1use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
27use scirs2_core::random::Rng;
28use std::collections::{HashMap, VecDeque};
29
30use super::config::*;
31use crate::NdimageResult;
32
33#[allow(dead_code)]
40pub fn meta_learning_adaptation(
41 consciousness_response: &Array2<f64>,
42 neural_response: &Array2<f64>,
43 causal_response: &Array2<f64>,
44 advanced_state: &mut AdvancedState,
45 config: &AdvancedConfig,
46) -> NdimageResult<Array2<f64>> {
47 let (height, width) = consciousness_response.dim();
48 let mut adapted_output = Array2::zeros((height, width));
49
50 let pattern_analysis = analyze_input_patterns(
52 consciousness_response,
53 neural_response,
54 causal_response,
55 config,
56 )?;
57
58 update_meta_learning_parameters(
60 &mut advanced_state.meta_parameters,
61 &pattern_analysis,
62 config,
63 )?;
64
65 for y in 0..height {
67 for x in 0..width {
68 let consciousness_val = consciousness_response[(y, x)];
69 let neural_val = neural_response[(y, x)];
70 let causal_val = causal_response[(y, x)];
71
72 let combination_weights = determine_optimal_weights(
74 (consciousness_val, neural_val, causal_val),
75 &advanced_state.meta_parameters,
76 (y, x),
77 config,
78 )?;
79
80 let adapted_value = consciousness_val * combination_weights.0
82 + neural_val * combination_weights.1
83 + causal_val * combination_weights.2;
84
85 adapted_output[(y, x)] = adapted_value;
86 }
87 }
88
89 apply_meta_learning_update(advanced_state, &adapted_output, config)?;
91
92 Ok(adapted_output)
93}
94
95#[allow(dead_code)]
101pub fn enhanced_meta_learning_with_temporal_fusion(
102 consciousness_response: &Array2<f64>,
103 neural_response: &Array2<f64>,
104 causal_response: &Array2<f64>,
105 advanced_state: &mut AdvancedState,
106 config: &AdvancedConfig,
107 meta_learning_system: &mut EnhancedMetaLearningSystem,
108 task_context: &str,
109) -> NdimageResult<Array2<f64>> {
110 let (height, width) = consciousness_response.dim();
111 let mut enhanced_output = Array2::zeros((height, width));
112
113 let temporal_memory_output = apply_temporal_memory_fusion(
115 consciousness_response,
116 neural_response,
117 causal_response,
118 &mut meta_learning_system.temporal_memory_fusion,
119 task_context,
120 )?;
121
122 let hierarchical_output = apply_hierarchical_learning(
124 &temporal_memory_output,
125 &mut meta_learning_system.hierarchical_learner,
126 advanced_state,
127 config,
128 )?;
129
130 let evolved_strategies = evolve_learning_strategies(
132 &mut meta_learning_system.strategy_evolution,
133 &temporal_memory_output,
134 &hierarchical_output,
135 task_context,
136 )?;
137
138 let strategy_enhanced_output = apply_evolved_strategies(
140 &hierarchical_output,
141 &evolved_strategies,
142 advanced_state,
143 config,
144 )?;
145
146 perform_adaptive_memory_consolidation(
148 &mut meta_learning_system.memory_consolidation,
149 &strategy_enhanced_output,
150 task_context,
151 )?;
152
153 update_meta_learning_performance(
155 &mut meta_learning_system.performance_tracker,
156 &strategy_enhanced_output,
157 task_context,
158 )?;
159
160 for y in 0..height {
162 for x in 0..width {
163 let temporal_val = temporal_memory_output[(y, x)];
164 let hierarchical_val = hierarchical_output[(y, x)];
165 let strategy_val = strategy_enhanced_output[(y, x)];
166
167 let fusion_weights = calculate_adaptive_fusion_weights(
169 (temporal_val, hierarchical_val, strategy_val),
170 meta_learning_system,
171 (y, x),
172 )?;
173
174 enhanced_output[(y, x)] = temporal_val * fusion_weights.0
175 + hierarchical_val * fusion_weights.1
176 + strategy_val * fusion_weights.2;
177 }
178 }
179
180 update_meta_learning_parameters_enhanced(
182 &mut advanced_state.meta_parameters,
183 &enhanced_output,
184 config,
185 )?;
186
187 Ok(enhanced_output)
188}
189
190#[allow(dead_code)]
195pub fn apply_temporal_memory_fusion(
196 consciousness_response: &Array2<f64>,
197 neural_response: &Array2<f64>,
198 causal_response: &Array2<f64>,
199 temporal_fusion: &mut TemporalMemoryFusion,
