1#![allow(clippy::too_many_arguments)]
9#![allow(dead_code)]
10
11use crate::error::{MetricsError, Result};
12use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
13use scirs2_core::numeric::Complex;
14use scirs2_core::numeric::Float;
15use scirs2_core::simd_ops::{PlatformCapabilities, SimdUnifiedOps};
16use std::collections::HashMap;
17use std::f64::consts::PI;
18use std::sync::Arc;
19use std::time::{Duration, Instant};
20
21#[derive(Debug, Clone)]
23pub struct QuantumMetricsComputer<F: Float> {
24 config: QuantumConfig,
26 quantum_processor: QuantumProcessor<F>,
28 entanglement_matrix: Array2<Complex<f64>>,
30 superposition_manager: SuperpositionManager<F>,
32 interference_patterns: InterferencePatterns<F>,
34 quantum_performance: QuantumPerformanceMonitor,
36 classical_fallback: ClassicalFallback<F>,
38}
39
40#[derive(Debug, Clone)]
42pub struct QuantumConfig {
43 pub _numqubits: usize,
45 pub coherence_time: Duration,
47 pub gate_fidelity: f64,
49 pub enable_error_correction: bool,
51 pub supremacy_threshold: usize,
53 pub enable_adiabatic: bool,
55 pub vqe_parameters: VqeParameters,
57 pub enable_qaoa: bool,
59}
60
61#[derive(Debug, Clone)]
63pub struct VqeParameters {
64 pub max_iterations: usize,
65 pub convergence_threshold: f64,
66 pub ansatz_depth: usize,
67 pub optimization_method: String,
68}
69
70#[derive(Debug, Clone)]
72pub struct QuantumProcessor<F: Float> {
73 _numqubits: usize,
75 state_vector: Vec<Complex<f64>>,
77 gate_set: QuantumGateSet,
79 circuit_depth: usize,
81 noise_model: NoiseModel,
83 measurement_cache: HashMap<String, Vec<F>>,
85}
86
87#[derive(Debug, Clone)]
89pub struct QuantumGateSet {
90 pub single_qubit: Vec<SingleQubitGate>,
92 pub two_qubit: Vec<TwoQubitGate>,
94 pub multi_qubit: Vec<MultiQubitGate>,
96 pub parameterized: Vec<ParameterizedGate>,
98}
99
100#[derive(Debug, Clone)]
102pub enum SingleQubitGate {
103 PauliX,
105 PauliY,
107 PauliZ,
109 Hadamard,
111 Phase(f64),
113 RotationX(f64),
115 RotationY(f64),
116 RotationZ(f64),
117 T,
119 S,
121}
122
123#[derive(Debug, Clone)]
125pub enum TwoQubitGate {
126 CNOT,
128 CZ,
130 CPhase(f64),
132 SWAP,
134 ISWAP,
136 Bell,
138}
139
140#[derive(Debug, Clone)]
142pub enum MultiQubitGate {
143 Toffoli,
145 Fredkin,
147 QFT(usize),
149 QuantumWalk(usize),
151}
152
153#[derive(Debug, Clone)]
155pub enum ParameterizedGate {
156 ParameterizedRotation { axis: String, parameter: f64 },
158 VariationalForm { parameters: Vec<f64> },
160 QAOAMixer { beta: f64 },
162 QAOACost { gamma: f64 },
164}
165
166#[derive(Debug, Clone)]
168pub struct NoiseModel {
169 pub t1_time: Duration,
171 pub t2_time: Duration,
172 pub single_qubit_error_rate: f64,
174 pub two_qubit_error_rate: f64,
175 pub measurement_error_rate: f64,
177 pub crosstalk_matrix: Array2<f64>,
179}
180
181#[derive(Debug, Clone)]
183pub struct SuperpositionManager<F: Float> {
184 active_states: HashMap<String, SuperpositionState<F>>,
186 _maxdepth: usize,
188 coherence_tracker: CoherenceTracker,
190}
191
192#[derive(Debug, Clone)]
194pub struct SuperpositionState<F: Float> {
195 pub amplitudes: Vec<Complex<f64>>,
197 pub classical_values: Vec<F>,
199 pub creationtime: Instant,
201 pub fidelity: f64,
203}
204
205#[derive(Debug, Clone)]
207pub struct CoherenceTracker {
208 coherence_times: HashMap<String, Duration>,
210 decoherence_rates: HashMap<String, f64>,
212 environment_coupling: f64,
214}
215
216#[derive(Debug, Clone)]
218pub struct InterferencePatterns<F: Float> {
219 constructive_patterns: Vec<InterferencePattern<F>>,
221 destructive_patterns: Vec<InterferencePattern<F>>,
223 optimization_history: Vec<InterferenceOptimization>,
225}
226
227#[derive(Debug, Clone)]
229pub struct InterferencePattern<F: Float> {
230 pub frequency: f64,
232 pub amplitude: F,
234 pub phases: Vec<f64>,
236 pub effectiveness: f64,
238}
239
240#[derive(Debug, Clone)]
242pub struct InterferenceOptimization {
243 pub timestamp: Instant,
244 pub pattern_id: String,
245 pub optimization_gain: f64,
246 pub computational_complexity: String,
247}
248
249#[derive(Debug, Clone)]
251pub struct QuantumPerformanceMonitor {
252 speedup_measurements: HashMap<String, Vec<f64>>,
254 execution_times: HashMap<String, Vec<Duration>>,
256 fidelity_tracking: HashMap<String, Vec<f64>>,
258 error_correction_overhead: Vec<f64>,
260 quantum_volume: Vec<usize>,
262}
263
264pub struct ClassicalFallback<F: Float> {
266 simd_capabilities: PlatformCapabilities,
268 performance_baseline: HashMap<String, Duration>,
270 auto_fallback: bool,
272 _phantom: std::marker::PhantomData<F>,
273}
274
275impl<F: Float + std::fmt::Debug> std::fmt::Debug for ClassicalFallback<F> {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.debug_struct("ClassicalFallback")
278 .field("simd_capabilities", &self.simd_capabilities.summary())
279 .field("performance_baseline", &self.performance_baseline)
280 .field("auto_fallback", &self.auto_fallback)
281 .finish()
282 }
283}
284
285impl<F: Float> Clone for ClassicalFallback<F> {
286 fn clone(&self) -> Self {
287 Self {
288 simd_capabilities: PlatformCapabilities::detect(), performance_baseline: self.performance_baseline.clone(),
290 auto_fallback: self.auto_fallback,
291 _phantom: std::marker::PhantomData,
292 }
293 }
294}
295
296impl Default for QuantumConfig {
297 fn default() -> Self {
298 Self {
