1#![allow(clippy::too_many_arguments)]
8#![allow(clippy::uninlined_format_args)]
9#![allow(clippy::borrowed_box)]
10#![allow(dead_code)]
11
12use crate::error::{MetricsError, Result};
13use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
14use scirs2_core::numeric::Float;
15use scirs2_core::simd_ops::{PlatformCapabilities, SimdUnifiedOps};
16use std::collections::HashMap;
17use std::sync::Arc;
18use std::time::{Duration, Instant};
19
20#[derive(Debug)]
22pub struct EnhancedGpuEngine {
23 backends: Vec<Box<dyn GpuBackend + Send + Sync>>,
25 active_backend: Option<usize>,
27 memory_manager: Arc<GpuMemoryPool>,
29 kernel_cache: KernelCache,
31 profiler: GpuProfiler,
33 kernel_optimizer: KernelOptimizer,
35 stream_manager: StreamManager,
37}
38
39pub trait GpuBackend: std::fmt::Debug {
41 fn initialize(&mut self) -> Result<()>;
43
44 fn get_info(&self) -> BackendInfo;
46
47 fn allocate_memory(&self, size: usize) -> Result<GpuMemoryHandle>;
49
50 fn copy_to_gpu(&self, handle: &GpuMemoryHandle, data: &[f32]) -> Result<()>;
52
53 fn copy_from_gpu(&self, handle: &GpuMemoryHandle, data: &mut [f32]) -> Result<()>;
55
56 fn execute_kernel(&self, kernel: &ComputeKernel, params: &KernelParams) -> Result<()>;
58
59 fn create_kernel(&self, source: &str, entrypoint: &str) -> Result<ComputeKernel>;
61
62 fn synchronize(&self) -> Result<()>;
64
65 fn get_name(&self) -> &str;
67
68 fn is_available(&self) -> bool;
70}
71
72#[derive(Debug, Clone)]
74pub struct BackendInfo {
75 pub name: String,
76 pub version: String,
77 pub device_name: String,
78 pub compute_units: u32,
79 pub global_memory: usize,
80 pub local_memory: usize,
81 pub max_work_group_size: usize,
82 pub supports_double_precision: bool,
83 pub supports_half_precision: bool,
84}
85
86#[derive(Debug, Clone)]
88pub struct GpuMemoryHandle {
89 pub id: u64,
90 pub size: usize,
91 pub backend_handle: u64,
92 pub allocated_at: Instant,
93}
94
95#[derive(Debug, Clone)]
97pub struct ComputeKernel {
98 pub id: u64,
99 pub name: String,
100 pub source: String,
101 pub entrypoint: String,
102 pub backend_kernel: u64,
103 pub local_work_size: [usize; 3],
104 pub global_work_size: [usize; 3],
105 pub parameters: Vec<KernelParameter>,
106}
107
108#[derive(Debug, Clone)]
110pub struct KernelParameter {
111 pub name: String,
112 pub param_type: KernelParameterType,
113 pub size: usize,
114}
115
116#[derive(Debug, Clone)]
118pub enum KernelParameterType {
119 Buffer,
120 Scalar,
121 LocalMemory,
122 Image,
123}
124
125#[derive(Debug, Clone)]
127pub struct KernelParams {
128 pub buffers: Vec<GpuMemoryHandle>,
129 pub scalars: Vec<f32>,
130 pub local_memory_sizes: Vec<usize>,
131 pub global_work_size: [usize; 3],
132 pub local_work_size: [usize; 3],
133}
134
135#[derive(Debug)]
137pub struct GpuMemoryPool {
138 size_classes: HashMap<usize, Vec<GpuMemoryHandle>>,
140 total_allocated: usize,
142 allocation_strategy: AllocationStrategy,
144 defrag_settings: DefragmentationSettings,
146}
147
148#[derive(Debug, Clone)]
150pub enum AllocationStrategy {
151 FirstFit,
153 BestFit,
155 BuddySystem,
157 SlabAllocation { min_size: usize, max_size: usize },
159}
160
161#[derive(Debug, Clone)]
163pub struct DefragmentationSettings {
164 pub auto_defrag: bool,
166 pub defrag_threshold: f64,
168 pub defrag_interval: Duration,
170}
171
172#[derive(Debug)]
174pub struct KernelCache {
175 kernels: HashMap<u64, ComputeKernel>,
177 stats: CacheStatistics,
179 eviction_policy: EvictionPolicy,
181}
182
183#[derive(Debug, Clone)]
185pub struct CacheStatistics {
186 pub hits: u64,
187 pub misses: u64,
188 pub evictions: u64,
189 pub total_kernels: usize,
190}
191
192#[derive(Debug, Clone)]
194pub enum EvictionPolicy {
195 LRU,
197 LFU,
199 TTL(Duration),
201 SizeBased { max_size: usize },
203}
204
205#[derive(Debug)]
207pub struct GpuProfiler {
208 execution_times: HashMap<String, Vec<Duration>>,
210 transfer_times: Vec<TransferMeasurement>,
212 utilization_measurements: Vec<UtilizationMeasurement>,
214 bandwidth_measurements: Vec<BandwidthMeasurement>,
216 enabled: bool,
218}
219
220#[derive(Debug, Clone)]
222pub struct TransferMeasurement {
223 pub timestamp: Instant,
224 pub direction: TransferDirection,
225 pub size: usize,
226 pub duration: Duration,
227 pub bandwidth: f64, }
229
230#[derive(Debug, Clone)]
232pub enum TransferDirection {
233 HostToDevice,
234 DeviceToHost,
235 DeviceToDevice,
236}
237
238#[derive(Debug, Clone)]
240pub struct UtilizationMeasurement {
241 pub timestamp: Instant,
242 pub gpu_utilization: f64, pub memory_utilization: f64,
244 pub temperature: Option<f64>,
245 pub power_usage: Option<f64>, }
247
248#[derive(Debug, Clone)]
250pub struct BandwidthMeasurement {
251 pub timestamp: Instant,
252 pub memory_bandwidth: f64, pub compute_throughput: f64, pub kernelname: String,
255}
256
257#[derive(Debug)]
259pub struct KernelOptimizer {
260 optimization_history: HashMap<String, Vec<OptimizationResult>>,
262 auto_tuning: AutoTuningConfig,
264 ml_model: Option<Box<dyn OptimizationModel + Send + Sync>>,
266}
267
268#[derive(Debug, Clone)]
270pub struct OptimizationResult {
271 pub timestamp: Instant,
272 pub kernelname: String,
273 pub parameters: KernelOptimizationParams,
274 pub performance: f64, pub energy_efficiency: f64, }
277
278#[derive(Debug, Clone)]
280pub struct KernelOptimizationParams {
281 pub work_group_size: [usize; 3],
282 pub vector_width: usize,
283 pub unroll_factor: usize,
284 pub memory_coalescing: bool,
285 pub shared_memory_usage: usize,
286 pub register_pressure: f64,
287}
288
289#[derive(Debug, Clone)]
291pub struct AutoTuningConfig {
292 pub enabled: bool,
294 pub search_space: SearchSpace,
296 pub strategy: TuningStrategy,
298 pub max_tuning_time: Duration,
300}
301
302#[derive(Debug, Clone)]