200 task_context: &str,
201) -> NdimageResult<Array2<f64>> {
202 let (height, width) = consciousness_response.dim();
203 let mut fused_output = Array2::zeros((height, width));
204
205 let current_trace = create_memory_trace(
207 consciousness_response,
208 neural_response,
209 causal_response,
210 task_context,
211 )?;
212
213 temporal_fusion.short_term_memory.push_back(current_trace);
215
216 if temporal_fusion.short_term_memory.len() > 20 {
218 if let Some(old_trace) = temporal_fusion.short_term_memory.pop_front() {
220 consolidate_to_long_term_memory(&old_trace, &mut temporal_fusion.long_term_memory)?;
221 }
222 }
223
224 for y in 0..height {
226 for x in 0..width {
227 let current_val = consciousness_response[(y, x)];
228
229 let relevant_memories = retrieve_relevant_memories(
231 &temporal_fusion.short_term_memory,
232 &temporal_fusion.long_term_memory,
233 (y, x),
234 task_context,
235 )?;
236
237 let fused_val = apply_memory_fusion(
239 current_val,
240 &relevant_memories,
241 &temporal_fusion.fusion_weights,
242 &temporal_fusion.decay_factors,
243 )?;
244
245 fused_output[(y, x)] = fused_val;
246 }
247 }
248
249 update_memory_attention(&mut temporal_fusion.attention_mechanism, &fused_output)?;
251
252 Ok(fused_output)
253}
254
255#[allow(dead_code)]
264pub fn analyze_input_patterns(
265 consciousness: &Array2<f64>,
266 neural: &Array2<f64>,
267 causal: &Array2<f64>,
268 config: &AdvancedConfig,
269) -> NdimageResult<Array2<f64>> {
270 let (height, width) = consciousness.dim();
271 let mut pattern_analysis = Array2::zeros((4, 3)); let consciousness_stats = calculate_statistical_metrics(consciousness);
275 let neural_stats = calculate_statistical_metrics(neural);
276 let causal_stats = calculate_statistical_metrics(causal);
277
278 pattern_analysis[(0, 0)] = consciousness_stats.0; pattern_analysis[(0, 1)] = neural_stats.0;
280 pattern_analysis[(0, 2)] = causal_stats.0;
281
282 pattern_analysis[(1, 0)] = consciousness_stats.1; pattern_analysis[(1, 1)] = neural_stats.1;
284 pattern_analysis[(1, 2)] = causal_stats.1;
285
286 let consciousness_freq = analyze_frequency_characteristics(consciousness);
288 let neural_freq = analyze_frequency_characteristics(neural);
289 let causal_freq = analyze_frequency_characteristics(causal);
290
291 pattern_analysis[(2, 0)] = consciousness_freq;
292 pattern_analysis[(2, 1)] = neural_freq;
293 pattern_analysis[(2, 2)] = causal_freq;
294
295 let consciousness_corr = calculate_spatial_correlation(consciousness);
297 let neural_corr = calculate_spatial_correlation(neural);
298 let causal_corr = calculate_spatial_correlation(causal);
299
300 pattern_analysis[(3, 0)] = consciousness_corr;
301 pattern_analysis[(3, 1)] = neural_corr;
302 pattern_analysis[(3, 2)] = causal_corr;
303
304 Ok(pattern_analysis)
305}
306
307#[allow(dead_code)]
312pub fn update_meta_learning_parameters(
313 meta_params: &mut Array2<f64>,
314 pattern_analysis: &Array2<f64>,
315 config: &AdvancedConfig,
316) -> NdimageResult<()> {
317 let (rows, cols) = meta_params.dim();
318
319 for i in 0..rows.min(pattern_analysis.nrows()) {
320 for j in 0..cols.min(pattern_analysis.ncols()) {
321 let analysis_value = pattern_analysis[(i, j)];
322 let current_param = meta_params[(i, j)];
323
324 let adaptation_factor = calculate_adaptation_factor(analysis_value, config);
326 meta_params[(i, j)] = current_param + config.meta_learning_rate * adaptation_factor;
327
328 meta_params[(i, j)] = meta_params[(i, j)].max(-10.0).min(10.0);
330 }
331 }
332
333 Ok(())
334}
335
336#[allow(dead_code)]
340pub fn update_meta_learning_parameters_enhanced(
341 meta_params: &mut Array2<f64>,
342 output: &Array2<f64>,
343 config: &AdvancedConfig,
344) -> NdimageResult<()> {
345 let (rows, cols) = meta_params.dim();
346 let output_mean = output.mean().unwrap_or(0.0);
347 let output_std = output.std(0.0);
348
349 let performance_factor = (output_mean.abs() + output_std).tanh();
351
352 for i in 0..rows {
353 for j in 0..cols {