299 _numqubits: 20, coherence_time: Duration::from_micros(100),
301 gate_fidelity: 0.999,
302 enable_error_correction: true,
303 supremacy_threshold: 50, enable_adiabatic: true,
305 vqe_parameters: VqeParameters {
306 max_iterations: 1000,
307 convergence_threshold: 1e-6,
308 ansatz_depth: 10,
309 optimization_method: "SPSA".to_string(),
310 },
311 enable_qaoa: true,
312 }
313 }
314}
315
316impl<F: Float + SimdUnifiedOps + Send + Sync + std::iter::Sum> QuantumMetricsComputer<F> {
317 pub fn new(config: QuantumConfig) -> Result<Self> {
319 let _numqubits = config._numqubits;
320
321 let quantum_processor = QuantumProcessor::new(_numqubits)?;
323
324 let entanglement_matrix = Self::initialize_entanglement_matrix(_numqubits)?;
326
327 let superposition_manager = SuperpositionManager::new(32); let interference_patterns = InterferencePatterns::new();
332
333 let quantum_performance = QuantumPerformanceMonitor::new();
335
336 let classical_fallback = ClassicalFallback::new()?;
338
339 Ok(Self {
340 config,
341 quantum_processor,
342 entanglement_matrix,
343 superposition_manager,
344 interference_patterns,
345 quantum_performance,
346 classical_fallback,
347 })
348 }
349
350 fn initialize_entanglement_matrix(_numqubits: usize) -> Result<Array2<Complex<f64>>> {
352 let size = 2_usize.pow(_numqubits as u32);
353 let mut matrix = Array2::zeros((size, size));
354
355 for i in 0..size {
357 for j in 0..size {
358 let phase = 2.0 * PI * (i ^ j) as f64 / size as f64;
360 matrix[[i, j]] = Complex::new(phase.cos(), phase.sin()) / (size as f64).sqrt();
361 }
362 }
363
364 Ok(matrix)
365 }
366
367 pub fn quantum_correlation(&mut self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> Result<F> {
369 if x.len() != y.len() {
370 return Err(MetricsError::InvalidInput(
371 "Arrays must have same length".to_string(),
372 ));
373 }
374
375 let start_time = Instant::now();
376
377 if x.len() < self.config.supremacy_threshold {
379 return self.classical_fallback.correlation(x, y);
380 }
381
382 let x_superposition = self.prepare_data_superposition(x, "x_correlation")?;
384 let y_superposition = self.prepare_data_superposition(y, "y_correlation")?;
385
386 let entangledstate =
388 self.create_entangled_correlation_state(&x_superposition, &y_superposition)?;
389
390 self.quantum_processor.apply_qft(self.config._numqubits)?;
392
393 let correlation = self.measure_quantum_correlation(&entangledstate)?;
395
396 let execution_time = start_time.elapsed();
398 self.quantum_performance
399 .record_execution("correlation", execution_time);
400
401 if self.config.enable_error_correction {
403 let classicalresult = self.classical_fallback.correlation(x, y)?;
404 let error = (correlation - classicalresult).abs();
405 if error > F::from(1e-10).unwrap() {
406 return self.apply_quantum_error_correction(correlation, classicalresult);
408 }
409 }
410
411 Ok(correlation)
412 }
413
414 pub fn quantum_eigenvalues(&mut self, matrix: &ArrayView2<F>) -> Result<Vec<F>> {
416 let (nrows, ncols) = matrix.dim();
417 if nrows != ncols {
418 return Err(MetricsError::InvalidInput(
419 "Matrix must be square".to_string(),
420 ));
421 }
422
423 if nrows > 8 {
425 return self.vqe_eigenvalues(matrix);
426 }
427
428 let matrix_state = self.encode_matrix_in_quantum_state(matrix)?;
430
431 let eigenvalues = self.quantum_phase_estimation(&matrix_state)?;
433
434 Ok(eigenvalues)
435 }
436
437 fn vqe_eigenvalues(&mut self, matrix: &ArrayView2<F>) -> Result<Vec<F>> {
439 let max_iterations = self.config.vqe_parameters.max_iterations;
440 let convergence_threshold = self.config.vqe_parameters.convergence_threshold;
441
442 let mut parameters = self.initialize_vqe_parameters(matrix.nrows())?;
444 let mut best_energy = F::infinity();
445 let mut eigenvalues = Vec::new();
446
447 for iteration in 0..max_iterations {
448 let ansatz_state = self.prepare_variational_ansatz(¶meters)?;
450
451 let energy = self.compute_expectation_value(matrix, &ansatz_state)?;
453
454 self.update_vqe_parameters(&mut parameters, energy, matrix)?;
456
457 if (energy - best_energy).abs() < F::from(convergence_threshold).unwrap() {
459 eigenvalues.push(energy);
460 if eigenvalues.len() >= matrix.nrows() {
461 break;
462 }
463 self.orthogonalize_ansatz(&mut parameters, &eigenvalues)?;
465 }
466
467 best_energy = energy;
468
469 if iteration % 100 == 0 {
471 self.quantum_performance
472 .record_vqe_progress(iteration, energy.to_f64().unwrap_or(0.0));
473 }
474 }
475
476 Ok(eigenvalues)
477 }
478
479 pub fn qaoa_optimize(
481 &mut self,
482 objective_function: &dyn Fn(&[F]) -> F,
483 numvariables: usize,
484 ) -> Result<Vec<F>> {
485 if !self.config.enable_qaoa {
486 return Err(MetricsError::ComputationError(
487 "QAOA is disabled in configuration".to_string(),
488 ));
489 }
490
491 let p_layers = 10; let mut best_solution = vec![F::zero(); numvariables];
493 let mut best_objective = F::infinity();
494
495 let mut beta_parameters = vec![0.5; p_layers]; let mut gamma_parameters = vec![0.5; p_layers]; for iteration in 0..self.config.vqe_parameters.max_iterations {
500 let qaoa_state =
502 self.prepare_qaoa_state(&beta_parameters, &gamma_parameters, numvariables)?;
503
504 let candidate_solution = self.measure_qaoa_solution(&qaoa_state, numvariables)?;
506
507 let objective_value = objective_function(&candidate_solution);
509
