);
804    }
805
806    let mut fused_value = current_val;
807
808    for (i, &memory_val) in memories.iter().enumerate() {
809        let weight_idx = i.min(fusion_weights.len() - 1);
810        let decay_idx = i.min(decay_factors.len() - 1);
811
812        let weight = fusion_weights[weight_idx];
813        let decay = decay_factors[decay_idx];
814
815        fused_value += memory_val * weight * decay;
816    }
817
818    Ok(fused_value)
819}
820
821/// Update Memory Attention Mechanism
822#[allow(dead_code)]
823pub fn update_memory_attention(
824    attention: &mut MemoryAttention,
825    output: &Array2<f64>,
826) -> NdimageResult<()> {
827    let performance_score = calculate_performance_score(output);
828
829    // Update attention weights based on performance
830    for (key, weight) in attention.attention_weights.iter_mut() {
831        *weight = (*weight * (1.0 - attention.adaptation_rate))
832            + (performance_score * attention.adaptation_rate);
833        *weight = weight.max(0.0).min(1.0);
834    }
835
836    Ok(())
837}
838
839// ================================
840// Utility Functions
841// ================================
842
843/// Calculate Statistical Metrics (mean, variance)
844#[allow(dead_code)]
845fn calculate_statistical_metrics(data: &Array2<f64>) -> (f64, f64) {
846    let mean = data.mean().unwrap_or(0.0);
847    let variance = data.var(0.0);
848    (mean, variance)
849}
850
851/// Analyze Frequency Characteristics
852#[allow(dead_code)]
853fn analyze_frequency_characteristics(data: &Array2<f64>) -> f64 {
854    // Simplified frequency analysis - calculate high-frequency content
855    let mut high_freq_content = 0.0;
856    let (rows, cols) = data.dim();
857
858    for i in 1..rows {
859        for j in 1..cols {
860            let dx = data[(i, j)] - data[(i - 1, j)];
861            let dy = data[(i, j)] - data[(i, j - 1)];
862            high_freq_content += (dx * dx + dy * dy).sqrt();
863        }
864    }
865
866    high_freq_content / ((rows * cols) as f64)
867}
868
869/// Calculate Spatial Correlation
870#[allow(dead_code)]
871fn calculate_spatial_correlation(data: &Array2<f64>) -> f64 {
872    let (rows, cols) = data.dim();
873    if rows < 2 || cols < 2 {
874        return 0.0;
875    }
876
877    let mut correlation = 0.0;
878    let mut count = 0;
879
880    for i in 0..rows - 1 {
881        for j in 0..cols - 1 {
882            let current = data[(i, j)];
883            let right = data[(i, j + 1)];
884            let down = data[(i + 1, j)];
885
886            correlation += current * right + current * down;
887            count += 2;
888        }
889    }
890
891    if count > 0 {
892        correlation / count as f64
893    } else {
894        0.0
895    }
896}
897
898/// Calculate Adaptation Factor
899#[allow(dead_code)]
900fn calculate_adaptation_factor(analysis_value: f64, config: &AdvancedConfig) -> f64 {
901    let base_factor = analysis_value.tanh();
902    let intensity_factor = config.advanced_processing_intensity;
903    base_factor * intensity_factor
904}
905
906/// Calculate Meta-Gradient for Parameter Updates
907#[allow(dead_code)]
908fn calculate_meta_gradient(
909    i: usize,
910    j: usize,
911    output: &Array2<f64>,
912    config: &AdvancedConfig,
913) -> f64 {
914    let performance_gradient = if i < output.nrows() && j < output.ncols() {
915        output[(i, j)]
916    } else {
917        output.mean().unwrap_or(0.0)
918    };
919
920    performance_gradient * config.meta_learning_rate
921}
922
923/// Calculate Performance Score
924#[allow(dead_code)]
925fn calculate_performance_score(output: &Array2<f64>) -> f64 {
926    let mean = output.mean().unwrap_or(0.0);
927    let std = output.std(0.0);
928    (mean.abs() + std).tanh()
929}
930
931/// Calculate Generalization Score
932#[allow(dead_code)]
933fn calculate_generalization_score(output: &Array2<f64>) -> f64 {
934    let variance = output.var(0.0);
935    let entropy = -variance * variance.ln().max(-10.0);
936    entropy.tanh()