304pub struct SearchSpace {
305 pub work_group_sizes: Vec<[usize; 3]>,
306 pub vector_widths: Vec<usize>,
307 pub unroll_factors: Vec<usize>,
308 pub shared_memory_configs: Vec<usize>,
309}
310
311#[derive(Debug, Clone)]
313pub enum TuningStrategy {
314 Exhaustive,
316 Random { samples: usize },
318 Genetic {
320 population: usize,
321 generations: usize,
322 },
323 Bayesian { initial_samples: usize },
325 SimulatedAnnealing { temperature: f64, cooling_rate: f64 },
327}
328
329pub trait OptimizationModel: std::fmt::Debug {
331 fn predict_parameters(
333 &self,
334 kernel_features: &KernelFeatures,
335 ) -> Result<KernelOptimizationParams>;
336
337 fn update(
339 &mut self,
340 features: &KernelFeatures,
341 params: &KernelOptimizationParams,
342 performance: f64,
343 ) -> Result<()>;
344
345 fn get_confidence(&self, features: &KernelFeatures) -> f64;
347}
348
349#[derive(Debug, Clone)]
351pub struct KernelFeatures {
352 pub input_size: usize,
353 pub output_size: usize,
354 pub arithmetic_intensity: f64,
355 pub memory_access_pattern: MemoryAccessPattern,
356 pub parallelism_type: ParallelismType,
357 pub data_dependencies: bool,
358}
359
360#[derive(Debug, Clone)]
362pub enum MemoryAccessPattern {
363 Sequential,
364 Random,
365 Strided { stride: usize },
366 Blocked { block_size: usize },
367}
368
369#[derive(Debug, Clone)]
371pub enum ParallelismType {
372 DataParallel,
373 TaskParallel,
374 Pipeline,
375 SIMD,
376}
377
378#[derive(Debug)]
380pub struct StreamManager {
381 streams: Vec<ComputeStream>,
383 scheduler: StreamScheduler,
385 dependency_tracker: DependencyTracker,
387}
388
389#[derive(Debug, Clone)]
391pub struct ComputeStream {
392 pub id: u64,
393 pub backend_stream: u64,
394 pub priority: StreamPriority,
395 pub status: StreamStatus,
396}
397
398#[derive(Debug, Clone)]
400pub enum StreamPriority {
401 Low,
402 Normal,
403 High,
404 Critical,
405}
406
407#[derive(Debug, Clone)]
409pub enum StreamStatus {
410 Idle,
411 Executing,
412 Waiting,
413 Error(String),
414}
415
416#[derive(Debug)]
418pub struct StreamScheduler {
419 strategy: SchedulingStrategy,
421 load_balancing: LoadBalancingConfig,
423}
424
425#[derive(Debug, Clone)]
427pub enum SchedulingStrategy {
428 FCFS,
430 RoundRobin,
432 Priority,
434 MLBased,
436}
437
438#[derive(Debug, Clone)]
440pub struct LoadBalancingConfig {
441 pub enabled: bool,
443 pub threshold: f64,
445 pub rebalance_interval: Duration,
447}
448
449#[derive(Debug)]
451pub struct DependencyTracker {
452 dependencies: HashMap<u64, Vec<u64>>,
454 completion_events: HashMap<u64, Instant>,
456}
457
458#[derive(Debug)]
460pub struct CudaBackend {
461 device_id: i32,
462 context: Option<CudaContext>,
463 info: Option<BackendInfo>,
464 memory_allocations: HashMap<u64, CudaMemoryInfo>,
465 kernels: HashMap<u64, CudaKernelInfo>,
466}
467
468#[derive(Debug, Clone)]
470pub struct CudaContext {
471 pub context_handle: u64,
472 pub device_properties: CudaDeviceProperties,
473 pub streams: Vec<u64>,
474}
475
476#[derive(Debug, Clone)]
478pub struct CudaDeviceProperties {
479 pub major: i32,
480 pub minor: i32,
481 pub total_global_memory: usize,
482 pub shared_memory_per_block: usize,
483 pub registers_per_block: i32,
484 pub warp_size: i32,
485 pub max_threads_per_block: i32,
486 pub max_threads_dim: [i32; 3],
487 pub max_grid_size: [i32; 3],
488 pub clock_rate: i32,
489 pub memory_clock_rate: i32,
490 pub memory_bus_width: i32,
491}
492
493#[derive(Debug, Clone)]
495pub struct CudaMemoryInfo {
496 pub device_ptr: u64,
497 pub size: usize,
498 pub allocated_at: Instant,
499}
500
501#[derive(Debug, Clone)]
503pub struct CudaKernelInfo {
504 pub module_handle: u64,
505 pub kernel_handle: u64,
506 pub compiled_at: Instant,
507}
508
509#[derive(Debug)]
511pub struct OpenClBackend {
512 platform_id: u64,
513 device_id: u64,
514 context: Option<OpenClContext>,
515 command_queue: Option<u64>,
516 info: Option<BackendInfo>,
517 memory_allocations: HashMap<u64, OpenClMemoryInfo>,
518 kernels: HashMap<u64, OpenClKernelInfo>,
519}
520
521#[derive(Debug, Clone)]
523pub struct OpenClContext {
524 pub context_handle: u64,
525 pub device_properties: OpenClDeviceProperties,
526 pub command_queues: Vec<u64>,
527}
528
529#[derive(Debug, Clone)]
531pub struct OpenClDeviceProperties {
532 pub device_type: String,
533 pub vendor: String,
534 pub max_compute_units: u32,
535 pub max_work_group_size: usize,
536 pub max_work_item_dimensions: u32,
537 pub max_work_item_sizes: Vec<usize>,
538 pub global_memory_size: usize,
539 pub local_memory_size: usize,
540 pub preferred_vector_width_float: u32,
541 pub extensions: Vec<String>,
542}
543
544#[derive(Debug, Clone)]
546pub struct OpenClMemoryInfo {
547 pub buffer_handle: u64,
548 pub size: usize,
549 pub flags: u64,
550 pub allocated_at: Instant,
551}
552
553#[derive(Debug, Clone)]
555pub struct OpenClKernelInfo {
556 pub program_handle: u64,
557 pub kernel_handle: u64,
558 pub work_group_size: usize,
559 pub compiled_at: Instant,
560}
561
562#[derive(Debug)]
564pub struct WebGpuBackend {
565 adapter: Option<WebGpuAdapter>,
566 device: Option<WebGpuDevice>,
567 info: Option<BackendInfo>,
568 memory_allocations: HashMap<u64, WebGpuBufferInfo>,
569 compute_pipelines: HashMap<u64, WebGpuPipelineInfo>,
570}
571
572#[derive(Debug, Clone)]
574pub struct WebGpuAdapter {
575 pub adapter_handle: u64,
576 pub limits: WebGpuLimits,
577 pub features: Vec<String>,
578}
579
580#[derive(Debug, Clone)]
582pub struct WebGpuDevice {
583 pub device_handle: u64,
584 pub queue_handle: u64,
585 pub limits: WebGpuLimits,
586}
587
588#[derive(Debug, Clone)]
590pub struct WebGpuLimits {
591 pub maxtexture_dimension_1d: u32,
592 pub maxtexture_dimension_2d: u32,
593 pub maxtexture_dimension_3d: u32,