354 let gradient = calculate_meta_gradient(i, j, output, config);
355 let adaptive_rate = config.meta_learning_rate * performance_factor;
356
357 meta_params[(i, j)] += adaptive_rate * gradient;
358 meta_params[(i, j)] = meta_params[(i, j)].max(-5.0).min(5.0);
359 }
360 }
361
362 Ok(())
363}
364
365#[allow(dead_code)]
370pub fn determine_optimal_weights(
371 inputs: (f64, f64, f64),
372 meta_params: &Array2<f64>,
373 position: (usize, usize),
374 config: &AdvancedConfig,
375) -> NdimageResult<(f64, f64, f64)> {
376 let (consciousness_val, neural_val, causal_val) = inputs;
377 let (y, x) = position;
378
379 let spatial_factor = ((y as f64 / 100.0).sin() + (x as f64 / 100.0).cos()) * 0.1;
381 let magnitude_factor = (consciousness_val.abs() + neural_val.abs() + causal_val.abs()) / 3.0;
382
383 let base_weights = if meta_params.nrows() >= 3 && meta_params.ncols() >= 1 {
385 (
386 meta_params[(0, 0)].tanh() * 0.5 + 0.5,
387 meta_params[(1, 0)].tanh() * 0.5 + 0.5,
388 meta_params[(2, 0)].tanh() * 0.5 + 0.5,
389 )
390 } else {
391 (0.33, 0.33, 0.34)
392 };
393
394 let consciousness_weight = base_weights.0 + spatial_factor * config.meta_learning_rate;
396 let neural_weight = base_weights.1 + magnitude_factor * config.meta_learning_rate;
397 let causal_weight =
398 base_weights.2 - (spatial_factor + magnitude_factor) * config.meta_learning_rate * 0.5;
399
400 let total_weight = consciousness_weight + neural_weight + causal_weight;
402 if total_weight > 0.0 {
403 Ok((
404 consciousness_weight / total_weight,
405 neural_weight / total_weight,
406 causal_weight / total_weight,
407 ))
408 } else {
409 Ok((0.33, 0.33, 0.34))
410 }
411}
412
413#[allow(dead_code)]
417pub fn apply_meta_learning_update(
418 advanced_state: &mut AdvancedState,
419 output: &Array2<f64>,
420 config: &AdvancedConfig,
421) -> NdimageResult<()> {
422 let performance_score = calculate_performance_score(output);
424
425 advanced_state.processing_cycles += 1;
427
428 advanced_state.efficiencymetrics.ops_per_second =
430 performance_score * config.meta_learning_rate * 1000.0;
431
432 if performance_score > 0.5 {
434 let memory_snapshot = output
435 .slice(s![0..output.nrows().min(32), 0..output.ncols().min(32)])
436 .to_owned();
437 advanced_state
438 .temporal_memory
439 .push_back(memory_snapshot.insert_axis(Axis(2)));
440
441 if advanced_state.temporal_memory.len() > config.temporal_window {
443 advanced_state.temporal_memory.pop_front();
444 }
445 }
446
447 Ok(())
448}
449
450#[allow(dead_code)]
454pub fn apply_hierarchical_learning(
455 input: &Array2<f64>,
456 hierarchical_learner: &mut HierarchicalLearner,
457 state: &AdvancedState,
458 config: &AdvancedConfig,
459) -> NdimageResult<Array2<f64>> {
460 let mut processed_output = input.clone();
461
462 for level in hierarchical_learner.hierarchy_levels.iter_mut() {
464 processed_output = apply_level_processing(&processed_output, level, config)?;
465
466 update_level_performance_metrics(level, &processed_output)?;
468 }
469
470 let attention_weights = &hierarchical_learner.hierarchical_attention;
472 let final_output = apply_hierarchical_attention(&processed_output, attention_weights)?;
473
474 Ok(final_output)
475}
476
477#[allow(dead_code)]
481pub fn evolve_learning_strategies(
482 strategy_evolution: &mut StrategyEvolution,
483 temporal_output: &Array2<f64>,
484 hierarchical_output: &Array2<f64>,
485 task_context: &str,
486) -> NdimageResult<Vec<EvolutionaryStrategy>> {
487 let mut rng = scirs2_core::random::rng();
488
489 for strategy in strategy_evolution.strategy_population.iter_mut() {
491 strategy.fitness =
492 evaluate_strategy_fitness(strategy, temporal_output, hierarchical_output)?;
493 }
494
495 let selected_strategies = apply_selection(
497 &strategy_evolution.strategy_population,
498 &strategy_evolution.selection_mechanisms,
499 )?;
500
501 let mut new_population = Vec::new();
503 for _ in 0..selected_strategies.len() {
504 let parent1 = &selected_strategies[rng.gen_range(0..selected_strategies.len())];