937}
938
939/// Calculate Resource Usage
940#[allow(dead_code)]
941fn calculate_resource_usage(output: &Array2<f64>) -> f64 {
942    let complexity = output.len() as f64;
943    let processing_intensity = output.map(|x| x.abs()).sum();
944    (processing_intensity / complexity).tanh()
945}
946
947/// Apply Level Processing for Hierarchical Learning
948#[allow(dead_code)]
949fn apply_level_processing(
950    input: &Array2<f64>,
951    level: &mut LearningLevel,
952    config: &AdvancedConfig,
953) -> NdimageResult<Array2<f64>> {
954    let mut processed = input.clone();
955    let abstraction = level.abstraction_degree;
956
957    // Apply abstraction-level specific processing
958    for value in processed.iter_mut() {
959        *value = *value * abstraction + (1.0 - abstraction) * value.tanh();
960    }
961
962    Ok(processed)
963}
964
965/// Update Level Performance Metrics
966#[allow(dead_code)]
967fn update_level_performance_metrics(
968    level: &mut LearningLevel,
969    output: &Array2<f64>,
970) -> NdimageResult<()> {
971    let performance = calculate_performance_score(output);
972    let old_rate = level.performancemetrics.learning_rate;
973
974    level.performancemetrics.learning_rate = old_rate * 0.9 + performance * 0.1;
975    level.performancemetrics.generalization_ability = calculate_generalization_score(output);
976
977    Ok(())
978}
979
980/// Apply Hierarchical Attention
981#[allow(dead_code)]
982fn apply_hierarchical_attention(
983    input: &Array2<f64>,
984    attention_weights: &Array1<f64>,
985) -> NdimageResult<Array2<f64>> {
986    let mut output = input.clone();
987    let attention_factor = attention_weights.mean().unwrap_or(1.0);
988
989    for value in output.iter_mut() {
990        *value *= attention_factor;
991    }
992
993    Ok(output)
994}
995
996/// Evaluate Strategy Fitness
997#[allow(dead_code)]
998fn evaluate_strategy_fitness(
999    strategy: &EvolutionaryStrategy,
1000    temporal_output: &Array2<f64>,
1001    hierarchical_output: &Array2<f64>,
1002) -> NdimageResult<f64> {
1003    let temporal_score = calculate_performance_score(temporal_output);
1004    let hierarchical_score = calculate_performance_score(hierarchical_output);
1005    let genome_quality = strategy.genome.mean().unwrap_or(0.0).abs();
1006
1007    Ok((temporal_score + hierarchical_score + genome_quality) / 3.0)
1008}
1009
1010/// Apply Selection for Evolutionary Strategies
1011#[allow(dead_code)]
1012fn apply_selection(
1013    population: &[EvolutionaryStrategy],
1014    mechanisms: &[SelectionMechanism],
1015) -> NdimageResult<Vec<EvolutionaryStrategy>> {
1016    if population.is_empty() {
1017        return Ok(Vec::new());
1018    }
1019
1020    let mut selected = Vec::new();
1021    let target_size = population.len();
1022
1023    for mechanism in mechanisms {
1024        match mechanism {
1025            SelectionMechanism::Elite { elite_fraction } => {
1026                let elite_count = (population.len() as f64 * elite_fraction) as usize;
1027                let mut sorted_pop = population.to_vec();
1028                sorted_pop.sort_by(|a, b| {
1029                    b.fitness
1030                        .partial_cmp(&a.fitness)
1031                        .unwrap_or(std::cmp::Ordering::Equal)
1032                });
1033                selected.extend(sorted_pop.into_iter().take(elite_count));
1034            }
1035            SelectionMechanism::Tournament { tournament_size } => {
1036                let mut rng = scirs2_core::random::rng();
1037                for _ in 0..(target_size - selected.len()) {
1038                    let mut tournament = Vec::new();
1039                    for _ in 0..*tournament_size {
1040                        let idx = rng.gen_range(0..population.len());
1041                        tournament.push(&population[idx]);
1042                    }
1043
1044                    let winner = tournament
1045                        .into_iter()
1046                        .max_by(|a, b| {