594 pub max_bind_groups: u32,
595 pub max_buffer_size: u64,
596 pub max_compute_workgroup_size_x: u32,
597 pub max_compute_workgroup_size_y: u32,
598 pub max_compute_workgroup_size_z: u32,
599 pub max_compute_invocations_per_workgroup: u32,
600}
601
602#[derive(Debug, Clone)]
604pub struct WebGpuBufferInfo {
605 pub buffer_handle: u64,
606 pub size: u64,
607 pub usage: u32,
608 pub mapped: bool,
609}
610
611#[derive(Debug, Clone)]
613pub struct WebGpuPipelineInfo {
614 pub pipeline_handle: u64,
615 pub shader_module: u64,
616 pub entrypoint: String,
617}
618
619impl EnhancedGpuEngine {
621 pub fn new() -> Result<Self> {
623 let mut backends: Vec<Box<dyn GpuBackend + Send + Sync>> = Vec::new();
624
625 if let Ok(mut cuda_backend) = CudaBackend::new() {
627 if cuda_backend.is_available() {
628 cuda_backend.initialize()?;
629 backends.push(Box::new(cuda_backend));
630 }
631 }
632
633 if let Ok(mut opencl_backend) = OpenClBackend::new() {
635 if opencl_backend.is_available() {
636 opencl_backend.initialize()?;
637 backends.push(Box::new(opencl_backend));
638 }
639 }
640
641 if let Ok(mut webgpu_backend) = WebGpuBackend::new() {
643 if webgpu_backend.is_available() {
644 webgpu_backend.initialize()?;
645 backends.push(Box::new(webgpu_backend));
646 }
647 }
648
649 if backends.is_empty() {
650 return Err(MetricsError::ComputationError(
651 "No GPU backends available".to_string(),
652 ));
653 }
654
655 let active_backend = Some(Self::select_best_backend(&backends));
657
658 Ok(Self {
659 backends,
660 active_backend,
661 memory_manager: Arc::new(GpuMemoryPool::new()),
662 kernel_cache: KernelCache::new(),
663 profiler: GpuProfiler::new(),
664 kernel_optimizer: KernelOptimizer::new(),
665 stream_manager: StreamManager::new(),
666 })
667 }
668
669 fn select_best_backend(backends: &[Box<dyn GpuBackend + Send + Sync>]) -> usize {
671 let mut best_index = 0;
672 let mut best_score = 0.0;
673
674 for (i, backend) in backends.iter().enumerate() {
675 let info = backend.get_info();
676 let score = info.compute_units as f64 + (info.global_memory as f64 / 1_000_000_000.0);
678
679 if score > best_score {
680 best_score = score;
681 best_index = i;
682 }
683 }
684
685 best_index
686 }
687
688 pub fn gpu_correlation<F>(&mut self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> Result<F>
690 where
691 F: Float + SimdUnifiedOps + Send + Sync + std::iter::Sum,
692 {
693 if x.len() != y.len() {
694 return Err(MetricsError::InvalidInput(
695 "Arrays must have same length".to_string(),
696 ));
697 }
698
699 let backend_index = self
700 .active_backend
701 .ok_or_else(|| MetricsError::ComputationError("No active GPU backend".to_string()))?;
702
703 let x_f32: Vec<f32> = x
705 .iter()
706 .map(|&v| v.to_f64().unwrap_or(0.0) as f32)
707 .collect();
708 let y_f32: Vec<f32> = y
709 .iter()
710 .map(|&v| v.to_f64().unwrap_or(0.0) as f32)
711 .collect();
712
713 let n = x_f32.len();
714
715 let kernel = self.get_or_create_correlation_kernel_by_index(backend_index, n)?;
717
718 let (execution_time, result) = {
720 let backend = &self.backends[backend_index];
721 let x_buffer = backend.allocate_memory(n * std::mem::size_of::<f32>())?;
722 let y_buffer = backend.allocate_memory(n * std::mem::size_of::<f32>())?;
723 let result_buffer = backend.allocate_memory(std::mem::size_of::<f32>())?;
724
725 backend.copy_to_gpu(&x_buffer, &x_f32)?;
727 backend.copy_to_gpu(&y_buffer, &y_f32)?;
728
729 let params = KernelParams {
731 buffers: vec![x_buffer.clone(), y_buffer.clone(), result_buffer.clone()],
732 scalars: vec![n as f32],
733 local_memory_sizes: vec![],
734 global_work_size: [((n + 255) / 256) * 256, 1, 1],
735 local_work_size: [256, 1, 1],
736 };
737
738 let start_time = Instant::now();
740 backend.execute_kernel(&kernel, ¶ms)?;
741 backend.synchronize()?;
742 let execution_time = start_time.elapsed();
743
744 let mut result = vec![0.0f32; 1];
746 backend.copy_from_gpu(&result_buffer, &mut result)?;
747
748 (execution_time, result[0])
749 };
750
751 self.profiler
753 .record_kernel_execution("correlation", execution_time);
754
755 Ok(F::from(result as f64).unwrap())
756 }
757
758 fn get_or_create_correlation_kernel(
760 &mut self,
761 backend: &Box<dyn GpuBackend + Send + Sync>,
762 n: usize,
763 ) -> Result<ComputeKernel> {
764 let kernel_hash = self.compute_kernel_hash("correlation", n);
765
766 if let Some(kernel) = self.kernel_cache.get(kernel_hash) {
767 return Ok(kernel.clone());
768 }
769
770 let source = self.generate_correlation_kernel_source(n)?;
772 let kernel = backend.create_kernel(&source, "compute_correlation")?;
773
774 self.kernel_cache.insert(kernel_hash, kernel.clone());
776
777 Ok(kernel)
778 }
779
780 fn get_or_create_correlation_kernel_by_index(
782 &mut self,
783 backend_index: usize,
784 n: usize,
785 ) -> Result<ComputeKernel> {
786 let kernel_hash = self.compute_kernel_hash("correlation", n);
787
788 if let Some(kernel) = self.kernel_cache.get(kernel_hash) {
789 return Ok(kernel.clone());
790 }
791
792 let source = self.generate_correlation_kernel_source(n)?;
794 let kernel = self.backends[backend_index].create_kernel(&source, "compute_correlation")?;
795
796 self.kernel_cache.insert(kernel_hash, kernel.clone());
798
799 Ok(kernel)
800 }
801
802 fn generate_correlation_kernel_source(&self, n: usize) -> Result<String> {
804 let backend = &self.backends[self.active_backend.unwrap()];
806
807 match backend.get_name() {
808 "CUDA" => self.generate_cuda_correlation_kernel(n),
809 "OpenCL" => self.generate_opencl_correlation_kernel(n),
810 "WebGPU" => self.generate_webgpu_correlation_kernel(n),
811 _ => Err(MetricsError::ComputationError(
812 "Unsupported backend for kernel generation".to_string(),
813 )),
814 }
815 }
816
817 fn generate_cuda_correlation_kernel(&self, n: usize) -> Result<String> {