505 let parent2 = &selected_strategies[rng.gen_range(0..selected_strategies.len())];
506
507 let mut offspring = crossover_strategies(parent1, parent2)?;
508 mutate_strategy(&mut offspring, &strategy_evolution.mutation_params)?;
509
510 new_population.push(offspring);
511 }
512
513 strategy_evolution.strategy_population = new_population;
515
516 record_evolution_generation(strategy_evolution, task_context)?;
518
519 Ok(strategy_evolution.strategy_population.clone())
520}
521
522#[allow(dead_code)]
526pub fn apply_evolved_strategies(
527 input: &Array2<f64>,
528 strategies: &[EvolutionaryStrategy],
529 advanced_state: &AdvancedState,
530 config: &AdvancedConfig,
531) -> NdimageResult<Array2<f64>> {
532 if strategies.is_empty() {
533 return Ok(input.clone());
534 }
535
536 let best_strategy = strategies
538 .iter()
539 .max_by(|a, b| {
540 a.fitness
541 .partial_cmp(&b.fitness)
542 .unwrap_or(std::cmp::Ordering::Equal)
543 })
544 .unwrap();
545
546 let mut enhanced_output = input.clone();
548
549 for (i, gene) in best_strategy.genome.iter().enumerate() {
551 let transformation_factor = gene.tanh() * config.meta_learning_rate;
552
553 for ((y, x), value) in enhanced_output.indexed_iter_mut() {
555 let spatial_influence = calculate_spatial_influence(y, x, i, &best_strategy.genome);
556 *value = *value * (1.0 + transformation_factor * spatial_influence);
557 }
558 }
559
560 Ok(enhanced_output)
561}
562
563#[allow(dead_code)]
567pub fn perform_adaptive_memory_consolidation(
568 consolidation: &mut AdaptiveMemoryConsolidation,
569 output: &Array2<f64>,
570 task_context: &str,
571) -> NdimageResult<()> {
572 let performance_score = calculate_performance_score(output);
573
574 for strategy in consolidation.consolidation_strategies.iter() {
576 match strategy {
577 ConsolidationStrategy::ReplayBased { replay_frequency } => {
578 if performance_score > *replay_frequency {
579 apply_replay_consolidation(output, *replay_frequency)?;
580 }
581 }
582 ConsolidationStrategy::ImportanceWeighted {
583 importance_threshold,
584 } => {
585 apply_importance_weighted_consolidation(output, *importance_threshold)?;
586 }
587 _ => {} }
589 }
590
591 consolidation
593 .effectiveness_metrics
594 .consolidation_success_rate = (consolidation
595 .effectiveness_metrics
596 .consolidation_success_rate
597 * 0.9)
598 + (performance_score * 0.1);
599
600 Ok(())
601}
602
603#[allow(dead_code)]
607pub fn update_meta_learning_performance(
608 tracker: &mut MetaLearningTracker,
609 output: &Array2<f64>,
610 task_context: &str,
611) -> NdimageResult<()> {
612 let performance_score = calculate_performance_score(output);
613 let learning_time = 1.0; let generalization_score = calculate_generalization_score(output);
615 let resource_usage = calculate_resource_usage(output);
616
617 let performance = MetaLearningPerformance {
619 task_id: task_context.to_string(),
620 performance_score,
621 learning_time,
622 generalization_score,
623 resource_usage,
624 };
625
626 tracker.performancehistory.push_back(performance);
627
628 if tracker.performancehistory.len() > 100 {
630 tracker.performancehistory.pop_front();
631 }
632
633 update_learning_curves(tracker, task_context, performance_score)?;
635
636 Ok(())
637}
638
639#[allow(dead_code)]
643pub fn calculate_adaptive_fusion_weights(
644 values: (f64, f64, f64),
645 meta_system: &EnhancedMetaLearningSystem,
646 position: (usize, usize),
647) -> NdimageResult<(f64, f64, f64)> {
648 let (temporal_val, hierarchical_val, strategy_val) = values;
649 let (y, x) = position;
650
651 let attention_weights = &meta_system
653 .temporal_memory_fusion
654 .attention_mechanism
655 .attention_weights;
656
657 let temporal_weight = attention_weights.get("temporal").unwrap_or(&0.33);
658 let hierarchical_weight = attention_weights.get("hierarchical").unwrap_or(&0.33);
659 let strategy_weight = attention_weights.get("strategy").unwrap_or(&0.34);
660
661 let position_factor = (y as f64 * x as f64).sqrt() / 1000.0;