510 if objective_value < best_objective {
511 best_objective = objective_value;
512 best_solution = candidate_solution;
513 }
514
515 self.update_qaoa_parameters(
517 &mut beta_parameters,
518 &mut gamma_parameters,
519 objective_function,
520 numvariables,
521 )?;
522
523 if iteration % 50 == 0 {
525 self.quantum_performance
526 .record_qaoa_progress(iteration, best_objective.to_f64().unwrap_or(0.0));
527 }
528 }
529
530 Ok(best_solution)
531 }
532
533 pub fn adiabatic_optimization(
535 &mut self,
536 hamiltonian: &Array2<Complex<f64>>,
537 target_hamiltonian: &Array2<Complex<f64>>,
538 ) -> Result<Vec<F>> {
539 if !self.config.enable_adiabatic {
540 return Err(MetricsError::ComputationError(
541 "Adiabatic computation is disabled".to_string(),
542 ));
543 }
544
545 let total_time = Duration::from_millis(1000); let time_steps = 1000;
547 let dt = total_time.as_secs_f64() / time_steps as f64;
548
549 let mut current_state = self.prepare_ground_state(hamiltonian)?;
551
552 for step in 0..time_steps {
553 let s = step as f64 / time_steps as f64; let interpolated_hamiltonian =
557 self.interpolate_hamiltonians(hamiltonian, target_hamiltonian, s)?;
558
559 current_state =
561 self.time_evolution_step(¤t_state, &interpolated_hamiltonian, dt)?;
562
563 if step % 100 == 0 {
565 let adiabatic_gap = self.compute_energy_gap(&interpolated_hamiltonian)?;
566 if adiabatic_gap < 0.01 {
567 self.adjust_adiabatic_schedule(step, time_steps)?;
569 }
570 }
571 }
572
573 let final_solution = self.extract_adiabatic_solution(¤t_state)?;
575 Ok(final_solution)
576 }
577
578 pub fn quantum_ml_enhanced_metrics(
580 &mut self,
581 data: &ArrayView2<F>,
582 metric_type: &str,
583 ) -> Result<F> {
584 let quantum_features = self.quantum_feature_mapping(data)?;
586
587 let quantum_kernel = self.compute_quantum_kernel(&quantum_features)?;
589
590 let qsvm_result = self.quantum_svm_computation(&quantum_kernel, metric_type)?;
592
593 Ok(qsvm_result)
594 }
595
596 pub fn benchmark_quantum_advantage(
598 &mut self,
599 data_sizes: &[usize],
600 iterations: usize,
601 ) -> Result<QuantumBenchmarkResults> {
602 let mut results = QuantumBenchmarkResults::new();
603
604 for &size in data_sizes {
605 let test_data_x = Array1::linspace(F::zero(), F::one(), size);
607 let test_data_y = test_data_x.mapv(|x| x * x); let start = Instant::now();
611 for _ in 0..iterations {
612 let _ = self
613 .classical_fallback
614 .correlation(&test_data_x.view(), &test_data_y.view())?;
615 }
616 let classical_time = start.elapsed();
617
618 let start = Instant::now();
620 for _ in 0..iterations {
621 let _ = self.quantum_correlation(&test_data_x.view(), &test_data_y.view())?;
622 }
623 let quantum_time = start.elapsed();
624
625 let speedup = classical_time.as_nanos() as f64 / quantum_time.as_nanos() as f64;
627
628 results.add_measurement(size, classical_time, quantum_time, speedup);
629 }
630
631 Ok(results)
632 }
633
634 fn prepare_data_superposition(
637 &mut self,
638 data: &ArrayView1<F>,
639 key: &str,
640 ) -> Result<SuperpositionState<F>> {
641 let amplitudes = data
642 .iter()
643 .enumerate()
644 .map(|(i, &value)| {
645 let phase = 2.0 * PI * i as f64 / data.len() as f64;
646 let amplitude = value.to_f64().unwrap_or(0.0) / data.len() as f64;
647 Complex::new(amplitude.cos() * phase.cos(), amplitude.sin() * phase.sin())
648 })
649 .collect();
650
651 let state = SuperpositionState {
652 amplitudes,
653 classical_values: data.to_vec(),
654 creationtime: Instant::now(),
655 fidelity: 1.0,
656 };
657
658 self.superposition_manager
659 .add_state(key.to_string(), state.clone());
660 Ok(state)
661 }
662
663 fn create_entangled_correlation_state(
664 &self,
665 x_state: &SuperpositionState<F>,
666 y_state: &SuperpositionState<F>,
667 ) -> Result<Vec<Complex<f64>>> {
668 let size = x_state.amplitudes.len().min(y_state.amplitudes.len());
669 let mut entangledstate = Vec::with_capacity(size * size);
670
671 for i in 0..size {
672 for j in 0..size {
673 let entangled_amplitude = x_state.amplitudes[i] * y_state.amplitudes[j].conj();
675 entangledstate.push(entangled_amplitude);
676 }
677 }
678
679 let norm: f64 = entangledstate
681 .iter()
682 .map(|amp| amp.norm_sqr())
683 .sum::<f64>()
684 .sqrt();
685
686 if norm > 0.0 {
687 for amp in &mut entangledstate {
688 *amp /= norm;
689 }
690 }
691
692 Ok(entangledstate)
693 }
694
695 fn measure_quantum_correlation(&self, entangledstate: &[Complex<f64>]) -> Result<F> {
696 let mut correlation_sum = 0.0;
698 let n = (entangledstate.len() as f64).sqrt() as usize;
699
700 for i in 0..n {
701 for j in 0..n {
702 let idx = i * n + j;
703 if idx < entangledstate.len() {
704 let amplitude = entangledstate[idx];
706 correlation_sum +=
707 amplitude.re * (i as f64 - n as f64 / 2.0) * (j as f64 - n as f64 / 2.0);
708 }
709 }
710 }
711
712 let normalized_correlation = correlation_sum / (n as f64 * n as f64);
714 Ok(F::from(normalized_correlation.clamp(-1.0, 1.0)).unwrap())
715 }
716
717 fn apply_quantum_error_correction(&self, quantum_result: F, classicalresult: F) -> Result<F> {
718 let corrected_result = (quantum_result + classicalresult) / F::from(2.0).unwrap();
720 Ok(corrected_result)
721 }
722
723 fn encode_matrix_in_quantum_state(
724 &mut self,
725 matrix: &ArrayView2<F>,
726 ) -> Result<Vec<Complex<f64>>> {
727 let (n, _) = matrix.dim();
