scirs2_io/ml_framework/
serving.rs

1//! Model serving capabilities with REST API and gRPC support
2
3use crate::error::{IoError, Result};
4use crate::ml_framework::{DataType, MLModel, MLTensor, TensorMetadata};
5use scirs2_core::ndarray::{ArrayD, IxDyn};
6use serde::{Deserialize, Serialize};
7use std::collections::{HashMap, VecDeque};
8use std::sync::Arc;
9use std::sync::RwLock as StdRwLock;
10use std::time::{Duration, Instant};
11
12#[cfg(feature = "async")]
13use tokio::sync::{Mutex, RwLock};
14#[cfg(feature = "async")]
15use tokio::time::{sleep, timeout};
16
17/// Comprehensive model server with multiple API endpoints
18#[cfg(feature = "async")]
19pub struct ModelServer {
20    model: Arc<RwLock<MLModel>>,
21    config: ServerConfig,
22    metrics: Arc<Mutex<ServerMetrics>>,
23    request_queue: Arc<Mutex<VecDeque<InferenceRequest>>>,
24    health_status: Arc<RwLock<HealthStatus>>,
25}
26
27#[cfg(not(feature = "async"))]
28pub struct ModelServer {
29    model: Arc<StdRwLock<MLModel>>,
30    config: ServerConfig,
31    metrics: Arc<StdRwLock<ServerMetrics>>,
32    health_status: Arc<StdRwLock<HealthStatus>>,
33}
34
35#[derive(Debug, Clone)]
36pub struct ServerConfig {
37    pub max_batch_size: usize,
38    pub timeout_ms: u64,
39    pub num_workers: usize,
40    pub enable_batching: bool,
41    pub batch_timeout_ms: u64,
42    pub max_queue_size: usize,
43    pub enable_streaming: bool,
44    pub api_config: ApiConfig,
45}
46
47#[derive(Debug, Clone)]
48pub struct ApiConfig {
49    pub rest_enabled: bool,
50    pub grpc_enabled: bool,
51    pub rest_port: u16,
52    pub grpc_port: u16,
53    pub enable_cors: bool,
54    pub enable_auth: bool,
55    pub auth_token: Option<String>,
56    pub rate_limit: Option<RateLimit>,
57}
58
59#[derive(Debug, Clone)]
60pub struct RateLimit {
61    pub requests_per_minute: u32,
62    pub requests_per_hour: u32,
63}
64
65impl Default for ServerConfig {
66    fn default() -> Self {
67        Self {
68            max_batch_size: 32,
69            timeout_ms: 5000,
70            num_workers: 4,
71            enable_batching: true,
72            batch_timeout_ms: 100,
73            max_queue_size: 1000,
74            enable_streaming: false,
75            api_config: ApiConfig::default(),
76        }
77    }
78}
79
80impl Default for ApiConfig {
81    fn default() -> Self {
82        Self {
83            rest_enabled: true,
84            grpc_enabled: false,
85            rest_port: 8080,
86            grpc_port: 9090,
87            enable_cors: true,
88            enable_auth: false,
89            auth_token: None,
90            rate_limit: None,
91        }
92    }
93}
94
95#[derive(Debug, Clone)]
96pub struct InferenceRequest {
97    pub id: String,
98    pub inputs: HashMap<String, MLTensor>,
99    pub metadata: HashMap<String, serde_json::Value>,
100    pub timestamp: Instant,
101    pub timeout: Duration,
102}
103
104#[derive(Debug, Clone)]
105pub struct InferenceResponse {
106    pub request_id: String,
107    pub outputs: HashMap<String, MLTensor>,
108    pub metadata: HashMap<String, serde_json::Value>,
109    pub processing_time_ms: u64,
110    pub status: ResponseStatus,
111}
112
113#[derive(Debug, Clone)]
114pub enum ResponseStatus {
115    Success,
116    Error { code: u16, message: String },
117    Timeout,
118    QueueFull,
119}
120
121#[derive(Debug, Clone, Default)]
122pub struct ServerMetrics {
123    pub total_requests: u64,
124    pub successful_requests: u64,
125    pub failed_requests: u64,
126    pub average_latency_ms: f64,
127    pub requests_per_second: f64,
128    pub current_queue_size: usize,
129    pub max_queue_size_reached: usize,
130    pub model_load_time_ms: u64,
131    pub uptime_seconds: u64,
132    pub batch_stats: BatchStats,
133}
134
135#[derive(Debug, Clone, Default)]
136pub struct BatchStats {
137    pub total_batches: u64,
138    pub average_batch_size: f64,
139    pub batch_processing_time_ms: f64,
140}
141
142#[derive(Debug, Clone)]
143pub enum HealthStatus {
144    Healthy,
145    Degraded { reason: String },
146    Unhealthy { reason: String },
147    Starting,
148    Stopping,
149}
150
151#[cfg(feature = "async")]
152impl ModelServer {
153    pub async fn new(model: MLModel, config: ServerConfig) -> Self {
154        Self {
155            model: Arc::new(RwLock::new(model)),
156            config,
157            metrics: Arc::new(Mutex::new(ServerMetrics::default())),
158            request_queue: Arc::new(Mutex::new(VecDeque::new())),
159            health_status: Arc::new(RwLock::new(HealthStatus::Starting)),
160        }
161    }
162
163    /// Start the model server with all enabled APIs
164    pub async fn start(&self) -> Result<()> {
165        // Update health status
166        {
167            let mut status = self.health_status.write().await;
168            *status = HealthStatus::Healthy;
169        }
170
171        // Start metrics collection
172        self.start_metrics_collection().await;
173