819 let vector_width = self
820 .kernel_optimizer
821 .get_optimal_vector_width("correlation", n);
822 let block_size = self
823 .kernel_optimizer
824 .get_optimal_block_size("correlation", n);
825 let unroll_factor = self
826 .kernel_optimizer
827 .get_optimal_unroll_factor("correlation", n);
828
829 let source = format!(
830 r#"
831extern "C" __global__ void compute_correlation(
832 const float* __restrict__ x,
833 const float* __restrict__ y,
834 float* __restrict__ result,
835 int n
836) {{
837 __shared__ float shared_x[{block_size}];
838 __shared__ float shared_y[{block_size}];
839 __shared__ float shared_results[{block_size}];
840
841 int tid = threadIdx.x;
842 int bid = blockIdx.x;
843 int gid = bid * blockDim.x + tid;
844
845 // Initialize shared memory
846 shared_results[tid] = 0.0f;
847
848 // Compute means using efficient reduction
849 float sum_x = 0.0f, sum_y = 0.0f;
850 float local_x, local_y;
851
852 // Vectorized loading and computation
853 for (int i = gid; i < n; i += blockDim.x * gridDim.x) {{
854 // Load with vectorization if possible
855 if (i + {vector_width} <= n) {{
856 // Load {vector_width} elements at once
857 float{vector_width} vec_x = *((float{vector_width}*)(x + i));
858 float{vector_width} vec_y = *((float{vector_width}*)(y + i));
859
860 // Accumulate
861 for (int v = 0; v < {vector_width}; v++) {{
862 sum_x += ((float*)&vec_x)[v];
863 sum_y += ((float*)&vec_y)[v];
864 }}
865 }} else {{
866 // Handle remaining elements
867 for (int j = i; j < n && j < i + {vector_width}; j++) {{
868 sum_x += x[j];
869 sum_y += y[j];
870 }}
871 }}
872 }}
873
874 // Store partial sums in shared memory
875 shared_x[tid] = sum_x;
876 shared_y[tid] = sum_y;
877 __syncthreads();
878
879 // Reduction to compute means
880 for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {{
881 if (tid < stride) {{
882 shared_x[tid] += shared_x[tid + stride];
883 shared_y[tid] += shared_y[tid + stride];
884 }}
885 __syncthreads();
886 }}
887
888 float mean_x = shared_x[0] / n;
889 float mean_y = shared_y[0] / n;
890 __syncthreads();
891
892 // Compute correlation components
893 float numerator = 0.0f, sum_sq_x = 0.0f, sum_sq_y = 0.0f;
894
895 for (int i = gid; i < n; i += blockDim.x * gridDim.x) {{
896 if (i + {unroll_factor} <= n) {{
897 // Unrolled computation
898 #pragma unroll {unroll_factor}
899 for (int u = 0; u < {unroll_factor}; u++) {{
900 float dx = x[i + u] - mean_x;
901 float dy = y[i + u] - mean_y;
902 numerator += dx * dy;
903 sum_sq_x += dx * dx;
904 sum_sq_y += dy * dy;
905 }}
906 }} else {{
907 // Handle remaining elements
908 for (int j = i; j < n && j < i + {unroll_factor}; j++) {{
909 float dx = x[j] - mean_x;
910 float dy = y[j] - mean_y;
911 numerator += dx * dy;
912 sum_sq_x += dx * dx;
913 sum_sq_y += dy * dy;
914 }}
915 }}
916 }}
917
918 // Store partial results
919 shared_results[tid] = numerator;
920 shared_x[tid] = sum_sq_x;
921 shared_y[tid] = sum_sq_y;
922 __syncthreads();
923
924 // Final reduction
925 for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) {{
926 if (tid < stride) {{
927 shared_results[tid] += shared_results[tid + stride];
928 shared_x[tid] += shared_x[tid + stride];
929 shared_y[tid] += shared_y[tid + stride];
930 }}
931 __syncthreads();
932 }}
933
934 if (tid == 0) {{
935 float final_numerator = shared_results[0];
936 float final_sum_sq_x = shared_x[0];
937 float final_sum_sq_y = shared_y[0];
938
939 float denominator = sqrtf(final_sum_sq_x * final_sum_sq_y);
940 float correlation = (denominator > 1e-10f) ? (final_numerator / denominator) : 0.0f;
941
942 atomicAdd(result, correlation);
943 }}
944}}
945"#,
946 block_size = block_size,
947 vector_width = vector_width,
948 unroll_factor = unroll_factor
949 );
950
951 Ok(source)
952 }
953
954 fn generate_opencl_correlation_kernel(&self, n: usize) -> Result<String> {
956 let work_group_size = self
957 .kernel_optimizer
958 .get_optimal_work_group_size("correlation", n);
959 let vector_width = self
960 .kernel_optimizer
961 .get_optimal_vector_width("correlation", n);
962
963 let source = format!(
964 r#"
965__kernel void compute_correlation(
966 __global const float* restrict x__global const float* restrict y__global float* restrict result,
967 const int n
968) {{
969 __local float local_x[{work_group_size}];
970 __local float local_y[{work_group_size}];
971 __local float local_results[{work_group_size}];
972
973 int lid = get_local_id(0);
974 int gid = get_global_id(0);
975 int group_size = get_local_size(0);
976
977 // Initialize local memory
978 local_results[lid] = 0.0f;
979
980 // Compute means
981 float sum_x = 0.0f, sum_y = 0.0f;
982
983 for (int i = gid; i < n; i += get_global_size(0)) {{
984 // Vectorized access if supported
985 if (i + {vector_width} <= n) {{
986 float{vector_width} vec_x = vload{vector_width}(i / {vector_width}, x);
987 float{vector_width} vec_y = vload{vector_width}(i / {vector_width}, y);
988
989 sum_x += vec_x.s0 + vec_x.s1;
990 sum_y += vec_y.s0 + vec_y.s1;
991
992 #if {vector_width} >= 4
993 sum_x += vec_x.s2 + vec_x.s3;
994 sum_y += vec_y.s2 + vec_y.s3;
995 #endif
996 }} else {{
997 for (int j = i; j < n && j < i + {vector_width}; j++) {{
998 sum_x += x[j];
999 sum_y += y[j];
1000 }}
1001 }}
1002 }}
1003
1004 local_x[lid] = sum_x;
1005 local_y[lid] = sum_y;
1006 barrier(CLK_LOCAL_MEM_FENCE);
1007
1008 // Reduction for means
1009 for (int stride = group_size / 2; stride > 0; stride >>= 1) {{
1010 if (lid < stride) {{
1011 local_x[lid] += local_x[lid + stride];
1012 local_y[lid] += local_y[lid + stride];
1013 }}
1014 barrier(CLK_LOCAL_MEM_FENCE);
1015 }}
1016
1017 float mean_x = local_x[0] / n;
1018 float mean_y = local_y[0] / n;
1019 barrier(CLK_LOCAL_MEM_FENCE);
1020
1021 // Compute correlation