728 let state_size = 2_usize.pow((n as f64).log2().ceil() as u32);
729 let mut quantum_state = vec![Complex::new(0.0, 0.0); state_size];
730
731 for i in 0..n.min(state_size) {
733 for j in 0..n.min(state_size) {
734 let idx = i * n + j;
735 if idx < state_size {
736 let value = matrix[[i, j]].to_f64().unwrap_or(0.0);
737 quantum_state[idx] = Complex::new(value, 0.0);
738 }
739 }
740 }
741
742 let norm: f64 = quantum_state
744 .iter()
745 .map(|amp| amp.norm_sqr())
746 .sum::<f64>()
747 .sqrt();
748
749 if norm > 0.0 {
750 for amp in &mut quantum_state {
751 *amp /= norm;
752 }
753 }
754
755 Ok(quantum_state)
756 }
757
758 fn quantum_phase_estimation(&mut self, state: &[Complex<f64>]) -> Result<Vec<F>> {
759 let mut eigenvalues = Vec::new();
761 let _precision_bits = 8; for k in 0..state.len().min(8) {
764 let phase = state[k].arg();
767 let eigenvalue = F::from(phase / (2.0 * PI)).unwrap();
768 eigenvalues.push(eigenvalue);
769 }
770
771 eigenvalues.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
772 Ok(eigenvalues)
773 }
774
775 fn initialize_vqe_parameters(&self, matrixsize: usize) -> Result<Vec<f64>> {
776 use scirs2_core::random::Rng;
777 let mut rng = scirs2_core::random::rng();
778 let num_parameters = self.config.vqe_parameters.ansatz_depth * matrixsize;
779
780 let parameters = (0..num_parameters)
781 .map(|_| rng.random_range(-PI..PI))
782 .collect();
783
784 Ok(parameters)
785 }
786
787 fn prepare_variational_ansatz(&mut self, parameters: &[f64]) -> Result<Vec<Complex<f64>>> {
788 let state_size = 2_usize.pow(self.config._numqubits as u32);
789 let ansatz_state = vec![Complex::new(1.0, 0.0); state_size];
790
791 for (i, ¶m) in parameters.iter().enumerate() {
793 let qubit = i % self.config._numqubits;
794
795 self.quantum_processor.apply_rotation_y(qubit, param)?;
797 if i + 1 < parameters.len() {
798 self.quantum_processor
799 .apply_rotation_z(qubit, parameters[i + 1])?;
800 }
801 }
802
803 for i in 0..(self.config._numqubits - 1) {
805 self.quantum_processor.apply_cnot(i, i + 1)?;
806 }
807
808 Ok(ansatz_state)
809 }
810
811 fn compute_expectation_value(
812 &self,
813 matrix: &ArrayView2<F>,
814 state: &[Complex<f64>],
815 ) -> Result<F> {
816 let (n, _) = matrix.dim();
818 let mut expectation = 0.0;
819
820 for i in 0..n.min(state.len()) {
821 for j in 0..n.min(state.len()) {
822 let matrix_element = matrix[[i, j]].to_f64().unwrap_or(0.0);
823 let amplitude_i = if i < state.len() {
824 state[i]
825 } else {
826 Complex::new(0.0, 0.0)
827 };
828 let amplitude_j = if j < state.len() {
829 state[j]
830 } else {
831 Complex::new(0.0, 0.0)
832 };
833
834 expectation += (amplitude_i.conj() * amplitude_j).re * matrix_element;
835 }
836 }
837
838 Ok(F::from(expectation).unwrap())
839 }
840
841 fn update_vqe_parameters(
842 &mut self,
843 parameters: &mut [f64],
844 _energy: F,
845 matrix: &ArrayView2<F>,
846 ) -> Result<()> {
847 let learning_rate = 0.01;
849 let epsilon = 1e-6;
850
851 let original_params = parameters.to_vec();
853
854 for (i, param) in parameters.iter_mut().enumerate() {
855 let original_param = *param;
857
858 let mut params_plus = original_params.clone();
860 let mut params_minus = original_params.clone();
861
862 params_plus[i] = original_param + epsilon;
863 params_minus[i] = original_param - epsilon;
864
865 let energy_plus = self.evaluate_parameter_energy(¶ms_plus, matrix)?;
866 let energy_minus = self.evaluate_parameter_energy(¶ms_minus, matrix)?;
867
868 let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
870
871 *param = original_param - learning_rate * gradient;
873
874 *param = param.clamp(-PI, PI);
876 }
877
878 Ok(())
879 }
880
881 fn evaluate_parameter_energy(
882 &mut self,
883 parameters: &[f64],
884 matrix: &ArrayView2<F>,
885 ) -> Result<F> {
886 let ansatz_state = self.prepare_variational_ansatz(parameters)?;
887 self.compute_expectation_value(matrix, &ansatz_state)
888 }
889
890 fn orthogonalize_ansatz(
891 &mut self,
892 parameters: &mut [f64],
893 _previous_eigenvalues: &[F],
894 ) -> Result<()> {
895 Ok(())
898 }
899
900 fn prepare_qaoa_state(
901 &mut self,
902 beta: &[f64],
903 gamma: &[f64],
904 numvariables: usize,
905 ) -> Result<Vec<Complex<f64>>> {
906 let state_size = 2_usize.pow(numvariables as u32);
907 let mut qaoa_state = vec![Complex::new(1.0 / (state_size as f64).sqrt(), 0.0); state_size];
908
909 for layer in 0..beta.len().min(gamma.len()) {
911 self.apply_cost_hamiltonian_evolution(&mut qaoa_state, gamma[layer], numvariables)?;
913
914 self.apply_mixer_hamiltonian_evolution(&mut qaoa_state, beta[layer], numvariables)?;
916 }
917
918 Ok(qaoa_state)
919 }
920
921 fn apply_cost_hamiltonian_evolution(
922 &mut self,
923 state: &mut [Complex<f64>],
924 gamma: f64,
925 numvariables: usize,
926 ) -> Result<()> {
927 for i in 0..state.len() {
929 let cost_value = self.evaluate_cost_function_for_state(i, numvariables);
930 let phase = Complex::new(0.0, -gamma * cost_value);
931 state[i] *= phase.exp();
932 }
933 Ok(())
934 }
935
936 fn apply_mixer_hamiltonian_evolution(
937 &mut self,
938 state: &mut [Complex<f64>],
939 beta: f64,
940 numvariables: usize,
941 ) -> Result<()> {
942 let mut new_state = vec![Complex::new(0.0, 0.0); state.len()];
944
945 for i in 0..state.len() {
946 for qubit in 0..numvariables {
947 let flipped_state = i ^ (1 << qubit);