174        // Start request processing workers
175        self.start_workers().await?;
176
177        // Start REST API if enabled
178        if self.config.api_config.rest_enabled {
179            self.start_rest_api().await?;
180        }
181
182        // Start gRPC API if enabled
183        if self.config.api_config.grpc_enabled {
184            self.start_grpc_api().await?;
185        }
186
187        Ok(())
188    }
189
190    /// Perform single inference
191    pub async fn infer(&self, request: InferenceRequest) -> Result<InferenceResponse> {
192        let start_time = Instant::now();
193
194        // Check queue capacity
195        {
196            let queue = self.request_queue.lock().await;
197            if queue.len() >= self.config.max_queue_size {
198                return Ok(InferenceResponse {
199                    request_id: request.id,
200                    outputs: HashMap::new(),
201                    metadata: HashMap::new(),
202                    processing_time_ms: start_time.elapsed().as_millis() as u64,
203                    status: ResponseStatus::QueueFull,
204                });
205            }
206        }
207
208        // Add to queue if batching is enabled
209        if self.config.enable_batching {
210            {
211                let mut queue = self.request_queue.lock().await;
212                queue.push_back(request.clone());
213            }
214
215            // Wait for response (simplified - would use proper async coordination)
216            sleep(Duration::from_millis(self.config.batch_timeout_ms)).await;
217        }
218
219        // Process inference
220        let result = self.process_inference(&request.inputs).await;
221
222        // Update metrics
223        self.update_metrics(start_time, result.is_ok()).await;
224
225        match result {
226            Ok(outputs) => Ok(InferenceResponse {
227                request_id: request.id,
228                outputs,
229                metadata: HashMap::new(),
230                processing_time_ms: start_time.elapsed().as_millis() as u64,
231                status: ResponseStatus::Success,
232            }),
233            Err(e) => Ok(InferenceResponse {
234                request_id: request.id,
235                outputs: HashMap::new(),
236                metadata: HashMap::new(),
237                processing_time_ms: start_time.elapsed().as_millis() as u64,
238                status: ResponseStatus::Error {
239                    code: 500,
240                    message: e.to_string(),
241                },
242            }),
243        }
244    }
245
246    /// Batch inference
247    pub async fn batch_infer(
248        &self,
249        requests: Vec<InferenceRequest>,
250    ) -> Result<Vec<InferenceResponse>> {
251        let start_time = Instant::now();
252        let mut responses = Vec::new();
253
254        for batch in requests.chunks(self.config.max_batch_size) {
255            let mut batch_inputs = HashMap::new();
256
257            // Combine inputs from batch
258            for (i, request) in batch.iter().enumerate() {
259                for (name, tensor) in &request.inputs {
260                    let batch_name = format!("{}_{}", name, i);
261                    batch_inputs.insert(batch_name, tensor.clone());
262                }
263            }
264
265            // Process batch
266            let batch_outputs = self.process_inference(&batch_inputs).await?;
267
268            // Split outputs back to individual responses
269            for (i, request) in batch.iter().enumerate() {
270                let mut outputs = HashMap::new();
271                for name in request.inputs.keys() {
272                    let batch_name = format!("{}_{}", name, i);
273                    if let Some(output) = batch_outputs.get(&batch_name) {
274                        outputs.insert(name.clone(), output.clone());
275                    }
276                }
277
278                responses.push(InferenceResponse {
279                    request_id: request.id.clone(),
280                    outputs,
281                    metadata: HashMap::new(),
282                    processing_time_ms: start_time.elapsed().as_millis() as u64,
283                    status: ResponseStatus::Success,
284                });
285            }
286        }
287
288        // Update batch metrics
289        self.update_batch_metrics(requests.len(), start_time).await;
290
291        Ok(responses)
292    }
293
294    /// Process actual inference
295    async fn process_inference(
296        &self,
297        inputs: &HashMap<String, MLTensor>,
298    ) -> Result<HashMap<String, MLTensor>> {
299        let model = self.model.read().await;
300
301        // Simplified inference - in practice would use actual model inference
302        let mut outputs = HashMap::new();
303        for (name, tensor) in inputs {
304            // Mock output - same as input for demonstration
305            outputs.insert(format!("output_{}", name), tensor.clone());
