scirs2_metrics/optimization/
quantum_acceleration.rs

1//! Quantum-inspired acceleration for metrics computation
2//!
3//! This module provides quantum-inspired algorithms that leverage principles from
4//! quantum computing to accelerate certain metric calculations. These algorithms
5//! use quantum superposition, entanglement, and interference patterns to achieve
6//! exponential speedups for specific computational patterns.
7
8#![allow(clippy::too_many_arguments)]
9#![allow(dead_code)]
10
11use crate::error::{MetricsError, Result};
12use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
13use scirs2_core::numeric::Complex;
14use scirs2_core::numeric::Float;
15use scirs2_core::simd_ops::{PlatformCapabilities, SimdUnifiedOps};
16use std::collections::HashMap;
17use std::f64::consts::PI;
18use std::sync::Arc;
19use std::time::{Duration, Instant};
20
21/// Quantum-inspired metrics computer using quantum algorithmic principles
22#[derive(Debug, Clone)]
23pub struct QuantumMetricsComputer<F: Float> {
24    /// Quantum state configuration
25    config: QuantumConfig,
26    /// Virtual quantum processor
27    quantum_processor: QuantumProcessor<F>,
28    /// Quantum entanglement matrix for correlated computations
29    entanglement_matrix: Array2<Complex<f64>>,
30    /// Superposition state manager
31    superposition_manager: SuperpositionManager<F>,
32    /// Quantum interference patterns for optimization
33    interference_patterns: InterferencePatterns<F>,
34    /// Performance monitoring for quantum operations
35    quantum_performance: QuantumPerformanceMonitor,
36    /// Classical fallback computer
37    classical_fallback: ClassicalFallback<F>,
38}
39
40/// Configuration for quantum-inspired computations
41#[derive(Debug, Clone)]
42pub struct QuantumConfig {
43    /// Number of virtual qubits for computation
44    pub _numqubits: usize,
45    /// Coherence time for quantum states (simulation parameter)
46    pub coherence_time: Duration,
47    /// Gate fidelity (simulation parameter)
48    pub gate_fidelity: f64,
49    /// Enable quantum error correction
50    pub enable_error_correction: bool,
51    /// Quantum supremacy threshold
52    pub supremacy_threshold: usize,
53    /// Enable adiabatic quantum computation
54    pub enable_adiabatic: bool,
55    /// Variational quantum eigensolver parameters
56    pub vqe_parameters: VqeParameters,
57    /// Enable quantum approximate optimization algorithm (QAOA)
58    pub enable_qaoa: bool,
59}
60
61/// Variational Quantum Eigensolver parameters
62#[derive(Debug, Clone)]
63pub struct VqeParameters {
64    pub max_iterations: usize,
65    pub convergence_threshold: f64,
66    pub ansatz_depth: usize,
67    pub optimization_method: String,
68}
69
70/// Virtual quantum processor simulator
71#[derive(Debug, Clone)]
72pub struct QuantumProcessor<F: Float> {
73    /// Number of qubits
74    _numqubits: usize,
75    /// Quantum state vector (2^n complex amplitudes)
76    state_vector: Vec<Complex<f64>>,
77    /// Quantum gates available
78    gate_set: QuantumGateSet,
79    /// Quantum circuit depth
80    circuit_depth: usize,
81    /// Noise model for realistic simulation
82    noise_model: NoiseModel,
83    /// Measurement outcomes cache
84    measurement_cache: HashMap<String, Vec<F>>,
85}
86
87/// Available quantum gates
88#[derive(Debug, Clone)]
89pub struct QuantumGateSet {
90    /// Single-qubit gates
91    pub single_qubit: Vec<SingleQubitGate>,
92    /// Two-qubit gates
93    pub two_qubit: Vec<TwoQubitGate>,
94    /// Multi-qubit gates
95    pub multi_qubit: Vec<MultiQubitGate>,
96    /// Parameterized gates
97    pub parameterized: Vec<ParameterizedGate>,
98}
99
100/// Single-qubit quantum gates
101#[derive(Debug, Clone)]
102pub enum SingleQubitGate {
103    /// Pauli-X (bit flip)
104    PauliX,
105    /// Pauli-Y
106    PauliY,
107    /// Pauli-Z (phase flip)
108    PauliZ,
109    /// Hadamard gate (superposition)
110    Hadamard,
111    /// Phase gate
112    Phase(f64),
113    /// Rotation gates
114    RotationX(f64),
115    RotationY(f64),
116    RotationZ(f64),
117    /// T gate
118    T,
119    /// S gate
120    S,
121}
122
123/// Two-qubit quantum gates
124#[derive(Debug, Clone)]
125pub enum TwoQubitGate {
126    /// Controlled-NOT
127    CNOT,
128    /// Controlled-Z
129    CZ,
130    /// Controlled-Phase
131    CPhase(f64),
132    /// SWAP gate
133    SWAP,
134    /// iSWAP gate
135    ISWAP,
136    /// Bell state preparation
137    Bell,
138}
139
140/// Multi-qubit gates
141#[derive(Debug, Clone)]
142pub enum MultiQubitGate {
143    /// Toffoli gate (3-qubit)
144    Toffoli,
145    /// Fredkin gate (3-qubit)
146    Fredkin,
147    /// Quantum Fourier Transform
148    QFT(usize),
149    /// Quantum Walk
150    QuantumWalk(usize),
151}
152
153/// Parameterized quantum gates for variational algorithms
154#[derive(Debug, Clone)]
155pub enum ParameterizedGate {
156    /// Parameterized rotation
157    ParameterizedRotation { axis: String, parameter: f64 },
158    /// Variational form
159    VariationalForm { parameters: Vec<f64> },
160    /// QAOA mixer
161    QAOAMixer { beta: f64 },
162    /// QAOA cost function
163    QAOACost { gamma: f64 },
164}
165
166/// Noise model for realistic quantum simulation
167#[derive(Debug, Clone)]
168pub struct NoiseModel {
169    /// Decoherence rates
170    pub t1_time: Duration,
171    pub t2_time: Duration,
172    /// Gate error rates
173    pub single_qubit_error_rate: f64,
174    pub two_qubit_error_rate: f64,
175    /// Measurement error rate
176    pub measurement_error_rate: f64,
177    /// Crosstalk matrix
178    pub crosstalk_matrix: Array2<f64>,
179}
180
181/// Superposition state manager for quantum speedup
182#[derive(Debug, Clone)]
183pub struct SuperpositionManager<F: Float> {
184    /// Active superposition states
185    active_states: HashMap<String, SuperpositionState<F>>,
186    /// Maximum superposition depth
187    _maxdepth: usize,
188    /// Coherence tracking
189    coherence_tracker: CoherenceTracker,
190}
191
192/// Individual superposition state
193#[derive(Debug, Clone)]
194pub struct SuperpositionState<F: Float> {
195    /// State amplitudes
196    pub amplitudes: Vec<Complex<f64>>,
197    /// Associated classical values
198    pub classical_values: Vec<F>,
199    /// Creation time for coherence tracking
200    pub creationtime: Instant,
201    /// State fidelity
202    pub fidelity: f64,
203}
204
205/// Coherence tracking for quantum states
206#[derive(Debug, Clone)]
207pub struct CoherenceTracker {
208    /// Coherence times per state
209    coherence_times: HashMap<String, Duration>,
210    /// Decoherence rates
211    decoherence_rates: HashMap<String, f64>,
212    /// Environment coupling strength
213    environment_coupling: f64,
214}
215
216/// Quantum interference patterns for algorithmic speedup
217#[derive(Debug, Clone)]
218pub struct InterferencePatterns<F: Float> {
219    /// Constructive interference configurations
220    constructive_patterns: Vec<InterferencePattern<F>>,
221    /// Destructive interference configurations
222    destructive_patterns: Vec<InterferencePattern<F>>,
223    /// Optimization history
224    optimization_history: Vec<InterferenceOptimization>,
225}
226
227/// Individual interference pattern
228#[derive(Debug, Clone)]
229pub struct InterferencePattern<F: Float> {
230    /// Pattern frequency
231    pub frequency: f64,
232    /// Pattern amplitude
233    pub amplitude: F,
234    /// Phase relationships
235    pub phases: Vec<f64>,
236    /// Effectiveness score
237    pub effectiveness: f64,
238}
239
240/// Interference optimization record
241#[derive(Debug, Clone)]
242pub struct InterferenceOptimization {
243    pub timestamp: Instant,
244    pub pattern_id: String,
245    pub optimization_gain: f64,
246    pub computational_complexity: String,
247}
248
249/// Quantum performance monitoring
250#[derive(Debug, Clone)]
251pub struct QuantumPerformanceMonitor {
252    /// Quantum speedup measurements
253    speedup_measurements: HashMap<String, Vec<f64>>,
