Module calibration

Module calibration 

Source
Expand description

Calibration utilities for quantization

This module provides utilities for finding optimal quantization parameters. Quantization calibration is the process of determining the optimal scaling factors and zero points for a given dataset and quantization method.

The module includes:

  • Histogram-based methods for range calibration
  • Entropy-based methods using KL divergence minimization
  • Per-channel calibration strategies
  • Dynamic calibration based on data statistics

Structs§

CalibrationConfig
Configuration for quantization calibration

Enums§

CalibrationMethod
Calibration method for determining quantization parameters

Functions§

calibrate_matrix
Calibrate quantization parameters for a matrix using the specified method
calibrate_vector
Calibrate quantization parameters for a vector using the specified method
create_params_from_range
Create QuantizationParams from a min-max range
determine_data_type
Determine the appropriate data type based on bit width
find_min_max
Find the minimum and maximum values in a matrix
find_min_max_vec
Find the minimum and maximum values in a vector
get_activation_calibration_config
Helper function to get recommended calibration configuration for neural network activations
get_weight_calibration_config
Helper function to get recommended calibration configuration for neural network weights