663 let value_factor = (temporal_val.abs() + hierarchical_val.abs() + strategy_val.abs()) / 3.0;
664
665 let mut w1 = temporal_weight + position_factor * 0.1;
667 let mut w2 = hierarchical_weight + value_factor * 0.1;
668 let mut w3 = strategy_weight + (1.0 - position_factor - value_factor) * 0.1;
669
670 let total = w1 + w2 + w3;
672 if total > 0.0 {
673 w1 /= total;
674 w2 /= total;
675 w3 /= total;
676 } else {
677 w1 = 0.33;
678 w2 = 0.33;
679 w3 = 0.34;
680 }
681
682 Ok((w1, w2, w3))
683}
684
685#[allow(dead_code)]
691pub fn create_memory_trace(
692 consciousness_response: &Array2<f64>,
693 neural_response: &Array2<f64>,
694 causal_response: &Array2<f64>,
695 task_context: &str,
696) -> NdimageResult<MemoryTrace> {
697 let (height, width) = consciousness_response.dim();
698 let mut content = Array2::zeros((height, width));
699
700 for y in 0..height {
702 for x in 0..width {
703 content[(y, x)] = (consciousness_response[(y, x)]
704 + neural_response[(y, x)]
705 + causal_response[(y, x)])
706 / 3.0;
707 }
708 }
709
710 let importance = content.mean().unwrap_or(0.0).abs() + content.std(0.0);
712
713 let context = MemoryContext {
715 operation_type: task_context.to_string(),
716 data_characteristics: vec![
717 consciousness_response.mean().unwrap_or(0.0),
718 neural_response.mean().unwrap_or(0.0),
719 causal_response.mean().unwrap_or(0.0),
720 ],
721 performance_outcome: importance,
722 environment: HashMap::new(),
723 };
724
725 Ok(MemoryTrace {
726 content,
727 context,
728 importance,
729 timestamp: 0, access_count: 0,
731 })
732}
733
734#[allow(dead_code)]
736pub fn consolidate_to_long_term_memory(
737 trace: &MemoryTrace,
738 long_term_memory: &mut HashMap<String, ConsolidatedMemory>,
739) -> NdimageResult<()> {
740 let key = trace.context.operation_type.clone();
741
742 let consolidated = ConsolidatedMemory {
743 representation: trace.content.clone(),
744 strength: trace.importance,
745 generalization_scope: trace.importance * 0.8,
746 usage_stats: MemoryUsageStats {
747 total_accesses: trace.access_count,
748 success_rate: 0.5,
749 avg_improvement: trace.importance * 0.1,
750 last_access: trace.timestamp,
751 },
752 };
753
754 long_term_memory.insert(key, consolidated);
755 Ok(())
756}
757
758#[allow(dead_code)]
760pub fn retrieve_relevant_memories(
761 short_term: &VecDeque<MemoryTrace>,
762 long_term: &HashMap<String, ConsolidatedMemory>,
763 position: (usize, usize),
764 context: &str,
765) -> NdimageResult<Vec<f64>> {
766 let mut relevant_memories = Vec::new();
767
768 for trace in short_term.iter().rev().take(5) {
770 if trace.context.operation_type.contains(context) {
771 let (y, x) = position;
772 if y < trace.content.nrows() && x < trace.content.ncols() {
773 relevant_memories.push(trace.content[(y, x)]);
774 }
775 }
776 }
777
778 if let Some(consolidated) = long_term.get(context) {
780 let (y, x) = position;
781 if y < consolidated.representation.nrows() && x < consolidated.representation.ncols() {
782 relevant_memories.push(consolidated.representation[(y, x)] * consolidated.strength);
783 }
784 }
785
786 if relevant_memories.is_empty() {
788 relevant_memories.push(0.0);
789 }
790
791 Ok(relevant_memories)
792}
793
794#[allow(dead_code)]
796pub fn apply_memory_fusion(
797 current_val: f64,
798 memories: &[f64],
799 fusion_weights: &Array1<f64>,
800 decay_factors: &Array1<f64>,
801) -> NdimageResult<f64> {
802 if memories.is_empty() {
803 return Ok(current_val);
804 }
805
806 let mut fused_value = current_val;
807
808 for (i, &memory_val) in memories.iter().enumerate() {
809 let weight_idx = i.min(fusion_weights.len() - 1);
810 let decay_idx = i.min(decay_factors.len() - 1);
811
812 let weight = fusion_weights[weight_idx];
813 let decay = decay_factors[decay_idx];
814
815 fused_value += memory_val * weight * decay;
816 }
817
818 Ok(fused_value)
819}
820
821#[allow(dead_code)]
823pub fn update_memory_attention(
824 attention: &mut MemoryAttention,
825 output: &Array2<f64>,
826) -> NdimageResult<()> {