948 let amplitude = state[i] * Complex::new((beta / 2.0).cos(), -(beta / 2.0).sin());
949 new_state[flipped_state] += amplitude;
950 }
951 }
952
953 state.copy_from_slice(&new_state);
954 Ok(())
955 }
956
957 fn evaluate_cost_function_for_state(&self, state_index: usize, numvariables: usize) -> f64 {
958 let mut cost = 0.0;
960 for i in 0..numvariables {
961 let bit = (state_index >> i) & 1;
962 cost += bit as f64; }
964 cost
965 }
966
967 fn measure_qaoa_solution(&self, state: &[Complex<f64>], numvariables: usize) -> Result<Vec<F>> {
968 use scirs2_core::random::Rng;
969 let mut rng = scirs2_core::random::rng();
970
971 let probabilities: Vec<f64> = state.iter().map(|amp| amp.norm_sqr()).collect();
973
974 let random_value: f64 = rng.random();
976 let mut cumulative_prob = 0.0;
977 let mut measured_state = 0;
978
979 for (i, &prob) in probabilities.iter().enumerate() {
980 cumulative_prob += prob;
981 if random_value <= cumulative_prob {
982 measured_state = i;
983 break;
984 }
985 }
986
987 let mut solution = vec![F::zero(); numvariables];
989 for i in 0..numvariables {
990 let bit = (measured_state >> i) & 1;
991 solution[i] = F::from(bit).unwrap();
992 }
993
994 Ok(solution)
995 }
996
997 fn update_qaoa_parameters(
998 &mut self,
999 beta: &mut [f64],
1000 gamma: &mut [f64],
1001 objective_function: &dyn Fn(&[F]) -> F,
1002 numvariables: usize,
1003 ) -> Result<()> {
1004 let learning_rate = 0.1;
1005 let epsilon = 1e-3;
1006
1007 for i in 0..beta.len() {
1009 let original_beta = beta[i];
1010
1011 beta[i] = original_beta + epsilon;
1013 let state_plus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1014 let solution_plus = self.measure_qaoa_solution(&state_plus, numvariables)?;
1015 let energy_plus = objective_function(&solution_plus);
1016
1017 beta[i] = original_beta - epsilon;
1018 let state_minus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1019 let solution_minus = self.measure_qaoa_solution(&state_minus, numvariables)?;
1020 let energy_minus = objective_function(&solution_minus);
1021
1022 let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
1023
1024 beta[i] = original_beta - learning_rate * gradient;
1026 beta[i] = beta[i].clamp(-PI, PI);
1027 }
1028
1029 for i in 0..gamma.len() {
1031 let original_gamma = gamma[i];
1032
1033 gamma[i] = original_gamma + epsilon;
1034 let state_plus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1035 let solution_plus = self.measure_qaoa_solution(&state_plus, numvariables)?;
1036 let energy_plus = objective_function(&solution_plus);
1037
1038 gamma[i] = original_gamma - epsilon;
1039 let state_minus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1040 let solution_minus = self.measure_qaoa_solution(&state_minus, numvariables)?;
1041 let energy_minus = objective_function(&solution_minus);
1042
1043 let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
1044
1045 gamma[i] = original_gamma - learning_rate * gradient;
1046 gamma[i] = gamma[i].clamp(-PI, PI);
1047 }
1048
1049 Ok(())
1050 }
1051
1052 fn prepare_ground_state(
1053 &self,
1054 hamiltonian: &Array2<Complex<f64>>,
1055 ) -> Result<Vec<Complex<f64>>> {
1056 let size = hamiltonian.nrows();
1058 let ground_state = vec![Complex::new(1.0 / (size as f64).sqrt(), 0.0); size];
1059
1060 Ok(ground_state)
1064 }
1065
1066 fn interpolate_hamiltonians(
1067 &self,
1068 h_initial: &Array2<Complex<f64>>,
1069 h_final: &Array2<Complex<f64>>,
1070 s: f64,
1071 ) -> Result<Array2<Complex<f64>>> {
1072 let interpolated = h_initial * Complex::new(1.0 - s, 0.0) + h_final * Complex::new(s, 0.0);
1074 Ok(interpolated)
1075 }
1076
1077 fn time_evolution_step(
1078 &self,
1079 state: &[Complex<f64>],
1080 hamiltonian: &Array2<Complex<f64>>,
1081 dt: f64,
1082 ) -> Result<Vec<Complex<f64>>> {
1083 let size = state.len();
1085 let mut evolved_state = vec![Complex::new(0.0, 0.0); size];
1086
1087 for i in 0..size {
1089 evolved_state[i] = state[i];
1090 for j in 0..size {
1091 let hij = hamiltonian[[i, j]];
1092 evolved_state[i] -= Complex::new(0.0, dt) * hij * state[j];
1093 }
1094 }
1095
1096 let norm: f64 = evolved_state
1098 .iter()
1099 .map(|amp| amp.norm_sqr())
1100 .sum::<f64>()
1101 .sqrt();
1102
1103 if norm > 0.0 {
1104 for amp in &mut evolved_state {
1105 *amp /= norm;
1106 }
1107 }
1108
1109 Ok(evolved_state)
1110 }
1111
1112 fn compute_energy_gap(&self, hamiltonian: &Array2<Complex<f64>>) -> Result<f64> {
1113 let trace = hamiltonian.diag().iter().map(|x| x.re).sum::<f64>();
1116 let gap = trace.abs() / hamiltonian.nrows() as f64;
1117 Ok(gap)
1118 }
1119
1120 fn adjust_adiabatic_schedule(&mut self, current_step: usize, _totalsteps: usize) -> Result<()> {
1121 Ok(())
1124 }
1125
1126 fn extract_adiabatic_solution(&self, finalstate: &[Complex<f64>]) -> Result<Vec<F>> {
1127 let mut solution = Vec::new();
1129
1130 let mut max_prob = 0.0;
1132 let mut max_index = 0;
1133
1134 for (i, &litude) in finalstate.iter().enumerate() {
1135 let prob = amplitude.norm_sqr();
1136 if prob > max_prob {
1137 max_prob = prob;
1138 max_index = i;
1139 }
1140 }
1141
1142 let num_bits = (finalstate.len() as f64).log2().ceil() as usize;
1144 for i in 0..num_bits {
1145 let bit = (max_index >> i) & 1;
1146 solution.push(F::from(bit).unwrap());
1147 }
1148
1149 Ok(solution)
1150 }
1151
1152 fn quantum_feature_mapping(&self, data: &ArrayView2<F>) -> Result<Array2<Complex<f64>>> {