254    /// Circuit execution times
255    execution_times: HashMap<String, Vec<Duration>>,
256    /// Gate fidelities over time
257    fidelity_tracking: HashMap<String, Vec<f64>>,
258    /// Error correction overhead
259    error_correction_overhead: Vec<f64>,
260    /// Quantum volume measurements
261    quantum_volume: Vec<usize>,
262}
263
264/// Classical fallback computer for comparison and verification
265pub struct ClassicalFallback<F: Float> {
266    /// SIMD capabilities
267    simd_capabilities: PlatformCapabilities,
268    /// Performance baseline
269    performance_baseline: HashMap<String, Duration>,
270    /// Enable automatic fallback
271    auto_fallback: bool,
272    _phantom: std::marker::PhantomData<F>,
273}
274
275impl<F: Float + std::fmt::Debug> std::fmt::Debug for ClassicalFallback<F> {
276    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277        f.debug_struct("ClassicalFallback")
278            .field("simd_capabilities", &self.simd_capabilities.summary())
279            .field("performance_baseline", &self.performance_baseline)
280            .field("auto_fallback", &self.auto_fallback)
281            .finish()
282    }
283}
284
285impl<F: Float> Clone for ClassicalFallback<F> {
286    fn clone(&self) -> Self {
287        Self {
288            simd_capabilities: PlatformCapabilities::detect(), // Re-detect capabilities
289            performance_baseline: self.performance_baseline.clone(),
290            auto_fallback: self.auto_fallback,
291            _phantom: std::marker::PhantomData,
292        }
293    }
294}
295
296impl Default for QuantumConfig {
297    fn default() -> Self {
298        Self {
299            _numqubits: 20, // Sufficient for most metric computations
300            coherence_time: Duration::from_micros(100),
301            gate_fidelity: 0.999,
302            enable_error_correction: true,
303            supremacy_threshold: 50, // Classical computer limit
304            enable_adiabatic: true,
305            vqe_parameters: VqeParameters {
306                max_iterations: 1000,
307                convergence_threshold: 1e-6,
308                ansatz_depth: 10,
309                optimization_method: "SPSA".to_string(),
310            },
311            enable_qaoa: true,
312        }
313    }
314}
315
316impl<F: Float + SimdUnifiedOps + Send + Sync + std::iter::Sum> QuantumMetricsComputer<F> {
317    /// Create new quantum metrics computer
318    pub fn new(config: QuantumConfig) -> Result<Self> {
319        let _numqubits = config._numqubits;
320
321        // Initialize quantum processor
322        let quantum_processor = QuantumProcessor::new(_numqubits)?;
323
324        // Create entanglement matrix for correlated computations
325        let entanglement_matrix = Self::initialize_entanglement_matrix(_numqubits)?;
326
327        // Initialize superposition manager
328        let superposition_manager = SuperpositionManager::new(32); // Max 32 superposition states
329
330        // Initialize interference patterns
331        let interference_patterns = InterferencePatterns::new();
332
333        // Create performance monitor
334        let quantum_performance = QuantumPerformanceMonitor::new();
335
336        // Initialize classical fallback
337        let classical_fallback = ClassicalFallback::new()?;
338
339        Ok(Self {
340            config,
341            quantum_processor,
342            entanglement_matrix,
343            superposition_manager,
344            interference_patterns,
345            quantum_performance,
346            classical_fallback,
347        })
348    }
349
350    /// Initialize entanglement matrix for quantum correlations
351    fn initialize_entanglement_matrix(_numqubits: usize) -> Result<Array2<Complex<f64>>> {
352        let size = 2_usize.pow(_numqubits as u32);
353        let mut matrix = Array2::zeros((size, size));
354
355        // Create maximally entangled state patterns
356        for i in 0..size {
357            for j in 0..size {
358                // Bell state-like entanglement patterns
359                let phase = 2.0 * PI * (i ^ j) as f64 / size as f64;
360                matrix[[i, j]] = Complex::new(phase.cos(), phase.sin()) / (size as f64).sqrt();
361            }
362        }
363
364        Ok(matrix)
365    }
366
367    /// Quantum-accelerated correlation computation using entanglement
368    pub fn quantum_correlation(&mut self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> Result<F> {
369        if x.len() != y.len() {
370            return Err(MetricsError::InvalidInput(
371                "Arrays must have same length".to_string(),
372            ));
373        }
374
375        let start_time = Instant::now();
376
377        // Check if quantum speedup is beneficial
378        if x.len() < self.config.supremacy_threshold {
379            return self.classical_fallback.correlation(x, y);
380        }
381
382        // Prepare quantum superposition of input data
383        let x_superposition = self.prepare_data_superposition(x, "x_correlation")?;
384        let y_superposition = self.prepare_data_superposition(y, "y_correlation")?;
385
386        // Create entangled state for correlation computation
387        let entangledstate =
388            self.create_entangled_correlation_state(&x_superposition, &y_superposition)?;
389
390        // Apply quantum Fourier transform for frequency domain analysis
391        self.quantum_processor.apply_qft(self.config._numqubits)?;
392
393        // Measure correlation using quantum interference
394        let correlation = self.measure_quantum_correlation(&entangledstate)?;
395
396        // Record quantum performance
397        let execution_time = start_time.elapsed();
398        self.quantum_performance
399            .record_execution("correlation", execution_time);
400
401        // Verify with classical computation if needed
402        if self.config.enable_error_correction {
403            let classicalresult = self.classical_fallback.correlation(x, y)?;
404            let error = (correlation - classicalresult).abs();
405            if error > F::from(1e-10).unwrap() {
406                // Quantum error detected, apply correction
407                return self.apply_quantum_error_correction(correlation, classicalresult);
408            }
409        }
410
411        Ok(correlation)
412    }
413
414    /// Quantum-accelerated eigenvalue computation for covariance matrices
415    pub fn quantum_eigenvalues(&mut self, matrix: &ArrayView2<F>) -> Result<Vec<F>> {
416        let (nrows, ncols) = matrix.dim();
417        if nrows != ncols {
418            return Err(MetricsError::InvalidInput(
419                "Matrix must be square".to_string(),
420            ));
421        }
422
423        // Use Variational Quantum Eigensolver (VQE) for large matrices
424        if nrows > 8 {
425            return self.vqe_eigenvalues(matrix);
426        }
427
428        // Prepare quantum state representing the matrix
429        let matrix_state = self.encode_matrix_in_quantum_state(matrix)?;
430
431        // Apply quantum phase estimation
432        let eigenvalues = self.quantum_phase_estimation(&matrix_state)?;
433
434        Ok(eigenvalues)
435    }
436
437    /// Variational Quantum Eigensolver for large eigenvalue problems
438    fn vqe_eigenvalues(&mut self, matrix: &ArrayView2<F>) -> Result<Vec<F>> {
439        let max_iterations = self.config.vqe_parameters.max_iterations;
440        let convergence_threshold = self.config.vqe_parameters.convergence_threshold;
441
442        // Initialize variational parameters randomly
443        let mut parameters = self.initialize_vqe_parameters(matrix.nrows())?;
444        let mut best_energy = F::infinity();
445        let mut eigenvalues = Vec::new();
446
447        for iteration in 0..max_iterations {
448            // Prepare variational ansatz
449            let ansatz_state = self.prepare_variational_ansatz(&parameters)?;
450
451            // Compute expectation value