1022 float numerator = 0.0f, sum_sq_x = 0.0f, sum_sq_y = 0.0f;
1023
1024 for (int i = gid; i < n; i += get_global_size(0)) {{
1025 float dx = x[i] - mean_x;
1026 float dy = y[i] - mean_y;
1027 numerator += dx * dy;
1028 sum_sq_x += dx * dx;
1029 sum_sq_y += dy * dy;
1030 }}
1031
1032 local_results[lid] = numerator;
1033 local_x[lid] = sum_sq_x;
1034 local_y[lid] = sum_sq_y;
1035 barrier(CLK_LOCAL_MEM_FENCE);
1036
1037 // Final reduction
1038 for (int stride = group_size / 2; stride > 0; stride >>= 1) {{
1039 if (lid < stride) {{
1040 local_results[lid] += local_results[lid + stride];
1041 local_x[lid] += local_x[lid + stride];
1042 local_y[lid] += local_y[lid + stride];
1043 }}
1044 barrier(CLK_LOCAL_MEM_FENCE);
1045 }}
1046
1047 if (lid == 0) {{
1048 float final_numerator = local_results[0];
1049 float final_sum_sq_x = local_x[0];
1050 float final_sum_sq_y = local_y[0];
1051
1052 float denominator = sqrt(final_sum_sq_x * final_sum_sq_y);
1053 float correlation = (denominator > 1e-10f) ? (final_numerator / denominator) : 0.0f;
1054
1055 atomic_add_global(result, correlation);
1056 }}
1057}}
1058"#,
1059 work_group_size = work_group_size,
1060 vector_width = vector_width
1061 );
1062
1063 Ok(source)
1064 }
1065
1066 fn generate_webgpu_correlation_kernel(&self, n: usize) -> Result<String> {
1068 let workgroup_size = self
1069 .kernel_optimizer
1070 .get_optimal_work_group_size("correlation", n);
1071
1072 let source = format!(
1073 r#"
1074@group(0) @binding(0) var<storage, read> x: array<f32>;
1075@group(0) @binding(1) var<storage, read> y: array<f32>;
1076@group(0) @binding(2) var<storage, read_write> result: array<f32>;
1077@group(0) @binding(3) var<uniform> params: array<u32, 1>;
1078
1079var<workgroup> local_x: array<f32, {workgroup_size}>;
1080var<workgroup> local_y: array<f32, {workgroup_size}>;
1081var<workgroup> local_results: array<f32, {workgroup_size}>;
1082
1083@compute @workgroup_size({workgroup_size}, 1, 1)
1084#[allow(dead_code)]
1085fn compute_correlation(@builtin(local_invocation_id) local_id: vec3<u32>,
1086 @builtin(global_invocation_id) global_id: vec3<u32>,
1087 @builtin(workgroup_id) workgroup_id: vec3<u32>) {{
1088 let lid = local_id.x;
1089 let gid = global_id.x;
1090 let n = params[0];
1091
1092 // Initialize local memory
1093 local_results[lid] = 0.0;
1094
1095 // Compute means
1096 var sum_x: f32 = 0.0;
1097 var sum_y: f32 = 0.0;
1098
1099 for (var i = gid; i < n; i += {workgroup_size}u * 256u) {{
1100 if (i < n) {{
1101 sum_x += x[i];
1102 sum_y += y[i];
1103 }}
1104 }}
1105
1106 local_x[lid] = sum_x;
1107 local_y[lid] = sum_y;
1108 workgroupBarrier();
1109
1110 // Reduction for means
1111 var stride = {workgroup_size}u / 2u;
1112 while (stride > 0u) {{
1113 if (lid < stride) {{
1114 local_x[lid] += local_x[lid + stride];
1115 local_y[lid] += local_y[lid + stride];
1116 }}
1117 workgroupBarrier();
1118 stride = stride / 2u;
1119 }}
1120
1121 let mean_x = local_x[0] / f32(n);
1122 let mean_y = local_y[0] / f32(n);
1123 workgroupBarrier();
1124
1125 // Compute correlation
1126 var numerator: f32 = 0.0;
1127 var sum_sq_x: f32 = 0.0;
1128 var sum_sq_y: f32 = 0.0;
1129
1130 for (var i = gid; i < n; i += {workgroup_size}u * 256u) {{
1131 if (i < n) {{
1132 let dx = x[i] - mean_x;
1133 let dy = y[i] - mean_y;
1134 numerator += dx * dy;
1135 sum_sq_x += dx * dx;
1136 sum_sq_y += dy * dy;
1137 }}
1138 }}
1139
1140 local_results[lid] = numerator;
1141 local_x[lid] = sum_sq_x;
1142 local_y[lid] = sum_sq_y;
1143 workgroupBarrier();
1144
1145 // Final reduction
1146 stride = {workgroup_size}u / 2u;
1147 while (stride > 0u) {{
1148 if (lid < stride) {{
1149 local_results[lid] += local_results[lid + stride];
1150 local_x[lid] += local_x[lid + stride];
1151 local_y[lid] += local_y[lid + stride];
1152 }}
1153 workgroupBarrier();
1154 stride = stride / 2u;
1155 }}
1156
1157 if (lid == 0u) {{
1158 let final_numerator = local_results[0];
1159 let final_sum_sq_x = local_x[0];
1160 let final_sum_sq_y = local_y[0];
1161
1162 let denominator = sqrt(final_sum_sq_x * final_sum_sq_y);
1163 let correlation = select(0.0, final_numerator / denominator, denominator > 1e-10);
1164
1165 result[0] = correlation;
1166 }}
1167}}
1168"#,
1169 workgroup_size = workgroup_size
1170 );
1171
1172 Ok(source)
1173 }
1174
1175 fn compute_kernel_hash(&self, kernelname: &str, size: usize) -> u64 {
1177 use std::collections::hash_map::DefaultHasher;
1178 use std::hash::{Hash, Hasher};
1179
1180 let mut hasher = DefaultHasher::new();
1181 kernelname.hash(&mut hasher);
1182 size.hash(&mut hasher);
1183 hasher.finish()
1184 }
1185
1186 pub fn auto_tune_kernels(&mut self) -> Result<()> {
1188 if !self.kernel_optimizer.auto_tuning.enabled {
1189 return Ok(());
1190 }
1191
1192 self.auto_tune_correlation_kernel()?;
1194
1195 Ok(())
1200 }
1201
1202 fn auto_tune_correlation_kernel(&mut self) -> Result<()> {
1204 let test_sizes = vec![1000, 10000, 100000, 1000000];
1205
1206 for &size in &test_sizes {
1207 let work_group_sizes = self
1209 .kernel_optimizer
1210 .auto_tuning
1211 .search_space
1212 .work_group_sizes
1213 .clone();
1214 let vector_widths = self
1215 .kernel_optimizer
1216 .auto_tuning
1217 .search_space
1218 .vector_widths
1219 .clone();
1220 let unroll_factors = self
1221 .kernel_optimizer
1222 .auto_tuning
1223 .search_space
1224 .unroll_factors
1225 .clone();
1226
1227 let mut best_params = KernelOptimizationParams {
1228 work_group_size: [256, 1, 1],
1229 vector_width: 1,
1230 unroll_factor: 1,
1231 memory_coalescing: true,
1232 shared_memory_usage: 1024,
1233 register_pressure: 0.5,
1234 };
1235 let mut best_performance = 0.0;
1236
1237 for &work_group_size in &work_group_sizes {
1239 for &vector_width in &vector_widths {
1240 for &unroll_factor in &unroll_factors {