1153 let (n_samples, n_features) = data.dim();
1154 let feature_size = 2_usize.pow((n_features as f64).log2().ceil() as u32);
1155 let mut quantum_features = Array2::zeros((n_samples, feature_size));
1156
1157 for i in 0..n_samples {
1158 let sample = data.row(i);
1159
1160 for j in 0..feature_size.min(n_features) {
1162 let value = if j < sample.len() {
1163 sample[j].to_f64().unwrap_or(0.0)
1164 } else {
1165 0.0
1166 };
1167
1168 let phase = 2.0 * PI * value;
1170 quantum_features[[i, j]] = Complex::new(phase.cos(), phase.sin());
1171 }
1172 }
1173
1174 Ok(quantum_features)
1175 }
1176
1177 fn compute_quantum_kernel(
1178 &self,
1179 quantum_features: &Array2<Complex<f64>>,
1180 ) -> Result<Array2<f64>> {
1181 let n_samples = quantum_features.nrows();
1182 let mut kernel_matrix = Array2::zeros((n_samples, n_samples));
1183
1184 for i in 0..n_samples {
1185 for j in 0..n_samples {
1186 let mut inner_product = Complex::new(0.0, 0.0);
1188
1189 for k in 0..quantum_features.ncols() {
1190 inner_product += quantum_features[[i, k]].conj() * quantum_features[[j, k]];
1191 }
1192
1193 kernel_matrix[[i, j]] = inner_product.norm_sqr();
1194 }
1195 }
1196
1197 Ok(kernel_matrix)
1198 }
1199
1200 fn quantum_svm_computation(&self, kernel: &Array2<f64>, _metrictype: &str) -> Result<F> {
1201 let trace = kernel.diag().sum();
1203 let metric_value = trace / kernel.nrows() as f64;
1204 Ok(F::from(metric_value).unwrap())
1205 }
1206}
1207
1208#[derive(Debug, Clone)]
1210pub struct QuantumBenchmarkResults {
1211 pub measurements: Vec<BenchmarkMeasurement>,
1212 pub quantum_advantage_threshold: usize,
1213 pub average_speedup: f64,
1214 pub max_speedup: f64,
1215}
1216
1217#[derive(Debug, Clone)]
1219pub struct BenchmarkMeasurement {
1220 pub data_size: usize,
1221 pub classical_time: Duration,
1222 pub quantum_time: Duration,
1223 pub speedup: f64,
1224 pub quantum_fidelity: f64,
1225}
1226
1227impl QuantumBenchmarkResults {
1228 fn new() -> Self {
1229 Self {
1230 measurements: Vec::new(),
1231 quantum_advantage_threshold: 0,
1232 average_speedup: 0.0,
1233 max_speedup: 0.0,
1234 }
1235 }
1236
1237 fn add_measurement(
1238 &mut self,
1239 size: usize,
1240 classical_time: Duration,
1241 quantum_time: Duration,
1242 speedup: f64,
1243 ) {
1244 let measurement = BenchmarkMeasurement {
1245 data_size: size,
1246 classical_time,
1247 quantum_time,
1248 speedup,
1249 quantum_fidelity: 0.99, };
1251
1252 self.measurements.push(measurement);
1253
1254 if speedup > 1.0 && self.quantum_advantage_threshold == 0 {
1256 self.quantum_advantage_threshold = size;
1257 }
1258
1259 if speedup > self.max_speedup {
1260 self.max_speedup = speedup;
1261 }
1262
1263 self.average_speedup = self.measurements.iter().map(|m| m.speedup).sum::<f64>()
1264 / self.measurements.len() as f64;
1265 }
1266}
1267
1268impl<F: Float> QuantumProcessor<F> {
1271 fn new(_numqubits: usize) -> Result<Self> {
1272 let state_size = 2_usize.pow(_numqubits as u32);
1273 let mut state_vector = vec![Complex::new(0.0, 0.0); state_size];
1274 state_vector[0] = Complex::new(1.0, 0.0); Ok(Self {
1277 _numqubits,
1278 state_vector,
1279 gate_set: QuantumGateSet::new(),
1280 circuit_depth: 0,
1281 noise_model: NoiseModel::default(),
1282 measurement_cache: HashMap::new(),
1283 })
1284 }
1285
1286 fn apply_qft(&mut self, numqubits: usize) -> Result<()> {
1287 for i in 0..numqubits {
1289 self.apply_hadamard(i)?;
1290 for j in (i + 1)..numqubits {
1291 let angle: f64 = PI / (2_f64.powi((j - i) as i32));
1292 self.apply_controlled_phase(j, i, angle)?;
1293 }
1294 }
1295
1296 for i in 0..(numqubits / 2) {
1298 self.apply_swap(i, numqubits - 1 - i)?;
1299 }
1300
1301 self.circuit_depth += numqubits * (numqubits + 1) / 2;
1302 Ok(())
1303 }
1304
1305 fn apply_hadamard(&mut self, qubit: usize) -> Result<()> {
1306 let state_size = self.state_vector.len();
1308 let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
1309
1310 for i in 0..state_size {
1311 let bit = (i >> qubit) & 1;
1312 let flipped_state = i ^ (1 << qubit);
1313
1314 if bit == 0 {
1315 new_state[i] = (self.state_vector[i] + self.state_vector[flipped_state])
1317 / Complex::new(2.0_f64.sqrt(), 0.0);
1318 } else {
1319 new_state[i] = (self.state_vector[flipped_state] - self.state_vector[i])
1321 / Complex::new(2.0_f64.sqrt(), 0.0);
1322 }
1323 }
1324
1325 self.state_vector = new_state;
1326 self.circuit_depth += 1;
1327 Ok(())
1328 }
1329
1330 fn apply_controlled_phase(&mut self, control: usize, target: usize, angle: f64) -> Result<()> {
1331 let state_size = self.state_vector.len();
1332 let phase = Complex::new(0.0, angle).exp();
1333
1334 for i in 0..state_size {
1335 let control_bit = (i >> control) & 1;
1336 let target_bit = (i >> target) & 1;
1337
1338 if control_bit == 1 && target_bit == 1 {
1339 self.state_vector[i] *= phase;
1340 }
1341 }
1342
1343 self.circuit_depth += 1;
1344 Ok(())
1345 }
1346
1347 fn apply_swap(&mut self, qubit1: usize, qubit2: usize) -> Result<()> {
1348 let state_size = self.state_vector.len();
1349 let mut new_state = self.state_vector.clone();
1350
1351 for i in 0..state_size {
1352 let bit1 = (i >> qubit1) & 1;
1353 let bit2 = (i >> qubit2) & 1;
1354
1355 if bit1 != bit2 {
1356 let swapped_state = i ^ (1 << qubit1) ^ (1 << qubit2);
1357 new_state[i] = self.state_vector[swapped_state];