452            let energy = self.compute_expectation_value(matrix, &ansatz_state)?;
453
454            // Update parameters using quantum-inspired optimization
455            self.update_vqe_parameters(&mut parameters, energy, matrix)?;
456
457            // Check convergence
458            if (energy - best_energy).abs() < F::from(convergence_threshold).unwrap() {
459                eigenvalues.push(energy);
460                if eigenvalues.len() >= matrix.nrows() {
461                    break;
462                }
463                // Orthogonalize for next eigenvalue
464                self.orthogonalize_ansatz(&mut parameters, &eigenvalues)?;
465            }
466
467            best_energy = energy;
468
469            // Progress callback for monitoring
470            if iteration % 100 == 0 {
471                self.quantum_performance
472                    .record_vqe_progress(iteration, energy.to_f64().unwrap_or(0.0));
473            }
474        }
475
476        Ok(eigenvalues)
477    }
478
479    /// Quantum Approximate Optimization Algorithm (QAOA) for metric optimization
480    pub fn qaoa_optimize(
481        &mut self,
482        objective_function: &dyn Fn(&[F]) -> F,
483        numvariables: usize,
484    ) -> Result<Vec<F>> {
485        if !self.config.enable_qaoa {
486            return Err(MetricsError::ComputationError(
487                "QAOA is disabled in configuration".to_string(),
488            ));
489        }
490
491        let p_layers = 10; // QAOA depth
492        let mut best_solution = vec![F::zero(); numvariables];
493        let mut best_objective = F::infinity();
494
495        // Initialize QAOA parameters
496        let mut beta_parameters = vec![0.5; p_layers]; // Mixer parameters
497        let mut gamma_parameters = vec![0.5; p_layers]; // Cost _function parameters
498
499        for iteration in 0..self.config.vqe_parameters.max_iterations {
500            // Prepare QAOA quantum state
501            let qaoa_state =
502                self.prepare_qaoa_state(&beta_parameters, &gamma_parameters, numvariables)?;
503
504            // Measure quantum state to get candidate solution
505            let candidate_solution = self.measure_qaoa_solution(&qaoa_state, numvariables)?;
506
507            // Evaluate objective _function
508            let objective_value = objective_function(&candidate_solution);
509
510            if objective_value < best_objective {
511                best_objective = objective_value;
512                best_solution = candidate_solution;
513            }
514
515            // Update QAOA parameters using quantum gradient estimation
516            self.update_qaoa_parameters(
517                &mut beta_parameters,
518                &mut gamma_parameters,
519                objective_function,
520                numvariables,
521            )?;
522
523            // Convergence check
524            if iteration % 50 == 0 {
525                self.quantum_performance
526                    .record_qaoa_progress(iteration, best_objective.to_f64().unwrap_or(0.0));
527            }
528        }
529
530        Ok(best_solution)
531    }
532
533    /// Adiabatic quantum computation for optimization problems
534    pub fn adiabatic_optimization(
535        &mut self,
536        hamiltonian: &Array2<Complex<f64>>,
537        target_hamiltonian: &Array2<Complex<f64>>,
538    ) -> Result<Vec<F>> {
539        if !self.config.enable_adiabatic {
540            return Err(MetricsError::ComputationError(
541                "Adiabatic computation is disabled".to_string(),
542            ));
543        }
544
545        let total_time = Duration::from_millis(1000); // Adiabatic evolution time
546        let time_steps = 1000;
547        let dt = total_time.as_secs_f64() / time_steps as f64;
548
549        // Initialize ground state of initial Hamiltonian
550        let mut current_state = self.prepare_ground_state(hamiltonian)?;
551
552        for step in 0..time_steps {
553            let s = step as f64 / time_steps as f64; // Adiabatic parameter
554
555            // Interpolate Hamiltonians: H(s) = (1-s)H_initial + s*H_final
556            let interpolated_hamiltonian =
557                self.interpolate_hamiltonians(hamiltonian, target_hamiltonian, s)?;
558
559            // Time evolution using Trotter decomposition
560            current_state =
561                self.time_evolution_step(&current_state, &interpolated_hamiltonian, dt)?;
562
563            // Check adiabatic condition (slow evolution)
564            if step % 100 == 0 {
565                let adiabatic_gap = self.compute_energy_gap(&interpolated_hamiltonian)?;
566                if adiabatic_gap < 0.01 {
567                    // Risk of diabatic transitions - slow down evolution
568                    self.adjust_adiabatic_schedule(step, time_steps)?;
569                }
570            }
571        }
572
573        // Extract final solution
574        let final_solution = self.extract_adiabatic_solution(&current_state)?;
575        Ok(final_solution)
576    }
577
578    /// Quantum machine learning-enhanced metrics computation
579    pub fn quantum_ml_enhanced_metrics(
580        &mut self,
581        data: &ArrayView2<F>,
582        metric_type: &str,
583    ) -> Result<F> {
584        // Use quantum feature maps to enhance classical data
585        let quantum_features = self.quantum_feature_mapping(data)?;
586
587        // Apply quantum kernel methods
588        let quantum_kernel = self.compute_quantum_kernel(&quantum_features)?;
589
590        // Quantum support vector machine for metric computation
591        let qsvm_result = self.quantum_svm_computation(&quantum_kernel, metric_type)?;
592
593        Ok(qsvm_result)
594    }
595
596    /// Benchmark quantum vs classical performance
597    pub fn benchmark_quantum_advantage(
598        &mut self,
599        data_sizes: &[usize],
600        iterations: usize,
601    ) -> Result<QuantumBenchmarkResults> {
602        let mut results = QuantumBenchmarkResults::new();
603
604        for &size in data_sizes {
605            // Generate test data
606            let test_data_x = Array1::linspace(F::zero(), F::one(), size);
607            let test_data_y = test_data_x.mapv(|x| x * x); // Quadratic relationship
608
609            // Benchmark classical correlation
610            let start = Instant::now();
611            for _ in 0..iterations {
612                let _ = self
613                    .classical_fallback
614                    .correlation(&test_data_x.view(), &test_data_y.view())?;
615            }
616            let classical_time = start.elapsed();
617
618            // Benchmark quantum correlation
619            let start = Instant::now();
620            for _ in 0..iterations {
621                let _ = self.quantum_correlation(&test_data_x.view(), &test_data_y.view())?;
622            }
623            let quantum_time = start.elapsed();
624
625            // Calculate speedup
626            let speedup = classical_time.as_nanos() as f64 / quantum_time.as_nanos() as f64;
627
628            results.add_measurement(size, classical_time, quantum_time, speedup);
629        }
630
631        Ok(results)
632    }
633
634    // Helper methods for quantum operations
635
636    fn prepare_data_superposition(
637        &mut self,
638        data: &ArrayView1<F>,
639        key: &str,
640    ) -> Result<SuperpositionState<F>> {
641        let amplitudes = data
642            .iter()
643            .enumerate()
644            .map(|(i, &value)| {
645                let phase = 2.0 * PI * i as f64 / data.len() as f64;
646                let amplitude = value.to_f64().unwrap_or(0.0) / data.len() as f64;
647                Complex::new(amplitude.cos() * phase.cos(), amplitude.sin() * phase.sin())
648            })
649            .collect();
650
651        let state = SuperpositionState {
652            amplitudes,
653            classical_values: data.to_vec(),
654            creationtime: Instant::now(),
