silhouette_scores_per_cluster

Function silhouette_scores_per_cluster 

Source
pub fn silhouette_scores_per_cluster<F, S1, S2, D>(
    x: &ArrayBase<S1, Ix2>,
    labels: &ArrayBase<S2, D>,
    metric: &str,
) -> Result<HashMap<usize, F>>
where F: Float + NumCast + Debug + ScalarOperand + 'static, S1: Data<Elem = F>, S2: Data<Elem = usize>, D: Dimension,
Expand description

Calculate silhouette scores per cluster

Returns the mean silhouette score for each cluster, allowing you to identify which clusters are more cohesive than others.

§Arguments

  • x - Array of shape (n_samples, n_features) - The data
  • labels - Array of shape (n_samples,) - Predicted labels for each sample
  • metric - Distance metric to use. Currently only ‘euclidean’ is supported.

§Returns

  • HashMap mapping cluster labels to their mean silhouette scores

§Examples

use scirs2_core::ndarray::{array, Array2};
use scirs2_metrics::clustering::silhouette_scores_per_cluster;

// Create a small dataset with 3 clusters
let x = Array2::from_shape_vec((9, 2), vec![
    1.0, 2.0, 1.5, 1.8, 1.2, 2.2,  // Cluster 0
    5.0, 6.0, 5.2, 5.8, 5.5, 6.2,  // Cluster 1
    9.0, 10.0, 9.2, 9.8, 9.5, 10.2, // Cluster 2
]).unwrap();

let labels = array![0, 0, 0, 1, 1, 1, 2, 2, 2];

let cluster_scores = silhouette_scores_per_cluster(&x, &labels, "euclidean").unwrap();
assert_eq!(cluster_scores.len(), 3);
assert!(cluster_scores[&0] > 0.5);
assert!(cluster_scores[&1] > 0.5);
assert!(cluster_scores[&2] > 0.5);