Expand description
Calibration utilities for quantization
This module provides utilities for finding optimal quantization parameters. Quantization calibration is the process of determining the optimal scaling factors and zero points for a given dataset and quantization method.
The module includes:
- Histogram-based methods for range calibration
- Entropy-based methods using KL divergence minimization
- Per-channel calibration strategies
- Dynamic calibration based on data statistics
Structs§
- Calibration
Config - Configuration for quantization calibration
Enums§
- Calibration
Method - Calibration method for determining quantization parameters
Functions§
- calibrate_
matrix - Calibrate quantization parameters for a matrix using the specified method
- calibrate_
vector - Calibrate quantization parameters for a vector using the specified method
- create_
params_ from_ range - Create QuantizationParams from a min-max range
- determine_
data_ type - Determine the appropriate data type based on bit width
- find_
min_ max - Find the minimum and maximum values in a matrix
- find_
min_ max_ vec - Find the minimum and maximum values in a vector
- get_
activation_ calibration_ config - Helper function to get recommended calibration configuration for neural network activations
- get_
weight_ calibration_ config - Helper function to get recommended calibration configuration for neural network weights