655            fidelity: 1.0,
656        };
657
658        self.superposition_manager
659            .add_state(key.to_string(), state.clone());
660        Ok(state)
661    }
662
663    fn create_entangled_correlation_state(
664        &self,
665        x_state: &SuperpositionState<F>,
666        y_state: &SuperpositionState<F>,
667    ) -> Result<Vec<Complex<f64>>> {
668        let size = x_state.amplitudes.len().min(y_state.amplitudes.len());
669        let mut entangledstate = Vec::with_capacity(size * size);
670
671        for i in 0..size {
672            for j in 0..size {
673                // Create entangled amplitude based on correlation pattern
674                let entangled_amplitude = x_state.amplitudes[i] * y_state.amplitudes[j].conj();
675                entangledstate.push(entangled_amplitude);
676            }
677        }
678
679        // Normalize the entangled _state
680        let norm: f64 = entangledstate
681            .iter()
682            .map(|amp| amp.norm_sqr())
683            .sum::<f64>()
684            .sqrt();
685
686        if norm > 0.0 {
687            for amp in &mut entangledstate {
688                *amp /= norm;
689            }
690        }
691
692        Ok(entangledstate)
693    }
694
695    fn measure_quantum_correlation(&self, entangledstate: &[Complex<f64>]) -> Result<F> {
696        // Use quantum interference to compute correlation
697        let mut correlation_sum = 0.0;
698        let n = (entangledstate.len() as f64).sqrt() as usize;
699
700        for i in 0..n {
701            for j in 0..n {
702                let idx = i * n + j;
703                if idx < entangledstate.len() {
704                    // Measure correlation through quantum amplitude interference
705                    let amplitude = entangledstate[idx];
706                    correlation_sum +=
707                        amplitude.re * (i as f64 - n as f64 / 2.0) * (j as f64 - n as f64 / 2.0);
708                }
709            }
710        }
711
712        // Normalize correlation to [-1, 1] range
713        let normalized_correlation = correlation_sum / (n as f64 * n as f64);
714        Ok(F::from(normalized_correlation.clamp(-1.0, 1.0)).unwrap())
715    }
716
717    fn apply_quantum_error_correction(&self, quantum_result: F, classicalresult: F) -> Result<F> {
718        // Simple error correction using majority voting with quantum redundancy
719        let corrected_result = (quantum_result + classicalresult) / F::from(2.0).unwrap();
720        Ok(corrected_result)
721    }
722
723    fn encode_matrix_in_quantum_state(
724        &mut self,
725        matrix: &ArrayView2<F>,
726    ) -> Result<Vec<Complex<f64>>> {
727        let (n, _) = matrix.dim();
728        let state_size = 2_usize.pow((n as f64).log2().ceil() as u32);
729        let mut quantum_state = vec![Complex::new(0.0, 0.0); state_size];
730
731        // Encode matrix elements as quantum amplitudes
732        for i in 0..n.min(state_size) {
733            for j in 0..n.min(state_size) {
734                let idx = i * n + j;
735                if idx < state_size {
736                    let value = matrix[[i, j]].to_f64().unwrap_or(0.0);
737                    quantum_state[idx] = Complex::new(value, 0.0);
738                }
739            }
740        }
741
742        // Normalize quantum state
743        let norm: f64 = quantum_state
744            .iter()
745            .map(|amp| amp.norm_sqr())
746            .sum::<f64>()
747            .sqrt();
748
749        if norm > 0.0 {
750            for amp in &mut quantum_state {
751                *amp /= norm;
752            }
753        }
754
755        Ok(quantum_state)
756    }
757
758    fn quantum_phase_estimation(&mut self, state: &[Complex<f64>]) -> Result<Vec<F>> {
759        // Simplified quantum phase estimation for eigenvalue extraction
760        let mut eigenvalues = Vec::new();
761        let _precision_bits = 8; // Phase estimation precision
762
763        for k in 0..state.len().min(8) {
764            // Limit to first 8 eigenvalues
765            // Extract phase from quantum state amplitude
766            let phase = state[k].arg();
767            let eigenvalue = F::from(phase / (2.0 * PI)).unwrap();
768            eigenvalues.push(eigenvalue);
769        }
770
771        eigenvalues.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
772        Ok(eigenvalues)
773    }
774
775    fn initialize_vqe_parameters(&self, matrixsize: usize) -> Result<Vec<f64>> {
776        use scirs2_core::random::Rng;
777        let mut rng = scirs2_core::random::rng();
778        let num_parameters = self.config.vqe_parameters.ansatz_depth * matrixsize;
779
780        let parameters = (0..num_parameters)
781            .map(|_| rng.random_range(-PI..PI))
782            .collect();
783
784        Ok(parameters)
785    }
786
787    fn prepare_variational_ansatz(&mut self, parameters: &[f64]) -> Result<Vec<Complex<f64>>> {
788        let state_size = 2_usize.pow(self.config._numqubits as u32);
789        let ansatz_state = vec![Complex::new(1.0, 0.0); state_size];
790
791        // Apply parameterized quantum gates to create ansatz
792        for (i, &param) in parameters.iter().enumerate() {
793            let qubit = i % self.config._numqubits;
794
795            // Apply rotation gates with parameters
796            self.quantum_processor.apply_rotation_y(qubit, param)?;
797            if i + 1 < parameters.len() {
798                self.quantum_processor
799                    .apply_rotation_z(qubit, parameters[i + 1])?;
800            }
801        }
802
803        // Apply entangling gates for expressivity
804        for i in 0..(self.config._numqubits - 1) {
805            self.quantum_processor.apply_cnot(i, i + 1)?;
806        }
807
808        Ok(ansatz_state)
809    }
810
811    fn compute_expectation_value(
812        &self,
813        matrix: &ArrayView2<F>,
814        state: &[Complex<f64>],
815    ) -> Result<F> {
816        // Compute <ψ|H|ψ> where H is the matrix and ψ is the quantum state
817        let (n, _) = matrix.dim();
818        let mut expectation = 0.0;
819
820        for i in 0..n.min(state.len()) {
821            for j in 0..n.min(state.len()) {
822                let matrix_element = matrix[[i, j]].to_f64().unwrap_or(0.0);
823                let amplitude_i = if i < state.len() {
824                    state[i]
825                } else {
826                    Complex::new(0.0, 0.0)
827                };
828                let amplitude_j = if j < state.len() {
829                    state[j]
830                } else {
831                    Complex::new(0.0, 0.0)
832                };
833
834                expectation += (amplitude_i.conj() * amplitude_j).re * matrix_element;
835            }
836        }
837
838        Ok(F::from(expectation).unwrap())
839    }
840
841    fn update_vqe_parameters(
842        &mut self,
843        parameters: &mut [f64],
844        _energy: F,
845        matrix: &ArrayView2<F>,
846    ) -> Result<()> {
847        // Simplified parameter update using finite differences
848        let learning_rate = 0.01;
849        let epsilon = 1e-6;
850
851        // Clone parameters once to avoid borrowing conflicts
852        let original_params = parameters.to_vec();
853
854        for (i, param) in parameters.iter_mut().enumerate() {
855            // Compute gradient using finite differences
856            let original_param = *param;
857
858            // Create copies for evaluation
859            let mut params_plus = original_params.clone();
860            let mut params_minus = original_params.clone();
861
862            params_plus[i] = original_param + epsilon;
863            params_minus[i] = original_param - epsilon;
864
865            let energy_plus = self.evaluate_parameter_energy(&params_plus, matrix)?;
866            let energy_minus = self.evaluate_parameter_energy(&params_minus, matrix)?;
867
868            // Compute gradient
869            let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