827 let performance_score = calculate_performance_score(output);
828
829 for (key, weight) in attention.attention_weights.iter_mut() {
831 *weight = (*weight * (1.0 - attention.adaptation_rate))
832 + (performance_score * attention.adaptation_rate);
833 *weight = weight.max(0.0).min(1.0);
834 }
835
836 Ok(())
837}
838
839#[allow(dead_code)]
845fn calculate_statistical_metrics(data: &Array2<f64>) -> (f64, f64) {
846 let mean = data.mean().unwrap_or(0.0);
847 let variance = data.var(0.0);
848 (mean, variance)
849}
850
851#[allow(dead_code)]
853fn analyze_frequency_characteristics(data: &Array2<f64>) -> f64 {
854 let mut high_freq_content = 0.0;
856 let (rows, cols) = data.dim();
857
858 for i in 1..rows {
859 for j in 1..cols {
860 let dx = data[(i, j)] - data[(i - 1, j)];
861 let dy = data[(i, j)] - data[(i, j - 1)];
862 high_freq_content += (dx * dx + dy * dy).sqrt();
863 }
864 }
865
866 high_freq_content / ((rows * cols) as f64)
867}
868
869#[allow(dead_code)]
871fn calculate_spatial_correlation(data: &Array2<f64>) -> f64 {
872 let (rows, cols) = data.dim();
873 if rows < 2 || cols < 2 {
874 return 0.0;
875 }
876
877 let mut correlation = 0.0;
878 let mut count = 0;
879
880 for i in 0..rows - 1 {
881 for j in 0..cols - 1 {
882 let current = data[(i, j)];
883 let right = data[(i, j + 1)];
884 let down = data[(i + 1, j)];
885
886 correlation += current * right + current * down;
887 count += 2;
888 }
889 }
890
891 if count > 0 {
892 correlation / count as f64
893 } else {
894 0.0
895 }
896}
897
898#[allow(dead_code)]
900fn calculate_adaptation_factor(analysis_value: f64, config: &AdvancedConfig) -> f64 {
901 let base_factor = analysis_value.tanh();
902 let intensity_factor = config.advanced_processing_intensity;
903 base_factor * intensity_factor
904}
905
906#[allow(dead_code)]
908fn calculate_meta_gradient(
909 i: usize,
910 j: usize,
911 output: &Array2<f64>,
912 config: &AdvancedConfig,
913) -> f64 {
914 let performance_gradient = if i < output.nrows() && j < output.ncols() {
915 output[(i, j)]
916 } else {
917 output.mean().unwrap_or(0.0)
918 };
919
920 performance_gradient * config.meta_learning_rate
921}
922
923#[allow(dead_code)]
925fn calculate_performance_score(output: &Array2<f64>) -> f64 {
926 let mean = output.mean().unwrap_or(0.0);
927 let std = output.std(0.0);
928 (mean.abs() + std).tanh()
929}
930
931#[allow(dead_code)]
933fn calculate_generalization_score(output: &Array2<f64>) -> f64 {
934 let variance = output.var(0.0);
935 let entropy = -variance * variance.ln().max(-10.0);
936 entropy.tanh()
937}
938
939#[allow(dead_code)]
941fn calculate_resource_usage(output: &Array2<f64>) -> f64 {
942 let complexity = output.len() as f64;
943 let processing_intensity = output.map(|x| x.abs()).sum();
944 (processing_intensity / complexity).tanh()
945}
946
947#[allow(dead_code)]
949fn apply_level_processing(
950 input: &Array2<f64>,
951 level: &mut LearningLevel,
952 config: &AdvancedConfig,
953) -> NdimageResult<Array2<f64>> {
954 let mut processed = input.clone();
955 let abstraction = level.abstraction_degree;
956
957 for value in processed.iter_mut() {
959 *value = *value * abstraction + (1.0 - abstraction) * value.tanh();
960 }
961
962 Ok(processed)
963}
964
965#[allow(dead_code)]
967fn update_level_performance_metrics(
968 level: &mut LearningLevel,
969 output: &Array2<f64>,
970) -> NdimageResult<()> {
971 let performance = calculate_performance_score(output);
972 let old_rate = level.performancemetrics.learning_rate;
973
974 level.performancemetrics.learning_rate = old_rate * 0.9 + performance * 0.1;
975 level.performancemetrics.generalization_ability = calculate_generalization_score(output);
976
977 Ok(())
978}
979
980#[allow(dead_code)]
982fn apply_hierarchical_attention(
983 input: &Array2<f64>,
984 attention_weights: &Array1<f64>,
985) -> NdimageResult<Array2<f64>> {
986 let mut output = input.clone();
987 let attention_factor = attention_weights.mean().unwrap_or(1.0);
988