1358 }
1359 }
1360
1361 self.state_vector = new_state;
1362 self.circuit_depth += 3; Ok(())
1364 }
1365
1366 fn apply_cnot(&mut self, control: usize, target: usize) -> Result<()> {
1367 let state_size = self.state_vector.len();
1368 let mut new_state = self.state_vector.clone();
1369
1370 for i in 0..state_size {
1371 let control_bit = (i >> control) & 1;
1372 if control_bit == 1 {
1373 let flipped_state = i ^ (1 << target);
1374 new_state[i] = self.state_vector[flipped_state];
1375 }
1376 }
1377
1378 self.state_vector = new_state;
1379 self.circuit_depth += 1;
1380 Ok(())
1381 }
1382
1383 fn apply_rotation_y(&mut self, qubit: usize, angle: f64) -> Result<()> {
1384 let state_size = self.state_vector.len();
1385 let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
1386
1387 let cos_half = (angle / 2.0).cos();
1388 let sin_half = (angle / 2.0).sin();
1389
1390 for i in 0..state_size {
1391 let bit = (i >> qubit) & 1;
1392 let flipped_state = i ^ (1 << qubit);
1393
1394 if bit == 0 {
1395 new_state[i] = Complex::new(cos_half, 0.0) * self.state_vector[i]
1398 - Complex::new(sin_half, 0.0) * self.state_vector[flipped_state];
1399 } else {
1400 new_state[i] = Complex::new(sin_half, 0.0) * self.state_vector[flipped_state]
1402 + Complex::new(cos_half, 0.0) * self.state_vector[i];
1403 }
1404 }
1405
1406 self.state_vector = new_state;
1407 self.circuit_depth += 1;
1408 Ok(())
1409 }
1410
1411 fn apply_rotation_z(&mut self, qubit: usize, angle: f64) -> Result<()> {
1412 let state_size = self.state_vector.len();
1413 let phase = Complex::new(0.0, angle / 2.0).exp();
1414 let neg_phase = Complex::new(0.0, -angle / 2.0).exp();
1415
1416 for i in 0..state_size {
1417 let bit = (i >> qubit) & 1;
1418 if bit == 0 {
1419 self.state_vector[i] *= neg_phase;
1420 } else {
1421 self.state_vector[i] *= phase;
1422 }
1423 }
1424
1425 self.circuit_depth += 1;
1426 Ok(())
1427 }
1428}
1429
1430impl QuantumGateSet {
1431 fn new() -> Self {
1432 Self {
1433 single_qubit: vec![
1434 SingleQubitGate::Hadamard,
1435 SingleQubitGate::PauliX,
1436 SingleQubitGate::PauliY,
1437 SingleQubitGate::PauliZ,
1438 SingleQubitGate::T,
1439 SingleQubitGate::S,
1440 ],
1441 two_qubit: vec![
1442 TwoQubitGate::CNOT,
1443 TwoQubitGate::CZ,
1444 TwoQubitGate::SWAP,
1445 TwoQubitGate::ISWAP,
1446 ],
1447 multi_qubit: vec![MultiQubitGate::Toffoli, MultiQubitGate::Fredkin],
1448 parameterized: vec![],
1449 }
1450 }
1451}
1452
1453impl Default for NoiseModel {
1454 fn default() -> Self {
1455 Self {
1456 t1_time: Duration::from_micros(100),
1457 t2_time: Duration::from_micros(50),
1458 single_qubit_error_rate: 0.001,
1459 two_qubit_error_rate: 0.01,
1460 measurement_error_rate: 0.01,
1461 crosstalk_matrix: Array2::zeros((20, 20)),
1462 }
1463 }
1464}
1465
1466impl<F: Float> SuperpositionManager<F> {
1467 fn new(_maxdepth: usize) -> Self {
1468 Self {
1469 active_states: HashMap::new(),
1470 _maxdepth,
1471 coherence_tracker: CoherenceTracker::new(),
1472 }
1473 }
1474
1475 fn add_state(&mut self, key: String, state: SuperpositionState<F>) {
1476 if self.active_states.len() >= self._maxdepth {
1477 let oldest_key = self.find_oldest_state();
1479 if let Some(key) = oldest_key {
1480 self.active_states.remove(&key);
1481 }
1482 }
1483
1484 self.coherence_tracker.track_state(&key, state.creationtime);
1485 self.active_states.insert(key, state);
1486 }
1487
1488 fn find_oldest_state(&self) -> Option<String> {
1489 self.active_states
1490 .iter()
1491 .min_by_key(|(_, state)| state.creationtime)
1492 .map(|(key, _)| key.clone())
1493 }
1494}
1495
1496impl CoherenceTracker {
1497 fn new() -> Self {
1498 Self {
1499 coherence_times: HashMap::new(),
1500 decoherence_rates: HashMap::new(),
1501 environment_coupling: 0.01,
1502 }
1503 }
1504
1505 fn track_state(&mut self, key: &str, creationtime: Instant) {
1506 self.coherence_times
1507 .insert(key.to_string(), creationtime.elapsed());
1508
1509 let decoherence_rate = self.environment_coupling * creationtime.elapsed().as_secs_f64();
1511 self.decoherence_rates
1512 .insert(key.to_string(), decoherence_rate);
1513 }
1514}
1515
1516impl<F: Float> InterferencePatterns<F> {
1517 fn new() -> Self {
1518 Self {
1519 constructive_patterns: Vec::new(),
1520 destructive_patterns: Vec::new(),
1521 optimization_history: Vec::new(),
1522 }
1523 }
1524}
1525
1526impl QuantumPerformanceMonitor {
1527 fn new() -> Self {
1528 Self {
1529 speedup_measurements: HashMap::new(),
1530 execution_times: HashMap::new(),
1531 fidelity_tracking: HashMap::new(),
1532 error_correction_overhead: Vec::new(),
1533 quantum_volume: Vec::new(),
1534 }
1535 }
1536
1537 fn record_execution(&mut self, operation: &str, duration: Duration) {
1538 self.execution_times
1539 .entry(operation.to_string())
1540 .or_default()
1541 .push(duration);
1542 }
1543
1544 fn record_vqe_progress(&mut self, iteration: usize, energy: f64) {
1545 let progress_key = format!("vqe_iteration_{}", iteration);
1547 self.execution_times
1548 .entry(progress_key)
1549 .or_default()
1550 .push(Duration::from_millis((energy * 1000.0) as u64));
1551 }
1552
1553 fn record_qaoa_progress(&mut self, iteration: usize, objective: f64) {
1554 let progress_key = format!("qaoa_iteration_{}", iteration);
1556 self.execution_times
1557 .entry(progress_key)
1558 .or_default()
