pub fn consensus_score<S, D>(alllabels: &[&ArrayBase<S, D>]) -> Result<f64>Expand description
Calculate Consensus Score for multiple clusterings
Measures the agreement among multiple clusterings of the same dataset. Higher values indicate stronger consensus.
§Arguments
alllabels- Vector of arrays, each containing a clustering result
§Returns
- Consensus score (between 0 and 1)
§Examples
use scirs2_core::ndarray::array;
use scirs2_metrics::clustering::validation::consensus_score;
let clustering1 = array![0, 0, 0, 1, 1, 1];
let clustering2 = array![1, 1, 1, 0, 0, 0]; // Same as clustering1 but with inverted labels
let clustering3 = array![0, 0, 1, 1, 2, 2]; // Different clustering
let all_clusterings = vec![&clustering1, &clustering2, &clustering3];
let score = consensus_score(&all_clusterings).unwrap();