1047                            a.fitness
1048                                .partial_cmp(&b.fitness)
1049                                .unwrap_or(std::cmp::Ordering::Equal)
1050                        })
1051                        .unwrap();
1052                    selected.push(winner.clone());
1053                }
1054                break;
1055            }
1056            _ => {} // Handle other selection mechanisms as needed
1057        }
1058    }
1059
1060    // Ensure we have enough individuals
1061    while selected.len() < target_size && !population.is_empty() {
1062        selected.push(population[0].clone());
1063    }
1064
1065    Ok(selected)
1066}
1067
1068/// Crossover Between Two Strategies
1069#[allow(dead_code)]
1070fn crossover_strategies(
1071    parent1: &EvolutionaryStrategy,
1072    parent2: &EvolutionaryStrategy,
1073) -> NdimageResult<EvolutionaryStrategy> {
1074    let mut rng = scirs2_core::random::rng();
1075    let genome_size = parent1.genome.len().min(parent2.genome.len());
1076    let crossover_point = rng.gen_range(1..genome_size);
1077
1078    let mut new_genome = Array1::zeros(genome_size);
1079
1080    for i in 0..genome_size {
1081        if i < crossover_point {
1082            new_genome[i] = parent1.genome[i];
1083        } else {
1084            new_genome[i] = parent2.genome[i];
1085        }
1086    }
1087
1088    Ok(EvolutionaryStrategy {
1089        genome: new_genome,
1090        fitness: 0.0,
1091        age: 0,
1092        lineage: vec![parent1.lineage.len(), parent2.lineage.len()],
1093    })
1094}
1095
1096/// Mutate Strategy Genome
1097#[allow(dead_code)]
1098fn mutate_strategy(
1099    strategy: &mut EvolutionaryStrategy,
1100    mutation_params: &MutationParameters,
1101) -> NdimageResult<()> {
1102    let mut rng = scirs2_core::random::rng();
1103
1104    for gene in strategy.genome.iter_mut() {
1105        if rng.gen::<f64>() < mutation_params.mutation_rate {
1106            let mutation = match mutation_params.mutation_distribution {
1107                MutationDistribution::Gaussian { sigma } => rng.gen::<f64>() * sigma - sigma / 2.0,
1108                MutationDistribution::Uniform { range } => (rng.gen::<f64>() - 0.5) * range,
1109                MutationDistribution::Adaptive => {
1110                    let adaptive_strength = mutation_params.mutation_strength * gene.abs();
1111                    (rng.gen::<f64>() - 0.5) * adaptive_strength
1112                }
1113                _ => (rng.gen::<f64>() - 0.5) * mutation_params.mutation_strength,
1114            };
1115
1116            *gene += mutation;
1117            *gene = gene.max(-10.0).min(10.0); // Clamp values
1118        }
1119    }
1120
1121    Ok(())
1122}
1123
1124/// Record Evolution Generation
1125#[allow(dead_code)]
1126fn record_evolution_generation(
1127    strategy_evolution: &mut StrategyEvolution,
1128    task_context: &str,
1129) -> NdimageResult<()> {
1130    let best_fitness = strategy_evolution
1131        .strategy_population
1132        .iter()
1133        .map(|s| s.fitness)
1134        .fold(0.0, f64::max);
1135
1136    let avg_fitness = strategy_evolution
1137        .strategy_population
1138        .iter()
1139        .map(|s| s.fitness)
1140        .sum::<f64>()
1141        / strategy_evolution.strategy_population.len() as f64;
1142
1143    let generation = EvolutionGeneration {
1144        generation: strategy_evolution.evolutionhistory.len(),
1145        best_fitness,
1146        average_fitness: avg_fitness,
1147        diversity: calculate_population_diversity(&strategy_evolution.strategy_population),
1148        mutations: vec![format!("Context: {}", task_context)],
1149    };
1150
1151    strategy_evolution.evolutionhistory.push_back(generation);
1152
1153    // Maintain history window
1154    if strategy_evolution.evolutionhistory.len() > 50 {
1155        strategy_evolution.evolutionhistory.pop_front();
1156    }
1157
1158    Ok(())
1159}
1160
1161/// Calculate Population Diversity