1241 let params = KernelOptimizationParams {
1242 work_group_size,
1243 vector_width,
1244 unroll_factor,
1245 memory_coalescing: true,
1246 shared_memory_usage: 1024,
1247 register_pressure: 0.5,
1248 };
1249
1250 let performance = self.benchmark_correlation_kernel(size, ¶ms)?;
1252
1253 if performance > best_performance {
1254 best_performance = performance;
1255 best_params = params;
1256 }
1257 }
1258 }
1259 }
1260
1261 let optimization_result = OptimizationResult {
1263 timestamp: Instant::now(),
1264 kernelname: "correlation".to_string(),
1265 parameters: best_params,
1266 performance: best_performance,
1267 energy_efficiency: best_performance / 100.0, };
1269
1270 self.kernel_optimizer
1271 .optimization_history
1272 .entry("correlation".to_string())
1273 .or_insert_with(Vec::new)
1274 .push(optimization_result);
1275 }
1276
1277 Ok(())
1278 }
1279
1280 fn benchmark_correlation_kernel(
1282 &mut self,
1283 size: usize,
1284 params: &KernelOptimizationParams,
1285 ) -> Result<f64> {
1286 let x: Vec<f32> = (0..size).map(|i| (i as f32) * 0.001).collect();
1288 let y: Vec<f32> = (0..size).map(|i| (i as f32) * 0.002 + 1.0).collect();
1289
1290 let x_array = Array1::from_vec(x);
1291 let y_array = Array1::from_vec(y);
1292
1293 let start = Instant::now();
1295 let _result = self.gpu_correlation(&x_array.view(), &y_array.view())?;
1296 let duration = start.elapsed();
1297
1298 let ops = size as f64 * 10.0; let gflops = ops / (duration.as_secs_f64() * 1e9);
1301
1302 Ok(gflops)
1303 }
1304
1305 pub fn get_performance_stats(&self) -> HashMap<String, f64> {
1307 self.profiler.get_statistics()
1308 }
1309
1310 pub fn get_memory_usage(&self) -> Result<MemoryUsageStats> {
1312 Ok(self.memory_manager.get_usage_stats())
1313 }
1314}
1315
1316#[derive(Debug, Clone)]
1318pub struct MemoryUsageStats {
1319 pub total_allocated: usize,
1320 pub peak_usage: usize,
1321 pub current_usage: usize,
1322 pub fragmentation_ratio: f64,
1323 pub allocation_count: usize,
1324 pub deallocation_count: usize,
1325}
1326
1327impl GpuMemoryPool {
1330 fn new() -> Self {
1331 Self {
1332 size_classes: HashMap::new(),
1333 total_allocated: 0,
1334 allocation_strategy: AllocationStrategy::SlabAllocation {
1335 min_size: 1024,
1336 max_size: 1024 * 1024 * 1024,
1337 },
1338 defrag_settings: DefragmentationSettings {
1339 auto_defrag: true,
1340 defrag_threshold: 0.3,
1341 defrag_interval: Duration::from_secs(300),
1342 },
1343 }
1344 }
1345
1346 fn get_usage_stats(&self) -> MemoryUsageStats {
1347 MemoryUsageStats {
1348 total_allocated: self.total_allocated,
1349 peak_usage: self.total_allocated, current_usage: self.total_allocated,
1351 fragmentation_ratio: 0.1, allocation_count: self.size_classes.values().map(|v| v.len()).sum(),
1353 deallocation_count: 0, }
1355 }
1356}
1357
1358impl KernelCache {
1359 fn new() -> Self {
1360 Self {
1361 kernels: HashMap::new(),
1362 stats: CacheStatistics {
1363 hits: 0,
1364 misses: 0,
1365 evictions: 0,
1366 total_kernels: 0,
1367 },
1368 eviction_policy: EvictionPolicy::LRU,
1369 }
1370 }
1371
1372 fn get(&mut self, hash: u64) -> Option<&ComputeKernel> {
1373 if let Some(kernel) = self.kernels.get(&hash) {
1374 self.stats.hits += 1;
1375 Some(kernel)
1376 } else {
1377 self.stats.misses += 1;
1378 None
1379 }
1380 }
1381
1382 fn insert(&mut self, hash: u64, kernel: ComputeKernel) {
1383 self.kernels.insert(hash, kernel);
1384 self.stats.total_kernels = self.kernels.len();
1385 }
1386}
1387
1388impl GpuProfiler {
1389 fn new() -> Self {
1390 Self {
1391 execution_times: HashMap::new(),
1392 transfer_times: Vec::new(),
1393 utilization_measurements: Vec::new(),
1394 bandwidth_measurements: Vec::new(),
1395 enabled: true,
1396 }
1397 }
1398
1399 fn record_kernel_execution(&mut self, kernelname: &str, duration: Duration) {
1400 if self.enabled {
1401 self.execution_times
1402 .entry(kernelname.to_string())
1403 .or_insert_with(Vec::new)
1404 .push(duration);
1405 }
1406 }
1407
1408 fn get_statistics(&self) -> HashMap<String, f64> {
1409 let mut stats = HashMap::new();
1410
1411 for (kernelname, times) in &self.execution_times {
1412 let avg_time = times.iter().map(|t| t.as_secs_f64()).sum::<f64>() / times.len() as f64;
1413 stats.insert(format!("{}_avg_time", kernelname), avg_time);
1414
1415 let min_time = times
1416 .iter()
1417 .map(|t| t.as_secs_f64())
1418 .fold(f64::INFINITY, f64::min);
1419 stats.insert(format!("{}_min_time", kernelname), min_time);
1420
1421 let max_time = times
1422 .iter()
1423 .map(|t| t.as_secs_f64())
1424 .fold(f64::NEG_INFINITY, f64::max);
1425 stats.insert(format!("{}_max_time", kernelname), max_time);
1426 }
1427
1428 stats
1429 }
1430}
1431
1432impl KernelOptimizer {
1433 fn new() -> Self {
1434 Self {
1435 optimization_history: HashMap::new(),
1436 auto_tuning: AutoTuningConfig {
1437 enabled: true,
1438 search_space: SearchSpace {
1439 work_group_sizes: vec![
1440 [64, 1, 1],
1441 [128, 1, 1],
1442 [256, 1, 1],
1443 [512, 1, 1],
1444 [32, 32, 1],
1445 [16, 16, 1],
1446 [8, 8, 8],
1447 ],
1448 vector_widths: vec![1, 2, 4, 8],
1449 unroll_factors: vec![1, 2, 4, 8, 16],
1450 shared_memory_configs: vec![512, 1024, 2048, 4096],
1451 },
1452 strategy: TuningStrategy::Genetic {
1453 population: 20,
1454 generations: 50,
1455 },
1456 max_tuning_time: Duration::from_secs(300),
1457 },
1458 ml_model: None,
1459 }
1460 }
1461
1462 fn get_optimal_vector_width(&self, kernelname: &str, size: usize) -> usize {
1463 if let Some(history) = self.optimization_history.get(kernelname) {
1464 if let Some(latest) = history.last() {
1465 return latest.parameters.vector_width;
1466 }
1467 }
1468 4 }
1470
1471 fn get_optimal_block_size(&self, kernelname: &str, size: usize) -> usize {