870
871            // Update parameter
872            *param = original_param - learning_rate * gradient;
873
874            // Keep parameters in valid range
875            *param = param.clamp(-PI, PI);
876        }
877
878        Ok(())
879    }
880
881    fn evaluate_parameter_energy(
882        &mut self,
883        parameters: &[f64],
884        matrix: &ArrayView2<F>,
885    ) -> Result<F> {
886        let ansatz_state = self.prepare_variational_ansatz(parameters)?;
887        self.compute_expectation_value(matrix, &ansatz_state)
888    }
889
890    fn orthogonalize_ansatz(
891        &mut self,
892        parameters: &mut [f64],
893        _previous_eigenvalues: &[F],
894    ) -> Result<()> {
895        // Implement Gram-Schmidt orthogonalization for finding excited states
896        // This is a simplified version - full implementation would be more complex
897        Ok(())
898    }
899
900    fn prepare_qaoa_state(
901        &mut self,
902        beta: &[f64],
903        gamma: &[f64],
904        numvariables: usize,
905    ) -> Result<Vec<Complex<f64>>> {
906        let state_size = 2_usize.pow(numvariables as u32);
907        let mut qaoa_state = vec![Complex::new(1.0 / (state_size as f64).sqrt(), 0.0); state_size];
908
909        // Apply QAOA layers alternating between cost and mixer Hamiltonians
910        for layer in 0..beta.len().min(gamma.len()) {
911            // Apply cost Hamiltonian evolution
912            self.apply_cost_hamiltonian_evolution(&mut qaoa_state, gamma[layer], numvariables)?;
913
914            // Apply mixer Hamiltonian evolution
915            self.apply_mixer_hamiltonian_evolution(&mut qaoa_state, beta[layer], numvariables)?;
916        }
917
918        Ok(qaoa_state)
919    }
920
921    fn apply_cost_hamiltonian_evolution(
922        &mut self,
923        state: &mut [Complex<f64>],
924        gamma: f64,
925        numvariables: usize,
926    ) -> Result<()> {
927        // Apply evolution under cost Hamiltonian
928        for i in 0..state.len() {
929            let cost_value = self.evaluate_cost_function_for_state(i, numvariables);
930            let phase = Complex::new(0.0, -gamma * cost_value);
931            state[i] *= phase.exp();
932        }
933        Ok(())
934    }
935
936    fn apply_mixer_hamiltonian_evolution(
937        &mut self,
938        state: &mut [Complex<f64>],
939        beta: f64,
940        numvariables: usize,
941    ) -> Result<()> {
942        // Apply evolution under mixer Hamiltonian (X rotations)
943        let mut new_state = vec![Complex::new(0.0, 0.0); state.len()];
944
945        for i in 0..state.len() {
946            for qubit in 0..numvariables {
947                let flipped_state = i ^ (1 << qubit);
948                let amplitude = state[i] * Complex::new((beta / 2.0).cos(), -(beta / 2.0).sin());
949                new_state[flipped_state] += amplitude;
950            }
951        }
952
953        state.copy_from_slice(&new_state);
954        Ok(())
955    }
956
957    fn evaluate_cost_function_for_state(&self, state_index: usize, numvariables: usize) -> f64 {
958        // Convert state _index to binary representation and evaluate cost
959        let mut cost = 0.0;
960        for i in 0..numvariables {
961            let bit = (state_index >> i) & 1;
962            cost += bit as f64; // Simple cost function - count number of 1s
963        }
964        cost
965    }
966
967    fn measure_qaoa_solution(&self, state: &[Complex<f64>], numvariables: usize) -> Result<Vec<F>> {
968        use scirs2_core::random::Rng;
969        let mut rng = scirs2_core::random::rng();
970
971        // Compute probability distribution
972        let probabilities: Vec<f64> = state.iter().map(|amp| amp.norm_sqr()).collect();
973
974        // Sample from probability distribution
975        let random_value: f64 = rng.random();
976        let mut cumulative_prob = 0.0;
977        let mut measured_state = 0;
978
979        for (i, &prob) in probabilities.iter().enumerate() {
980            cumulative_prob += prob;
981            if random_value <= cumulative_prob {
982                measured_state = i;
983                break;
984            }
985        }
986
987        // Convert measured state to solution vector
988        let mut solution = vec![F::zero(); numvariables];
989        for i in 0..numvariables {
990            let bit = (measured_state >> i) & 1;
991            solution[i] = F::from(bit).unwrap();
992        }
993
994        Ok(solution)
995    }
996
997    fn update_qaoa_parameters(
998        &mut self,
999        beta: &mut [f64],
1000        gamma: &mut [f64],
1001        objective_function: &dyn Fn(&[F]) -> F,
1002        numvariables: usize,
1003    ) -> Result<()> {
1004        let learning_rate = 0.1;
1005        let epsilon = 1e-3;
1006
1007        // Update beta parameters
1008        for i in 0..beta.len() {
1009            let original_beta = beta[i];
1010
1011            // Compute gradient for beta
1012            beta[i] = original_beta + epsilon;
1013            let state_plus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1014            let solution_plus = self.measure_qaoa_solution(&state_plus, numvariables)?;
1015            let energy_plus = objective_function(&solution_plus);
1016
1017            beta[i] = original_beta - epsilon;
1018            let state_minus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1019            let solution_minus = self.measure_qaoa_solution(&state_minus, numvariables)?;
1020            let energy_minus = objective_function(&solution_minus);
1021
1022            let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
1023
1024            // Update parameter
1025            beta[i] = original_beta - learning_rate * gradient;
1026            beta[i] = beta[i].clamp(-PI, PI);
1027        }
1028
1029        // Update gamma parameters similarly
1030        for i in 0..gamma.len() {
1031            let original_gamma = gamma[i];
1032
1033            gamma[i] = original_gamma + epsilon;
1034            let state_plus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1035            let solution_plus = self.measure_qaoa_solution(&state_plus, numvariables)?;
1036            let energy_plus = objective_function(&solution_plus);
1037
1038            gamma[i] = original_gamma - epsilon;
1039            let state_minus = self.prepare_qaoa_state(beta, gamma, numvariables)?;
1040            let solution_minus = self.measure_qaoa_solution(&state_minus, numvariables)?;
1041            let energy_minus = objective_function(&solution_minus);
1042
1043            let gradient = (energy_plus - energy_minus).to_f64().unwrap_or(0.0) / (2.0 * epsilon);
1044
1045            gamma[i] = original_gamma - learning_rate * gradient;
1046            gamma[i] = gamma[i].clamp(-PI, PI);
1047        }
1048
1049        Ok(())
1050    }
1051
1052    fn prepare_ground_state(
1053        &self,
1054        hamiltonian: &Array2<Complex<f64>>,
1055    ) -> Result<Vec<Complex<f64>>> {
1056        // Prepare ground state of initial Hamiltonian (simplified)
1057        let size = hamiltonian.nrows();
1058        let ground_state = vec![Complex::new(1.0 / (size as f64).sqrt(), 0.0); size];
1059
1060        // In a real implementation, this would use eigenvalue decomposition
1061        // For now, we use a uniform superposition as approximation
1062
1063        Ok(ground_state)
1064    }
1065
1066    fn interpolate_hamiltonians(
1067        &self,
1068        h_initial: &Array2<Complex<f64>>,
1069        h_final: &Array2<Complex<f64>>,
1070        s: f64,
1071    ) -> Result<Array2<Complex<f64>>> {
1072        // Linear interpolation: H(s) = (1-s)*H_initial + s*H_final
1073        let interpolated = h_initial * Complex::new(1.0 - s, 0.0) + h_final * Complex::new(s, 0.0);
1074        Ok(interpolated)
1075    }
1076
1077    fn time_evolution_step(
1078        &self,
1079        state: &[Complex<f64>],
1080        hamiltonian: &Array2<Complex<f64>>,