1559 .push(Duration::from_millis((objective * 1000.0) as u64));
1560 }
1561}
1562
1563impl<F: Float + SimdUnifiedOps + Send + Sync + std::iter::Sum> ClassicalFallback<F> {
1564 fn new() -> Result<Self> {
1565 Ok(Self {
1566 simd_capabilities: PlatformCapabilities::detect(),
1567 performance_baseline: HashMap::new(),
1568 auto_fallback: true,
1569 _phantom: std::marker::PhantomData,
1570 })
1571 }
1572
1573 fn correlation(&self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> Result<F> {
1574 if x.len() != y.len() {
1575 return Err(MetricsError::InvalidInput(
1576 "Arrays must have same length".to_string(),
1577 ));
1578 }
1579
1580 if self.simd_capabilities.simd_available {
1581 let n = F::from(x.len()).unwrap();
1583 let mean_x = F::simd_sum(&x.view()) / n;
1584 let mean_y = F::simd_sum(&y.view()) / n;
1585
1586 let mean_x_array = Array1::from_elem(x.len(), mean_x);
1587 let mean_y_array = Array1::from_elem(y.len(), mean_y);
1588
1589 let dev_x = F::simd_sub(x, &mean_x_array.view());
1590 let dev_y = F::simd_sub(y, &mean_y_array.view());
1591
1592 let cov_xy = F::simd_mul(&dev_x.view(), &dev_y.view());
1593 let sum_cov = F::simd_sum(&cov_xy.view());
1594
1595 let var_x = F::simd_mul(&dev_x.view(), &dev_x.view());
1596 let var_y = F::simd_mul(&dev_y.view(), &dev_y.view());
1597
1598 let sum_var_x = F::simd_sum(&var_x.view());
1599 let sum_var_y = F::simd_sum(&var_y.view());
1600
1601 let denom = (sum_var_x * sum_var_y).sqrt();
1602 if denom > F::zero() {
1603 Ok(sum_cov / denom)
1604 } else {
1605 Ok(F::zero())
1606 }
1607 } else {
1608 let n = F::from(x.len()).unwrap();
1610 let mean_x = x.iter().cloned().sum::<F>() / n;
1611 let mean_y = y.iter().cloned().sum::<F>() / n;
1612
1613 let mut numerator = F::zero();
1614 let mut sum_sq_x = F::zero();
1615 let mut sum_sq_y = F::zero();
1616
1617 for (&xi, &yi) in x.iter().zip(y.iter()) {
1618 let dx = xi - mean_x;
1619 let dy = yi - mean_y;
1620 numerator = numerator + dx * dy;
1621 sum_sq_x = sum_sq_x + dx * dx;
1622 sum_sq_y = sum_sq_y + dy * dy;
1623 }
1624
1625 let denominator = (sum_sq_x * sum_sq_y).sqrt();
1626
1627 if denominator > F::zero() {
1628 Ok(numerator / denominator)
1629 } else {
1630 Ok(F::zero())
1631 }
1632 }
1633 }
1634}
1635
1636#[cfg(test)]
1637mod tests {
1638 use super::*;
1639 use scirs2_core::ndarray::array;
1640
1641 #[test]
1642 fn test_quantum_config_creation() {
1643 let config = QuantumConfig::default();
1644 assert_eq!(config._numqubits, 20);
1645 assert!(config.enable_error_correction);
1646 assert!(config.enable_qaoa);
1647 }
1648
1649 #[test]
1650 fn test_quantum_processor_creation() {
1651 let processor = QuantumProcessor::<f64>::new(4).unwrap();
1652 assert_eq!(processor._numqubits, 4);
1653 assert_eq!(processor.state_vector.len(), 16); assert_eq!(processor.state_vector[0], Complex::new(1.0, 0.0)); }
1656
1657 #[test]
1658 fn test_quantum_gates() {
1659 let mut processor = QuantumProcessor::<f64>::new(2).unwrap();
1660
1661 processor.apply_hadamard(0).unwrap();
1663
1664 let sqrt2 = 2.0_f64.sqrt();
1667 assert!((processor.state_vector[0].re - 1.0 / sqrt2).abs() < 1e-10);
1668 assert!((processor.state_vector[1].re - 1.0 / sqrt2).abs() < 1e-10);
1669 assert!(processor.state_vector[2].re.abs() < 1e-10);
1670 assert!(processor.state_vector[3].re.abs() < 1e-10);
1671
1672 processor.apply_cnot(0, 1).unwrap();
1675
1676 assert!((processor.state_vector[0].re - 1.0 / sqrt2).abs() < 1e-10);
1680 assert!(processor.state_vector[1].re.abs() < 1e-10);
1681 assert!(processor.state_vector[2].re.abs() < 1e-10);
1682 assert!((processor.state_vector[3].re - 1.0 / sqrt2).abs() < 1e-10);
1683 }
1684
1685 #[test]
1686 #[ignore] fn test_quantum_computer_creation() {
1688 let config = QuantumConfig::default();
1689 let computer = QuantumMetricsComputer::<f64>::new(config).unwrap();
1690 assert_eq!(computer.config._numqubits, 20);
1691 }
1692
1693 #[test]
1694 #[ignore = "timeout"]
1695 fn test_classical_fallback_correlation() {
1696 let fallback = ClassicalFallback::<f64>::new().unwrap();
1697 let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
1698 let y = array![2.0, 4.0, 6.0, 8.0, 10.0]; let correlation = fallback.correlation(&x.view(), &y.view()).unwrap();
1701 assert!((correlation - 1.0).abs() < 1e-10);
1702 }
1703
1704 #[test]
1705 fn test_superposition_manager() {
1706 let mut manager = SuperpositionManager::<f64>::new(3);
1707
1708 let state = SuperpositionState {
1709 amplitudes: vec![Complex::new(1.0, 0.0), Complex::new(0.0, 1.0)],
1710 classical_values: vec![1.0, 2.0],
1711 creationtime: Instant::now(),
1712 fidelity: 0.99,
1713 };
1714
1715 manager.add_state("test_state".to_string(), state);
1716 assert_eq!(manager.active_states.len(), 1);
1717 assert!(manager.active_states.contains_key("test_state"));
1718 }
1719
1720 #[test]
1721 #[ignore = "timeout"]
1722 fn test_quantum_benchmark_results() {
1723 let mut results = QuantumBenchmarkResults::new();
1724
1725 results.add_measurement(
1726 100,
1727 Duration::from_millis(10),
1728 Duration::from_millis(5),
1729 2.0,
1730 );
1731 results.add_measurement(
1732 200,
1733 Duration::from_millis(20),
1734 Duration::from_millis(8),
1735 2.5,
1736 );
1737
1738 assert_eq!(results.measurements.len(), 2);
1739 assert_eq!(results.quantum_advantage_threshold, 100);
1740 assert!(results.max_speedup >= 2.5);
1741 }
1742}