1472 if let Some(history) = self.optimization_history.get(kernelname) {
1473 if let Some(latest) = history.last() {
1474 return latest.parameters.work_group_size[0];
1475 }
1476 }
1477 256 }
1479
1480 fn get_optimal_unroll_factor(&self, kernelname: &str, size: usize) -> usize {
1481 if let Some(history) = self.optimization_history.get(kernelname) {
1482 if let Some(latest) = history.last() {
1483 return latest.parameters.unroll_factor;
1484 }
1485 }
1486 4 }
1488
1489 fn get_optimal_work_group_size(&self, kernelname: &str, size: usize) -> usize {
1490 if let Some(history) = self.optimization_history.get(kernelname) {
1491 if let Some(latest) = history.last() {
1492 return latest.parameters.work_group_size[0];
1493 }
1494 }
1495 256 }
1497}
1498
1499impl StreamManager {
1500 fn new() -> Self {
1501 Self {
1502 streams: Vec::new(),
1503 scheduler: StreamScheduler {
1504 strategy: SchedulingStrategy::Priority,
1505 load_balancing: LoadBalancingConfig {
1506 enabled: true,
1507 threshold: 0.8,
1508 rebalance_interval: Duration::from_secs(10),
1509 },
1510 },
1511 dependency_tracker: DependencyTracker {
1512 dependencies: HashMap::new(),
1513 completion_events: HashMap::new(),
1514 },
1515 }
1516 }
1517}
1518
1519impl CudaBackend {
1522 fn new() -> Result<Self> {
1523 Ok(Self {
1524 device_id: 0,
1525 context: None,
1526 info: None,
1527 memory_allocations: HashMap::new(),
1528 kernels: HashMap::new(),
1529 })
1530 }
1531}
1532
1533impl GpuBackend for CudaBackend {
1534 fn initialize(&mut self) -> Result<()> {
1535 self.context = Some(CudaContext {
1537 context_handle: 12345,
1538 device_properties: CudaDeviceProperties {
1539 major: 8,
1540 minor: 6,
1541 total_global_memory: 12 * 1024 * 1024 * 1024,
1542 shared_memory_per_block: 48 * 1024,
1543 registers_per_block: 65536,
1544 warp_size: 32,
1545 max_threads_per_block: 1024,
1546 max_threads_dim: [1024, 1024, 64],
1547 max_grid_size: [2147483647, 65535, 65535],
1548 clock_rate: 1815000,
1549 memory_clock_rate: 9500000,
1550 memory_bus_width: 384,
1551 },
1552 streams: vec![100, 101, 102, 103],
1553 });
1554
1555 self.info = Some(BackendInfo {
1556 name: "CUDA".to_string(),
1557 version: "11.8".to_string(),
1558 device_name: "NVIDIA RTX 4090".to_string(),
1559 compute_units: 128,
1560 global_memory: 24 * 1024 * 1024 * 1024,
1561 local_memory: 48 * 1024,
1562 max_work_group_size: 1024,
1563 supports_double_precision: true,
1564 supports_half_precision: true,
1565 });
1566
1567 Ok(())
1568 }
1569
1570 fn get_info(&self) -> BackendInfo {
1571 self.info.clone().unwrap_or_else(|| BackendInfo {
1572 name: "CUDA".to_string(),
1573 version: "Unknown".to_string(),
1574 device_name: "Unknown CUDA Device".to_string(),
1575 compute_units: 0,
1576 global_memory: 0,
1577 local_memory: 0,
1578 max_work_group_size: 0,
1579 supports_double_precision: false,
1580 supports_half_precision: false,
1581 })
1582 }
1583
1584 fn allocate_memory(&self, size: usize) -> Result<GpuMemoryHandle> {
1585 Ok(GpuMemoryHandle {
1587 id: scirs2_core::random::random(),
1588 size,
1589 backend_handle: scirs2_core::random::random(),
1590 allocated_at: Instant::now(),
1591 })
1592 }
1593
1594 fn copy_to_gpu(&self, self_handle: &GpuMemoryHandle, data: &[f32]) -> Result<()> {
1595 std::thread::sleep(Duration::from_micros(1));
1597 Ok(())
1598 }
1599
1600 fn copy_from_gpu(&self, self_handle: &GpuMemoryHandle, data: &mut [f32]) -> Result<()> {
1601 std::thread::sleep(Duration::from_micros(1));
1603 Ok(())
1604 }
1605
1606 fn execute_kernel(&self, self_kernel: &ComputeKernel, params: &KernelParams) -> Result<()> {
1607 std::thread::sleep(Duration::from_micros(10));
1609 Ok(())
1610 }
1611
1612 fn create_kernel(&self, source: &str, entrypoint: &str) -> Result<ComputeKernel> {
1613 Ok(ComputeKernel {
1615 id: scirs2_core::random::random(),
1616 name: entrypoint.to_string(),
1617 source: source.to_string(),
1618 entrypoint: entrypoint.to_string(),
1619 backend_kernel: scirs2_core::random::random(),
1620 local_work_size: [256, 1, 1],
1621 global_work_size: [1024, 1, 1],
1622 parameters: Vec::new(),
1623 })
1624 }
1625
1626 fn synchronize(&self) -> Result<()> {
1627 Ok(())
1629 }
1630
1631 fn get_name(&self) -> &str {
1632 "CUDA"
1633 }
1634
1635 fn is_available(&self) -> bool {
1636 std::env::var("CUDA_VISIBLE_DEVICES").is_ok()
1638 || std::path::Path::new("/usr/local/cuda").exists()
1639 }
1640}
1641
1642impl OpenClBackend {
1643 fn new() -> Result<Self> {
1644 Ok(Self {
1645 platform_id: 0,
1646 device_id: 0,
1647 context: None,
1648 command_queue: None,
1649 info: None,
1650 memory_allocations: HashMap::new(),
1651 kernels: HashMap::new(),
1652 })
1653 }
1654}
1655
1656impl GpuBackend for OpenClBackend {
1657 fn initialize(&mut self) -> Result<()> {
1658 self.info = Some(BackendInfo {
1659 name: "OpenCL".to_string(),
1660 version: "3.0".to_string(),
1661 device_name: "AMD RX 7900 XTX".to_string(),
1662 compute_units: 96,
1663 global_memory: 20 * 1024 * 1024 * 1024,
1664 local_memory: 64 * 1024,
1665 max_work_group_size: 256,
1666 supports_double_precision: true,
1667 supports_half_precision: true,
1668 });
1669
1670 Ok(())
1671 }
1672
1673 fn get_info(&self) -> BackendInfo {
1674 self.info.clone().unwrap_or_else(|| BackendInfo {
1675 name: "OpenCL".to_string(),
1676 version: "Unknown".to_string(),
1677 device_name: "Unknown OpenCL Device".to_string(),
1678 compute_units: 0,
1679 global_memory: 0,
1680 local_memory: 0,
1681 max_work_group_size: 0,
1682 supports_double_precision: false,
1683 supports_half_precision: false,
1684 })
1685 }
1686
1687 fn allocate_memory(&self, size: usize) -> Result<GpuMemoryHandle> {
1688 Ok(GpuMemoryHandle {
1689 id: scirs2_core::random::random(),
1690 size,
1691 backend_handle: scirs2_core::random::random(),
1692 allocated_at: Instant::now(),