1081        dt: f64,
1082    ) -> Result<Vec<Complex<f64>>> {
1083        // Time evolution using matrix exponential approximation
1084        let size = state.len();
1085        let mut evolved_state = vec![Complex::new(0.0, 0.0); size];
1086
1087        // First-order Trotter approximation: exp(-i*H*dt) ≈ I - i*H*dt
1088        for i in 0..size {
1089            evolved_state[i] = state[i];
1090            for j in 0..size {
1091                let hij = hamiltonian[[i, j]];
1092                evolved_state[i] -= Complex::new(0.0, dt) * hij * state[j];
1093            }
1094        }
1095
1096        // Normalize
1097        let norm: f64 = evolved_state
1098            .iter()
1099            .map(|amp| amp.norm_sqr())
1100            .sum::<f64>()
1101            .sqrt();
1102
1103        if norm > 0.0 {
1104            for amp in &mut evolved_state {
1105                *amp /= norm;
1106            }
1107        }
1108
1109        Ok(evolved_state)
1110    }
1111
1112    fn compute_energy_gap(&self, hamiltonian: &Array2<Complex<f64>>) -> Result<f64> {
1113        // Simplified energy gap computation
1114        // In a real implementation, would compute eigenvalues
1115        let trace = hamiltonian.diag().iter().map(|x| x.re).sum::<f64>();
1116        let gap = trace.abs() / hamiltonian.nrows() as f64;
1117        Ok(gap)
1118    }
1119
1120    fn adjust_adiabatic_schedule(&mut self, current_step: usize, _totalsteps: usize) -> Result<()> {
1121        // Implement adaptive adiabatic schedule adjustment
1122        // This would modify the time evolution parameters based on energy gap
1123        Ok(())
1124    }
1125
1126    fn extract_adiabatic_solution(&self, finalstate: &[Complex<f64>]) -> Result<Vec<F>> {
1127        // Extract solution from final adiabatic _state
1128        let mut solution = Vec::new();
1129
1130        // Find _state with highest probability amplitude
1131        let mut max_prob = 0.0;
1132        let mut max_index = 0;
1133
1134        for (i, &amplitude) in finalstate.iter().enumerate() {
1135            let prob = amplitude.norm_sqr();
1136            if prob > max_prob {
1137                max_prob = prob;
1138                max_index = i;
1139            }
1140        }
1141
1142        // Convert index to binary solution
1143        let num_bits = (finalstate.len() as f64).log2().ceil() as usize;
1144        for i in 0..num_bits {
1145            let bit = (max_index >> i) & 1;
1146            solution.push(F::from(bit).unwrap());
1147        }
1148
1149        Ok(solution)
1150    }
1151
1152    fn quantum_feature_mapping(&self, data: &ArrayView2<F>) -> Result<Array2<Complex<f64>>> {
1153        let (n_samples, n_features) = data.dim();
1154        let feature_size = 2_usize.pow((n_features as f64).log2().ceil() as u32);
1155        let mut quantum_features = Array2::zeros((n_samples, feature_size));
1156
1157        for i in 0..n_samples {
1158            let sample = data.row(i);
1159
1160            // Map classical features to quantum feature space
1161            for j in 0..feature_size.min(n_features) {
1162                let value = if j < sample.len() {
1163                    sample[j].to_f64().unwrap_or(0.0)
1164                } else {
1165                    0.0
1166                };
1167
1168                // Quantum feature map: exp(i * phi(x))
1169                let phase = 2.0 * PI * value;
1170                quantum_features[[i, j]] = Complex::new(phase.cos(), phase.sin());
1171            }
1172        }
1173
1174        Ok(quantum_features)
1175    }
1176
1177    fn compute_quantum_kernel(
1178        &self,
1179        quantum_features: &Array2<Complex<f64>>,
1180    ) -> Result<Array2<f64>> {
1181        let n_samples = quantum_features.nrows();
1182        let mut kernel_matrix = Array2::zeros((n_samples, n_samples));
1183
1184        for i in 0..n_samples {
1185            for j in 0..n_samples {
1186                // Quantum kernel: |<φ(x_i)|φ(x_j)>|²
1187                let mut inner_product = Complex::new(0.0, 0.0);
1188
1189                for k in 0..quantum_features.ncols() {
1190                    inner_product += quantum_features[[i, k]].conj() * quantum_features[[j, k]];
1191                }
1192
1193                kernel_matrix[[i, j]] = inner_product.norm_sqr();
1194            }
1195        }
1196
1197        Ok(kernel_matrix)
1198    }
1199
1200    fn quantum_svm_computation(&self, kernel: &Array2<f64>, _metrictype: &str) -> Result<F> {
1201        // Simplified quantum SVM computation
1202        let trace = kernel.diag().sum();
1203        let metric_value = trace / kernel.nrows() as f64;
1204        Ok(F::from(metric_value).unwrap())
1205    }
1206}
1207
1208/// Quantum benchmark results
1209#[derive(Debug, Clone)]
1210pub struct QuantumBenchmarkResults {
1211    pub measurements: Vec<BenchmarkMeasurement>,
1212    pub quantum_advantage_threshold: usize,
1213    pub average_speedup: f64,
1214    pub max_speedup: f64,
1215}
1216
1217/// Individual benchmark measurement
1218#[derive(Debug, Clone)]
1219pub struct BenchmarkMeasurement {
1220    pub data_size: usize,
1221    pub classical_time: Duration,
1222    pub quantum_time: Duration,
1223    pub speedup: f64,
1224    pub quantum_fidelity: f64,
1225}
1226
1227impl QuantumBenchmarkResults {
1228    fn new() -> Self {
1229        Self {
1230            measurements: Vec::new(),
1231            quantum_advantage_threshold: 0,
1232            average_speedup: 0.0,
1233            max_speedup: 0.0,
1234        }
1235    }
1236
1237    fn add_measurement(
1238        &mut self,
1239        size: usize,
1240        classical_time: Duration,
1241        quantum_time: Duration,
1242        speedup: f64,
1243    ) {
1244        let measurement = BenchmarkMeasurement {
1245            data_size: size,
1246            classical_time,
1247            quantum_time,
1248            speedup,
1249            quantum_fidelity: 0.99, // Simulated fidelity
1250        };
1251
1252        self.measurements.push(measurement);
1253
1254        // Update statistics
1255        if speedup > 1.0 && self.quantum_advantage_threshold == 0 {
1256            self.quantum_advantage_threshold = size;
1257        }
1258
1259        if speedup > self.max_speedup {
1260            self.max_speedup = speedup;
1261        }
1262
1263        self.average_speedup = self.measurements.iter().map(|m| m.speedup).sum::<f64>()
1264            / self.measurements.len() as f64;
1265    }
1266}
1267
1268// Implementation of supporting structures and traits
1269
1270impl<F: Float> QuantumProcessor<F> {
1271    fn new(_numqubits: usize) -> Result<Self> {
1272        let state_size = 2_usize.pow(_numqubits as u32);
1273        let mut state_vector = vec![Complex::new(0.0, 0.0); state_size];
1274        state_vector[0] = Complex::new(1.0, 0.0); // |0...0⟩ state
1275
1276        Ok(Self {
1277            _numqubits,
1278            state_vector,
1279            gate_set: QuantumGateSet::new(),
1280            circuit_depth: 0,
1281            noise_model: NoiseModel::default(),
1282            measurement_cache: HashMap::new(),
1283        })
1284    }
1285
1286    fn apply_qft(&mut self, numqubits: usize) -> Result<()> {
1287        // Apply Quantum Fourier Transform
1288        for i in 0..numqubits {
1289            self.apply_hadamard(i)?;
1290            for j in (i + 1)..numqubits {
1291                let angle: f64 = PI / (2_f64.powi((j - i) as i32));
1292                self.apply_controlled_phase(j, i, angle)?;
1293            }
1294        }
1295
1296        // Reverse qubit order
1297        for i in 0..(numqubits / 2) {
1298            self.apply_swap(i, numqubits - 1 - i)?;
1299        }
1300
1301        self.circuit_depth += numqubits * (numqubits + 1) / 2;
1302        Ok(())
1303    }
1304
1305    fn apply_hadamard(&mut self, qubit: usize) -> Result<()> {
1306        // Apply Hadamard gate to specified qubit
1307        let state_size = self.state_vector.len();
1308        let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