989 for value in output.iter_mut() {
990 *value *= attention_factor;
991 }
992
993 Ok(output)
994}
995
996#[allow(dead_code)]
998fn evaluate_strategy_fitness(
999 strategy: &EvolutionaryStrategy,
1000 temporal_output: &Array2<f64>,
1001 hierarchical_output: &Array2<f64>,
1002) -> NdimageResult<f64> {
1003 let temporal_score = calculate_performance_score(temporal_output);
1004 let hierarchical_score = calculate_performance_score(hierarchical_output);
1005 let genome_quality = strategy.genome.mean().unwrap_or(0.0).abs();
1006
1007 Ok((temporal_score + hierarchical_score + genome_quality) / 3.0)
1008}
1009
1010#[allow(dead_code)]
1012fn apply_selection(
1013 population: &[EvolutionaryStrategy],
1014 mechanisms: &[SelectionMechanism],
1015) -> NdimageResult<Vec<EvolutionaryStrategy>> {
1016 if population.is_empty() {
1017 return Ok(Vec::new());
1018 }
1019
1020 let mut selected = Vec::new();
1021 let target_size = population.len();
1022
1023 for mechanism in mechanisms {
1024 match mechanism {
1025 SelectionMechanism::Elite { elite_fraction } => {
1026 let elite_count = (population.len() as f64 * elite_fraction) as usize;
1027 let mut sorted_pop = population.to_vec();
1028 sorted_pop.sort_by(|a, b| {
1029 b.fitness
1030 .partial_cmp(&a.fitness)
1031 .unwrap_or(std::cmp::Ordering::Equal)
1032 });
1033 selected.extend(sorted_pop.into_iter().take(elite_count));
1034 }
1035 SelectionMechanism::Tournament { tournament_size } => {
1036 let mut rng = scirs2_core::random::rng();
1037 for _ in 0..(target_size - selected.len()) {
1038 let mut tournament = Vec::new();
1039 for _ in 0..*tournament_size {
1040 let idx = rng.gen_range(0..population.len());
1041 tournament.push(&population[idx]);
1042 }
1043
1044 let winner = tournament
1045 .into_iter()
1046 .max_by(|a, b| {
1047 a.fitness
1048 .partial_cmp(&b.fitness)
1049 .unwrap_or(std::cmp::Ordering::Equal)
1050 })
1051 .unwrap();
1052 selected.push(winner.clone());
1053 }
1054 break;
1055 }
1056 _ => {} }
1058 }
1059
1060 while selected.len() < target_size && !population.is_empty() {
1062 selected.push(population[0].clone());
1063 }
1064
1065 Ok(selected)
1066}
1067
1068#[allow(dead_code)]
1070fn crossover_strategies(
1071 parent1: &EvolutionaryStrategy,
1072 parent2: &EvolutionaryStrategy,
1073) -> NdimageResult<EvolutionaryStrategy> {
1074 let mut rng = scirs2_core::random::rng();
1075 let genome_size = parent1.genome.len().min(parent2.genome.len());
1076 let crossover_point = rng.gen_range(1..genome_size);
1077
1078 let mut new_genome = Array1::zeros(genome_size);
1079
1080 for i in 0..genome_size {
1081 if i < crossover_point {
1082 new_genome[i] = parent1.genome[i];
1083 } else {
1084 new_genome[i] = parent2.genome[i];
1085 }
1086 }
1087
1088 Ok(EvolutionaryStrategy {
1089 genome: new_genome,
1090 fitness: 0.0,
1091 age: 0,
1092 lineage: vec![parent1.lineage.len(), parent2.lineage.len()],
1093 })
1094}
1095
1096#[allow(dead_code)]
1098fn mutate_strategy(
1099 strategy: &mut EvolutionaryStrategy,
1100 mutation_params: &MutationParameters,
1101) -> NdimageResult<()> {
1102 let mut rng = scirs2_core::random::rng();
1103
1104 for gene in strategy.genome.iter_mut() {
1105 if rng.gen::<f64>() < mutation_params.mutation_rate {
1106 let mutation = match mutation_params.mutation_distribution {
1107 MutationDistribution::Gaussian { sigma } => rng.gen::<f64>() * sigma - sigma / 2.0,
1108 MutationDistribution::Uniform { range } => (rng.gen::<f64>() - 0.5) * range,
1109 MutationDistribution::Adaptive => {
1110 let adaptive_strength = mutation_params.mutation_strength * gene.abs();
1111 (rng.gen::<f64>() - 0.5) * adaptive_strength
1112 }
1113 _ => (rng.gen::<f64>() - 0.5) * mutation_params.mutation_strength,
1114 };
1115
1116 *gene += mutation;
1117 *gene = gene.max(-10.0).min(10.0); }
1119 }
1120
1121 Ok(())
1122}
1123
1124#[allow(dead_code)]
1126fn record_evolution_generation(
1127 strategy_evolution: &mut StrategyEvolution,
1128 task_context: &str,
1129) -> NdimageResult<()> {
1130 let best_fitness = strategy_evolution