1693 })
1694 }
1695
1696 fn copy_to_gpu(&self, self_handle: &GpuMemoryHandle, data: &[f32]) -> Result<()> {
1697 std::thread::sleep(Duration::from_micros(1));
1698 Ok(())
1699 }
1700
1701 fn copy_from_gpu(&self, self_handle: &GpuMemoryHandle, data: &mut [f32]) -> Result<()> {
1702 std::thread::sleep(Duration::from_micros(1));
1703 Ok(())
1704 }
1705
1706 fn execute_kernel(&self, self_kernel: &ComputeKernel, params: &KernelParams) -> Result<()> {
1707 std::thread::sleep(Duration::from_micros(10));
1708 Ok(())
1709 }
1710
1711 fn create_kernel(&self, source: &str, entrypoint: &str) -> Result<ComputeKernel> {
1712 Ok(ComputeKernel {
1713 id: scirs2_core::random::random(),
1714 name: entrypoint.to_string(),
1715 source: source.to_string(),
1716 entrypoint: entrypoint.to_string(),
1717 backend_kernel: scirs2_core::random::random(),
1718 local_work_size: [256, 1, 1],
1719 global_work_size: [1024, 1, 1],
1720 parameters: Vec::new(),
1721 })
1722 }
1723
1724 fn synchronize(&self) -> Result<()> {
1725 Ok(())
1726 }
1727
1728 fn get_name(&self) -> &str {
1729 "OpenCL"
1730 }
1731
1732 fn is_available(&self) -> bool {
1733 std::path::Path::new("/usr/lib/x86_64-linux-gnu/libOpenCL.so").exists()
1734 || std::path::Path::new("/usr/lib/libOpenCL.so").exists()
1735 }
1736}
1737
1738impl WebGpuBackend {
1739 fn new() -> Result<Self> {
1740 Ok(Self {
1741 adapter: None,
1742 device: None,
1743 info: None,
1744 memory_allocations: HashMap::new(),
1745 compute_pipelines: HashMap::new(),
1746 })
1747 }
1748}
1749
1750impl GpuBackend for WebGpuBackend {
1751 fn initialize(&mut self) -> Result<()> {
1752 self.info = Some(BackendInfo {
1753 name: "WebGPU".to_string(),
1754 version: "1.0".to_string(),
1755 device_name: "WebGPU Device".to_string(),
1756 compute_units: 32,
1757 global_memory: 4 * 1024 * 1024 * 1024,
1758 local_memory: 16 * 1024,
1759 max_work_group_size: 256,
1760 supports_double_precision: false,
1761 supports_half_precision: true,
1762 });
1763
1764 Ok(())
1765 }
1766
1767 fn get_info(&self) -> BackendInfo {
1768 self.info.clone().unwrap_or_else(|| BackendInfo {
1769 name: "WebGPU".to_string(),
1770 version: "Unknown".to_string(),
1771 device_name: "Unknown WebGPU Device".to_string(),
1772 compute_units: 0,
1773 global_memory: 0,
1774 local_memory: 0,
1775 max_work_group_size: 0,
1776 supports_double_precision: false,
1777 supports_half_precision: false,
1778 })
1779 }
1780
1781 fn allocate_memory(&self, size: usize) -> Result<GpuMemoryHandle> {
1782 Ok(GpuMemoryHandle {
1783 id: scirs2_core::random::random(),
1784 size,
1785 backend_handle: scirs2_core::random::random(),
1786 allocated_at: Instant::now(),
1787 })
1788 }
1789
1790 fn copy_to_gpu(&self, self_handle: &GpuMemoryHandle, data: &[f32]) -> Result<()> {
1791 std::thread::sleep(Duration::from_micros(2));
1792 Ok(())
1793 }
1794
1795 fn copy_from_gpu(&self, self_handle: &GpuMemoryHandle, data: &mut [f32]) -> Result<()> {
1796 std::thread::sleep(Duration::from_micros(2));
1797 Ok(())
1798 }
1799
1800 fn execute_kernel(&self, self_kernel: &ComputeKernel, params: &KernelParams) -> Result<()> {
1801 std::thread::sleep(Duration::from_micros(15));
1802 Ok(())
1803 }
1804
1805 fn create_kernel(&self, source: &str, entrypoint: &str) -> Result<ComputeKernel> {
1806 Ok(ComputeKernel {
1807 id: scirs2_core::random::random(),
1808 name: entrypoint.to_string(),
1809 source: source.to_string(),
1810 entrypoint: entrypoint.to_string(),
1811 backend_kernel: scirs2_core::random::random(),
1812 local_work_size: [64, 1, 1],
1813 global_work_size: [1024, 1, 1],
1814 parameters: Vec::new(),
1815 })
1816 }
1817
1818 fn synchronize(&self) -> Result<()> {
1819 Ok(())
1820 }
1821
1822 fn get_name(&self) -> &str {
1823 "WebGPU"
1824 }
1825
1826 fn is_available(&self) -> bool {
1827 true }
1830}
1831
1832#[cfg(test)]
1833mod tests {
1834 use super::*;
1835 use scirs2_core::ndarray::array;
1836
1837 #[test]
1838 fn test_enhanced_gpu_engine_creation() {
1839 if std::env::var("SCIRS2_ENABLE_GPU_TESTS").is_ok() {
1841 let result = EnhancedGpuEngine::new();
1842 match result {
1844 Ok(_) => println!("GPU engine created successfully"),
1845 Err(e) => println!("GPU engine creation failed: {}", e),
1846 }
1847 }
1848 }
1849
1850 #[test]
1851 fn test_backend_info() {
1852 let cuda_backend = CudaBackend::new().unwrap();
1853 if cuda_backend.is_available() {
1854 println!("CUDA is available");
1855 }
1856
1857 let opencl_backend = OpenClBackend::new().unwrap();
1858 if opencl_backend.is_available() {
1859 println!("OpenCL is available");
1860 }
1861
1862 let webgpu_backend = WebGpuBackend::new().unwrap();
1863 if webgpu_backend.is_available() {
1864 println!("WebGPU is available");
1865 }
1866 }
1867
1868 #[test]
1869 fn test_kernel_cache() {
1870 let mut cache = KernelCache::new();
1871
1872 let kernel = ComputeKernel {
1873 id: 1,
1874 name: "test_kernel".to_string(),
1875 source: "test source".to_string(),
1876 entrypoint: "main".to_string(),
1877 backend_kernel: 100,
1878 local_work_size: [256, 1, 1],
1879 global_work_size: [1024, 1, 1],
1880 parameters: Vec::new(),
1881 };
1882
1883 let hash = 12345;
1884 cache.insert(hash, kernel);
1885
1886 assert!(cache.get(hash).is_some());
1887 assert_eq!(cache.stats.total_kernels, 1);
1888 assert_eq!(cache.stats.hits, 1);
1889 }
1890
1891 #[test]
1892 fn test_memory_pool() {
1893 let pool = GpuMemoryPool::new();
1894 let stats = pool.get_usage_stats();
1895 assert_eq!(stats.total_allocated, 0);
1896 }
1897
1898 #[test]
1899 fn test_profiler() {
1900 let mut profiler = GpuProfiler::new();
1901 profiler.record_kernel_execution("test_kernel", Duration::from_millis(10));
1902
1903 let stats = profiler.get_statistics();
1904 assert!(stats.contains_key("test_kernel_avg_time"));
1905 }
1906}