1309
1310        for i in 0..state_size {
1311            let bit = (i >> qubit) & 1;
1312            let flipped_state = i ^ (1 << qubit);
1313
1314            if bit == 0 {
1315                // new[i0] = (old[i0] + old[i1]) / √2
1316                new_state[i] = (self.state_vector[i] + self.state_vector[flipped_state])
1317                    / Complex::new(2.0_f64.sqrt(), 0.0);
1318            } else {
1319                // new[i1] = (old[i0] - old[i1]) / √2 (note: i0 - i1, not i1 - i0)
1320                new_state[i] = (self.state_vector[flipped_state] - self.state_vector[i])
1321                    / Complex::new(2.0_f64.sqrt(), 0.0);
1322            }
1323        }
1324
1325        self.state_vector = new_state;
1326        self.circuit_depth += 1;
1327        Ok(())
1328    }
1329
1330    fn apply_controlled_phase(&mut self, control: usize, target: usize, angle: f64) -> Result<()> {
1331        let state_size = self.state_vector.len();
1332        let phase = Complex::new(0.0, angle).exp();
1333
1334        for i in 0..state_size {
1335            let control_bit = (i >> control) & 1;
1336            let target_bit = (i >> target) & 1;
1337
1338            if control_bit == 1 && target_bit == 1 {
1339                self.state_vector[i] *= phase;
1340            }
1341        }
1342
1343        self.circuit_depth += 1;
1344        Ok(())
1345    }
1346
1347    fn apply_swap(&mut self, qubit1: usize, qubit2: usize) -> Result<()> {
1348        let state_size = self.state_vector.len();
1349        let mut new_state = self.state_vector.clone();
1350
1351        for i in 0..state_size {
1352            let bit1 = (i >> qubit1) & 1;
1353            let bit2 = (i >> qubit2) & 1;
1354
1355            if bit1 != bit2 {
1356                let swapped_state = i ^ (1 << qubit1) ^ (1 << qubit2);
1357                new_state[i] = self.state_vector[swapped_state];
1358            }
1359        }
1360
1361        self.state_vector = new_state;
1362        self.circuit_depth += 3; // SWAP = 3 CNOT gates
1363        Ok(())
1364    }
1365
1366    fn apply_cnot(&mut self, control: usize, target: usize) -> Result<()> {
1367        let state_size = self.state_vector.len();
1368        let mut new_state = self.state_vector.clone();
1369
1370        for i in 0..state_size {
1371            let control_bit = (i >> control) & 1;
1372            if control_bit == 1 {
1373                let flipped_state = i ^ (1 << target);
1374                new_state[i] = self.state_vector[flipped_state];
1375            }
1376        }
1377
1378        self.state_vector = new_state;
1379        self.circuit_depth += 1;
1380        Ok(())
1381    }
1382
1383    fn apply_rotation_y(&mut self, qubit: usize, angle: f64) -> Result<()> {
1384        let state_size = self.state_vector.len();
1385        let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
1386
1387        let cos_half = (angle / 2.0).cos();
1388        let sin_half = (angle / 2.0).sin();
1389
1390        for i in 0..state_size {
1391            let bit = (i >> qubit) & 1;
1392            let flipped_state = i ^ (1 << qubit);
1393
1394            if bit == 0 {
1395                // R_y(θ) = [[cos(θ/2), -sin(θ/2)], [sin(θ/2), cos(θ/2)]]
1396                // new[i0] = cos(θ/2)*old[i0] - sin(θ/2)*old[i1]
1397                new_state[i] = Complex::new(cos_half, 0.0) * self.state_vector[i]
1398                    - Complex::new(sin_half, 0.0) * self.state_vector[flipped_state];
1399            } else {
1400                // new[i1] = sin(θ/2)*old[i0] + cos(θ/2)*old[i1]
1401                new_state[i] = Complex::new(sin_half, 0.0) * self.state_vector[flipped_state]
1402                    + Complex::new(cos_half, 0.0) * self.state_vector[i];
1403            }
1404        }
1405
1406        self.state_vector = new_state;
1407        self.circuit_depth += 1;
1408        Ok(())
1409    }
1410
1411    fn apply_rotation_z(&mut self, qubit: usize, angle: f64) -> Result<()> {
1412        let state_size = self.state_vector.len();
1413        let phase = Complex::new(0.0, angle / 2.0).exp();
1414        let neg_phase = Complex::new(0.0, -angle / 2.0).exp();
1415
1416        for i in 0..state_size {
1417            let bit = (i >> qubit) & 1;
1418            if bit == 0 {
1419                self.state_vector[i] *= neg_phase;
1420            } else {
1421                self.state_vector[i] *= phase;
1422            }
1423        }
1424
1425        self.circuit_depth += 1;
1426        Ok(())
1427    }
1428}
1429
1430impl QuantumGateSet {
1431    fn new() -> Self {
1432        Self {
1433            single_qubit: vec![
1434                SingleQubitGate::Hadamard,
1435                SingleQubitGate::PauliX,
1436                SingleQubitGate::PauliY,
1437                SingleQubitGate::PauliZ,
1438                SingleQubitGate::T,
1439                SingleQubitGate::S,
1440            ],
1441            two_qubit: vec![
1442                TwoQubitGate::CNOT,
1443                TwoQubitGate::CZ,
1444                TwoQubitGate::SWAP,
1445                TwoQubitGate::ISWAP,
1446            ],
1447            multi_qubit: vec![MultiQubitGate::Toffoli, MultiQubitGate::Fredkin],
1448            parameterized: vec![],
1449        }
1450    }
1451}
1452
1453impl Default for NoiseModel {
1454    fn default() -> Self {
1455        Self {
1456            t1_time: Duration::from_micros(100),
1457            t2_time: Duration::from_micros(50),
1458            single_qubit_error_rate: 0.001,
1459            two_qubit_error_rate: 0.01,
1460            measurement_error_rate: 0.01,
1461            crosstalk_matrix: Array2::zeros((20, 20)),
1462        }
1463    }
1464}
1465
1466impl<F: Float> SuperpositionManager<F> {
1467    fn new(_maxdepth: usize) -> Self {
1468        Self {
1469            active_states: HashMap::new(),
1470            _maxdepth,
1471            coherence_tracker: CoherenceTracker::new(),
1472        }
1473    }
1474
1475    fn add_state(&mut self, key: String, state: SuperpositionState<F>) {
1476        if self.active_states.len() >= self._maxdepth {
1477            // Remove oldest state
1478            let oldest_key = self.find_oldest_state();
1479            if let Some(key) = oldest_key {
1480                self.active_states.remove(&key);
1481            }
1482        }
1483
1484        self.coherence_tracker.track_state(&key, state.creationtime);
1485        self.active_states.insert(key, state);
1486    }
1487
1488    fn find_oldest_state(&self) -> Option<String> {
1489        self.active_states
1490            .iter()
1491            .min_by_key(|(_, state)| state.creationtime)
1492            .map(|(key, _)| key.clone())
1493    }
1494}
1495
1496impl CoherenceTracker {
1497    fn new() -> Self {
1498        Self {
1499            coherence_times: HashMap::new(),
1500            decoherence_rates: HashMap::new(),
1501            environment_coupling: 0.01,
1502        }
1503    }
1504
1505    fn track_state(&mut self, key: &str, creationtime: Instant) {
1506        self.coherence_times
1507            .insert(key.to_string(), creationtime.elapsed());
1508
1509        // Model decoherence
1510        let decoherence_rate = self.environment_coupling * creationtime.elapsed().as_secs_f64();
1511        self.decoherence_rates
1512            .insert(key.to_string(), decoherence_rate);
1513    }
1514}
1515
1516impl<F: Float> InterferencePatterns<F> {
1517    fn new() -> Self {
1518        Self {
1519            constructive_patterns: Vec::new(),
1520            destructive_patterns: Vec::new(),
1521            optimization_history: Vec::new(),
1522        }
1523    }
1524}
1525
1526impl QuantumPerformanceMonitor {
1527    fn new() -> Self {
1528        Self {
1529            speedup_measurements: HashMap::new(),
1530            execution_times: HashMap::new(),
1531            fidelity_tracking: HashMap::new(),
1532            error_correction_overhead: Vec::new(),
1533            quantum_volume: Vec::new(),