1162#[allow(dead_code)]
1163fn calculate_population_diversity(population: &[EvolutionaryStrategy]) -> f64 {
1164    if population.len() < 2 {
1165        return 0.0;
1166    }
1167
1168    let mut total_distance = 0.0;
1169    let mut comparisons = 0;
1170
1171    for i in 0..population.len() {
1172        for j in i + 1..population.len() {
1173            let distance = calculate_genome_distance(&population[i].genome, &population[j].genome);
1174            total_distance += distance;
1175            comparisons += 1;
1176        }
1177    }
1178
1179    if comparisons > 0 {
1180        total_distance / comparisons as f64
1181    } else {
1182        0.0
1183    }
1184}
1185
1186/// Calculate Distance Between Genomes
1187#[allow(dead_code)]
1188fn calculate_genome_distance(genome1: &Array1<f64>, genome2: &Array1<f64>) -> f64 {
1189    let min_len = genome1.len().min(genome2.len());
1190    let mut distance = 0.0;
1191
1192    for i in 0..min_len {
1193        distance += (genome1[i] - genome2[i]).powi(2);
1194    }
1195
1196    distance.sqrt()
1197}
1198
1199/// Calculate Spatial Influence for Strategy Application
1200#[allow(dead_code)]
1201fn calculate_spatial_influence(y: usize, x: usize, gene_index: usize, genome: &Array1<f64>) -> f64 {
1202    let spatial_factor = ((y as f64).sin() + (x as f64).cos()) / 2.0;
1203    let gene_factor = if gene_index < genome.len() {
1204        genome[gene_index].tanh()
1205    } else {
1206        0.0
1207    };
1208
1209    spatial_factor * gene_factor
1210}
1211
1212/// Apply Replay Consolidation
1213#[allow(dead_code)]
1214fn apply_replay_consolidation(output: &Array2<f64>, strength: f64) -> NdimageResult<()> {
1215    // Simulate replay consolidation by reinforcing strong patterns
1216    let _replay_factor = strength * calculate_performance_score(output);
1217    // Implementation would reinforce memory patterns here
1218    Ok(())
1219}
1220
1221/// Apply Importance-Weighted Consolidation
1222#[allow(dead_code)]
1223fn apply_importance_weighted_consolidation(output: &Array2<f64>, decay: f64) -> NdimageResult<()> {
1224    // Simulate importance-weighted consolidation
1225    let _importance_weight = (1.0 - decay) * calculate_performance_score(output);
1226    // Implementation would weight memories by importance here
1227    Ok(())
1228}
1229
1230/// Update Learning Curves
1231#[allow(dead_code)]
1232fn update_learning_curves(
1233    tracker: &mut MetaLearningTracker,
1234    task_context: &str,
1235    performance_score: f64,
1236) -> NdimageResult<()> {
1237    let learning_curve = tracker
1238        .learning_curves
1239        .entry(task_context.to_string())
1240        .or_insert_with(|| LearningCurve {
1241            performance_timeline: Vec::new(),
1242            learning_rate_timeline: Vec::new(),
1243            convergence_point: None,
1244        });
1245
1246    learning_curve.performance_timeline.push(performance_score);
1247    learning_curve
1248        .learning_rate_timeline
1249        .push(performance_score * 0.1);
1250
1251    // Detect convergence
1252    if learning_curve.performance_timeline.len() > 10 {
1253        let recent_variance = calculate_recent_variance(&learning_curve.performance_timeline, 10);
1254        if recent_variance < 0.01 && learning_curve.convergence_point.is_none() {
1255            learning_curve.convergence_point = Some(learning_curve.performance_timeline.len());
1256        }
1257    }
1258
1259    Ok(())
1260}
1261
1262/// Calculate Recent Variance for Convergence Detection
1263#[allow(dead_code)]
1264fn calculate_recent_variance(timeline: &[f64], window_size: usize) -> f64 {
1265    if timeline.len() < window_size {
1266        return f64::INFINITY;
1267    }
1268
1269    let start = timeline.len() - window_size;
1270    let recent = &timeline[start..];
1271    let mean = recent.iter().sum::<f64>() / recent.len() as f64;
1272    let variance = recent.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / recent.len() as f64;
1273
1274    variance
1275}