1131 .strategy_population
1132 .iter()
1133 .map(|s| s.fitness)
1134 .fold(0.0, f64::max);
1135
1136 let avg_fitness = strategy_evolution
1137 .strategy_population
1138 .iter()
1139 .map(|s| s.fitness)
1140 .sum::<f64>()
1141 / strategy_evolution.strategy_population.len() as f64;
1142
1143 let generation = EvolutionGeneration {
1144 generation: strategy_evolution.evolutionhistory.len(),
1145 best_fitness,
1146 average_fitness: avg_fitness,
1147 diversity: calculate_population_diversity(&strategy_evolution.strategy_population),
1148 mutations: vec![format!("Context: {}", task_context)],
1149 };
1150
1151 strategy_evolution.evolutionhistory.push_back(generation);
1152
1153 if strategy_evolution.evolutionhistory.len() > 50 {
1155 strategy_evolution.evolutionhistory.pop_front();
1156 }
1157
1158 Ok(())
1159}
1160
1161#[allow(dead_code)]
1163fn calculate_population_diversity(population: &[EvolutionaryStrategy]) -> f64 {
1164 if population.len() < 2 {
1165 return 0.0;
1166 }
1167
1168 let mut total_distance = 0.0;
1169 let mut comparisons = 0;
1170
1171 for i in 0..population.len() {
1172 for j in i + 1..population.len() {
1173 let distance = calculate_genome_distance(&population[i].genome, &population[j].genome);
1174 total_distance += distance;
1175 comparisons += 1;
1176 }
1177 }
1178
1179 if comparisons > 0 {
1180 total_distance / comparisons as f64
1181 } else {
1182 0.0
1183 }
1184}
1185
1186#[allow(dead_code)]
1188fn calculate_genome_distance(genome1: &Array1<f64>, genome2: &Array1<f64>) -> f64 {
1189 let min_len = genome1.len().min(genome2.len());
1190 let mut distance = 0.0;
1191
1192 for i in 0..min_len {
1193 distance += (genome1[i] - genome2[i]).powi(2);
1194 }
1195
1196 distance.sqrt()
1197}
1198
1199#[allow(dead_code)]
1201fn calculate_spatial_influence(y: usize, x: usize, gene_index: usize, genome: &Array1<f64>) -> f64 {
1202 let spatial_factor = ((y as f64).sin() + (x as f64).cos()) / 2.0;
1203 let gene_factor = if gene_index < genome.len() {
1204 genome[gene_index].tanh()
1205 } else {
1206 0.0
1207 };
1208
1209 spatial_factor * gene_factor
1210}
1211
1212#[allow(dead_code)]
1214fn apply_replay_consolidation(output: &Array2<f64>, strength: f64) -> NdimageResult<()> {
1215 let _replay_factor = strength * calculate_performance_score(output);
1217 Ok(())
1219}
1220
1221#[allow(dead_code)]
1223fn apply_importance_weighted_consolidation(output: &Array2<f64>, decay: f64) -> NdimageResult<()> {
1224 let _importance_weight = (1.0 - decay) * calculate_performance_score(output);
1226 Ok(())
1228}
1229
1230#[allow(dead_code)]
1232fn update_learning_curves(
1233 tracker: &mut MetaLearningTracker,
1234 task_context: &str,
1235 performance_score: f64,
1236) -> NdimageResult<()> {
1237 let learning_curve = tracker
1238 .learning_curves
1239 .entry(task_context.to_string())
1240 .or_insert_with(|| LearningCurve {
1241 performance_timeline: Vec::new(),
1242 learning_rate_timeline: Vec::new(),
1243 convergence_point: None,
1244 });
1245
1246 learning_curve.performance_timeline.push(performance_score);
1247 learning_curve
1248 .learning_rate_timeline
1249 .push(performance_score * 0.1);
1250
1251 if learning_curve.performance_timeline.len() > 10 {
1253 let recent_variance = calculate_recent_variance(&learning_curve.performance_timeline, 10);
1254 if recent_variance < 0.01 && learning_curve.convergence_point.is_none() {
1255 learning_curve.convergence_point = Some(learning_curve.performance_timeline.len());
1256 }
1257 }
1258
1259 Ok(())
1260}
1261
1262#[allow(dead_code)]
1264fn calculate_recent_variance(timeline: &[f64], window_size: usize) -> f64 {
1265 if timeline.len() < window_size {
1266 return f64::INFINITY;
1267 }
1268
1269 let start = timeline.len() - window_size;
1270 let recent = &timeline[start..];
1271 let mean = recent.iter().sum::<f64>() / recent.len() as f64;
1272 let variance = recent.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / recent.len() as f64;
1273
1274 variance
1275}