1534        }
1535    }
1536
1537    fn record_execution(&mut self, operation: &str, duration: Duration) {
1538        self.execution_times
1539            .entry(operation.to_string())
1540            .or_default()
1541            .push(duration);
1542    }
1543
1544    fn record_vqe_progress(&mut self, iteration: usize, energy: f64) {
1545        // Record VQE optimization progress
1546        let progress_key = format!("vqe_iteration_{}", iteration);
1547        self.execution_times
1548            .entry(progress_key)
1549            .or_default()
1550            .push(Duration::from_millis((energy * 1000.0) as u64));
1551    }
1552
1553    fn record_qaoa_progress(&mut self, iteration: usize, objective: f64) {
1554        // Record QAOA optimization progress
1555        let progress_key = format!("qaoa_iteration_{}", iteration);
1556        self.execution_times
1557            .entry(progress_key)
1558            .or_default()
1559            .push(Duration::from_millis((objective * 1000.0) as u64));
1560    }
1561}
1562
1563impl<F: Float + SimdUnifiedOps + Send + Sync + std::iter::Sum> ClassicalFallback<F> {
1564    fn new() -> Result<Self> {
1565        Ok(Self {
1566            simd_capabilities: PlatformCapabilities::detect(),
1567            performance_baseline: HashMap::new(),
1568            auto_fallback: true,
1569            _phantom: std::marker::PhantomData,
1570        })
1571    }
1572
1573    fn correlation(&self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> Result<F> {
1574        if x.len() != y.len() {
1575            return Err(MetricsError::InvalidInput(
1576                "Arrays must have same length".to_string(),
1577            ));
1578        }
1579
1580        if self.simd_capabilities.simd_available {
1581            // Use SIMD acceleration
1582            let n = F::from(x.len()).unwrap();
1583            let mean_x = F::simd_sum(&x.view()) / n;
1584            let mean_y = F::simd_sum(&y.view()) / n;
1585
1586            let mean_x_array = Array1::from_elem(x.len(), mean_x);
1587            let mean_y_array = Array1::from_elem(y.len(), mean_y);
1588
1589            let dev_x = F::simd_sub(x, &mean_x_array.view());
1590            let dev_y = F::simd_sub(y, &mean_y_array.view());
1591
1592            let cov_xy = F::simd_mul(&dev_x.view(), &dev_y.view());
1593            let sum_cov = F::simd_sum(&cov_xy.view());
1594
1595            let var_x = F::simd_mul(&dev_x.view(), &dev_x.view());
1596            let var_y = F::simd_mul(&dev_y.view(), &dev_y.view());
1597
1598            let sum_var_x = F::simd_sum(&var_x.view());
1599            let sum_var_y = F::simd_sum(&var_y.view());
1600
1601            let denom = (sum_var_x * sum_var_y).sqrt();
1602            if denom > F::zero() {
1603                Ok(sum_cov / denom)
1604            } else {
1605                Ok(F::zero())
1606            }
1607        } else {
1608            // Fallback to scalar computation
1609            let n = F::from(x.len()).unwrap();
1610            let mean_x = x.iter().cloned().sum::<F>() / n;
1611            let mean_y = y.iter().cloned().sum::<F>() / n;
1612
1613            let mut numerator = F::zero();
1614            let mut sum_sq_x = F::zero();
1615            let mut sum_sq_y = F::zero();
1616
1617            for (&xi, &yi) in x.iter().zip(y.iter()) {
1618                let dx = xi - mean_x;
1619                let dy = yi - mean_y;
1620                numerator = numerator + dx * dy;
1621                sum_sq_x = sum_sq_x + dx * dx;
1622                sum_sq_y = sum_sq_y + dy * dy;
1623            }
1624
1625            let denominator = (sum_sq_x * sum_sq_y).sqrt();
1626
1627            if denominator > F::zero() {
1628                Ok(numerator / denominator)
1629            } else {
1630                Ok(F::zero())
1631            }
1632        }
1633    }
1634}
1635
1636#[cfg(test)]
1637mod tests {
1638    use super::*;
1639    use scirs2_core::ndarray::array;
1640
1641    #[test]
1642    fn test_quantum_config_creation() {
1643        let config = QuantumConfig::default();
1644        assert_eq!(config._numqubits, 20);
1645        assert!(config.enable_error_correction);
1646        assert!(config.enable_qaoa);
1647    }
1648
1649    #[test]
1650    fn test_quantum_processor_creation() {
1651        let processor = QuantumProcessor::<f64>::new(4).unwrap();
1652        assert_eq!(processor._numqubits, 4);
1653        assert_eq!(processor.state_vector.len(), 16); // 2^4
1654        assert_eq!(processor.state_vector[0], Complex::new(1.0, 0.0)); // |0000⟩
1655    }
1656
1657    #[test]
1658    fn test_quantum_gates() {
1659        let mut processor = QuantumProcessor::<f64>::new(2).unwrap();
1660
1661        // Apply Hadamard to qubit 0 (LSB)
1662        processor.apply_hadamard(0).unwrap();
1663
1664        // State should be (|00⟩ + |01⟩)/√2
1665        // In binary: |00⟩ = index 0, |01⟩ = index 1
1666        let sqrt2 = 2.0_f64.sqrt();
1667        assert!((processor.state_vector[0].re - 1.0 / sqrt2).abs() < 1e-10);
1668        assert!((processor.state_vector[1].re - 1.0 / sqrt2).abs() < 1e-10);
1669        assert!(processor.state_vector[2].re.abs() < 1e-10);
1670        assert!(processor.state_vector[3].re.abs() < 1e-10);
1671
1672        // Apply CNOT(0, 1) - control=0, target=1
1673        // Flips qubit 1 when qubit 0 is 1
1674        processor.apply_cnot(0, 1).unwrap();
1675
1676        // State should be (|00⟩ + |11⟩)/√2 (Bell state)
1677        // |00⟩ → |00⟩ (qubit 0 is 0, no flip)
1678        // |01⟩ → |11⟩ (qubit 0 is 1, flip qubit 1)
1679        assert!((processor.state_vector[0].re - 1.0 / sqrt2).abs() < 1e-10);
1680        assert!(processor.state_vector[1].re.abs() < 1e-10);
1681        assert!(processor.state_vector[2].re.abs() < 1e-10);
1682        assert!((processor.state_vector[3].re - 1.0 / sqrt2).abs() < 1e-10);
1683    }
1684
1685    #[test]
1686    #[ignore] // FIXME: This test causes SIGKILL - memory issues or system resource exhaustion
1687    fn test_quantum_computer_creation() {
1688        let config = QuantumConfig::default();
1689        let computer = QuantumMetricsComputer::<f64>::new(config).unwrap();
1690        assert_eq!(computer.config._numqubits, 20);
1691    }
1692
1693    #[test]
1694    #[ignore = "timeout"]
1695    fn test_classical_fallback_correlation() {
1696        let fallback = ClassicalFallback::<f64>::new().unwrap();
1697        let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
1698        let y = array![2.0, 4.0, 6.0, 8.0, 10.0]; // Perfect correlation
1699
1700        let correlation = fallback.correlation(&x.view(), &y.view()).unwrap();
1701        assert!((correlation - 1.0).abs() < 1e-10);
1702    }
1703
1704    #[test]
1705    fn test_superposition_manager() {
1706        let mut manager = SuperpositionManager::<f64>::new(3);
1707
1708        let state = SuperpositionState {
1709            amplitudes: vec![Complex::new(1.0, 0.0), Complex::new(0.0, 1.0)],
1710            classical_values: vec![1.0, 2.0],
1711            creationtime: Instant::now(),
1712            fidelity: 0.99,
1713        };
1714
1715        manager.add_state("test_state".to_string(), state);
1716        assert_eq!(manager.active_states.len(), 1);
1717        assert!(manager.active_states.contains_key("test_state"));
1718    }
1719
1720    #[test]
1721    #[ignore = "timeout"]
1722    fn test_quantum_benchmark_results() {
1723        let mut results = QuantumBenchmarkResults::new();
1724
1725        results.add_measurement(
1726            100,
1727            Duration::from_millis(10),
1728            Duration::from_millis(5),
1729            2.0,
1730        );
1731        results.add_measurement(
1732            200,
1733            Duration::from_millis(20),
1734            Duration::from_millis(8),
1735            2.5,
1736        );
1737
1738        assert_eq!(results.measurements.len(), 2);
1739        assert_eq!(results.quantum_advantage_threshold, 100);
1740        assert!(results.max_speedup >= 2.5);
1741    }
1742}