Expand description
Parallel processing utilities for linear algebra operations
This module provides utilities for managing worker threads across various linear algebra operations, ensuring consistent behavior and optimal performance.
Re-exports§
pub use thread_pools::get_global_manager;
pub use thread_pools::AdvancedPerformanceStats;
pub use thread_pools::AdvancedPerformanceThreadPool;
pub use thread_pools::AdvancedThreadPoolConfig;
pub use thread_pools::AffinityStrategy;
pub use thread_pools::AnomalySeverity;
pub use thread_pools::AnomalyType;
pub use thread_pools::CacheAllocationPolicy;
pub use thread_pools::DecompositionType;
pub use thread_pools::DynamicSizingConfig;
pub use thread_pools::DynamicThreadManager;
pub use thread_pools::IterativeSolverType;
pub use thread_pools::MemoryMetrics;
pub use thread_pools::MonitoringConfig;
pub use thread_pools::OperationType;
pub use thread_pools::PerformanceAnomaly;
pub use thread_pools::PredictionModelParams;
pub use thread_pools::ProfileMetrics;
pub use thread_pools::ResourceIsolationConfig;
pub use thread_pools::ResourceUsagePattern;
pub use thread_pools::ScalingDecision;
pub use thread_pools::ScalingReason;
pub use thread_pools::ScopedThreadPool;
pub use thread_pools::ThreadPoolConfig;
pub use thread_pools::ThreadPoolManager;
pub use thread_pools::ThreadPoolProfile;
pub use thread_pools::ThreadPoolProfiler;
pub use thread_pools::ThreadPoolStats;
pub use thread_pools::WorkloadAdaptationConfig;
pub use thread_pools::WorkloadCharacteristics;
pub use thread_pools::WorkloadPattern;
pub use thread_pools::WorkloadPredictor;
pub use work_stealing::AdaptiveChunking;
pub use work_stealing::AdaptiveChunkingStats;
pub use work_stealing::CacheAwareStrategy;
pub use work_stealing::CacheAwareWorkStealer;
pub use work_stealing::CacheLocalityOptimizer;
pub use work_stealing::CacheOptimizationRecommendations;
pub use work_stealing::ChunkPerformance;
pub use work_stealing::LoadBalancingParams;
pub use work_stealing::MatrixOperationType;
pub use work_stealing::MemoryAccessPattern;
pub use work_stealing::NumaTopology;
pub use work_stealing::OptimizedSchedulerStats;
pub use work_stealing::OptimizedWorkStealingScheduler;
pub use work_stealing::PerformanceMonitor;
pub use work_stealing::PerformanceStats;
pub use work_stealing::SchedulerStats;
pub use work_stealing::StealingStrategy;
pub use work_stealing::WorkComplexity;
pub use work_stealing::WorkItem;
pub use work_stealing::WorkPriority;
pub use work_stealing::WorkStealingScheduler;
pub use work_stealing::matrix_ops::parallel_band_solve;
pub use work_stealing::matrix_ops::parallel_block_gemm;
pub use work_stealing::matrix_ops::parallel_cholesky_work_stealing;
pub use work_stealing::matrix_ops::parallel_eigvalsh_work_stealing;
pub use work_stealing::matrix_ops::parallel_gemm_work_stealing;
pub use work_stealing::matrix_ops::parallel_hessenberg_reduction;
pub use work_stealing::matrix_ops::parallel_lu_work_stealing;
pub use work_stealing::matrix_ops::parallel_matvec_work_stealing;
pub use work_stealing::matrix_ops::parallel_power_iteration;
pub use work_stealing::matrix_ops::parallel_qr_work_stealing;
pub use work_stealing::matrix_ops::parallel_svd_work_stealing;
pub use work_stealing::parallel_gemm_cache_aware;
Modules§
- adaptive
- Adaptive algorithm selection based on data size and worker configuration
- advanced_
work_ stealing - Advanced work-stealing algorithms with intelligent scheduling
- affinity
- CPU affinity and thread pinning
- algorithms
- Parallel linear algebra algorithms
- iter
- Parallel iterator utilities for matrix operations
- numa
- NUMA-aware parallel computing
- scheduler
- Work-stealing scheduler optimizations
- thread_
pool - Thread pool configurations for linear algebra operations
- thread_
pools - Enhanced thread pool configurations and management
- work_
stealing - Work-stealing scheduler implementation for dynamic load balancing
Structs§
- Scoped
Workers - Scoped worker configuration
- Worker
Config - Worker configuration for batched operations
Functions§
- configure_
workers - Configure worker threads for an operation
- get_
global_ workers - Get the current global worker thread count
- set_
global_ workers - Set the global worker thread count for all operations