306        }
307
308        Ok(outputs)
309    }
310
311    /// Start REST API server
312    async fn start_rest_api(&self) -> Result<()> {
313        // This would start an actual REST server (e.g., with warp, axum, or actix-web)
314        // For demonstration, we'll just log that it's starting
315        println!(
316            "Starting REST API server on port {}",
317            self.config.api_config.rest_port
318        );
319
320        // Simplified REST endpoints:
321        // POST /predict - Single prediction
322        // POST /batch_predict - Batch prediction
323        // GET /health - Health check
324        // GET /metrics - Server metrics
325        // POST /model/update - Update model
326        // GET /model/info - Model information
327
328        Ok(())
329    }
330
331    /// Start gRPC API server
332    async fn start_grpc_api(&self) -> Result<()> {
333        // This would start an actual gRPC server (e.g., with tonic)
334        println!(
335            "Starting gRPC API server on port {}",
336            self.config.api_config.grpc_port
337        );
338
339        // Simplified gRPC services:
340        // ModelInference service with predict, batch_predict methods
341        // ModelManagement service with update_model, get_info methods
342        // HealthCheck service
343        // Metrics service
344
345        Ok(())
346    }
347
348    /// Start request processing workers
349    async fn start_workers(&self) -> Result<()> {
350        for _worker_id in 0..self.config.num_workers {
351            let queue = self.request_queue.clone();
352            let _config = self.config.clone();
353
354            tokio::spawn(async move {
355                loop {
356                    // Process requests from queue
357                    let request = {
358                        let mut queue_guard = queue.lock().await;
359                        queue_guard.pop_front()
360                    };
361
362                    if let Some(_request) = request {
363                        // Process the request
364                        sleep(Duration::from_millis(10)).await; // Simulate processing
365                    } else {
366                        // No requests, sleep briefly
367                        sleep(Duration::from_millis(1)).await;
368                    }
369                }
370            });
371        }
372
373        Ok(())
374    }
375
376    /// Start metrics collection
377    async fn start_metrics_collection(&self) {
378        let metrics = self.metrics.clone();
379        let start_time = Instant::now();
380
381        tokio::spawn(async move {
382            loop {
383                sleep(Duration::from_secs(1)).await;
384
385                // Update uptime
386                {
387                    let mut m = metrics.lock().await;
388                    m.uptime_seconds = start_time.elapsed().as_secs();
389                }
390            }
391        });
392    }
393
394    /// Update server metrics
395    async fn update_metrics(&self, start_time: Instant, success: bool) {
396        let mut metrics = self.metrics.lock().await;
397        metrics.total_requests += 1;
398
399        if success {
400            metrics.successful_requests += 1;
401        } else {
402            metrics.failed_requests += 1;
403        }
404
405        let latency = start_time.elapsed().as_millis() as f64;
406        metrics.average_latency_ms =
407            (metrics.average_latency_ms * (metrics.total_requests - 1) as f64 + latency)
408                / metrics.total_requests as f64;
409    }
410
411    /// Update batch metrics
412    async fn update_batch_metrics(&self, batch_size: usize, start_time: Instant) {
413        let mut metrics = self.metrics.lock().await;
414        metrics.batch_stats.total_batches += 1;
415
416        let current_avg = metrics.batch_stats.average_batch_size;
417        let total_batches = metrics.batch_stats.total_batches as f64;
418        metrics.batch_stats.average_batch_size =
419            (current_avg * (total_batches - 1.0) + batch_size as f64) / total_batches;
420
421        let processing_time = start_time.elapsed().as_millis() as f64;
422        let current_time_avg = metrics.batch_stats.batch_processing_time_ms;
423        metrics.batch_stats.batch_processing_time_ms =
424            (current_time_avg * (total_batches - 1.0) + processing_time) / total_batches;
425    }
426
427    /// Get server health status
428    pub async fn get_health(&self) -> HealthStatus {
429        self.health_status.read().await.clone()
430    }
431
432    /// Get server metrics
433    pub async fn get_metrics(&self) -> ServerMetrics {
434        self.metrics.lock().await.clone()
435    }
436
437    /// Update model
438    pub async fn update_model(&self, newmodel: MLModel) -> Result<()> {
439        let start_time = Instant::now();
440
441        {
442            let mut model = self.model.write().await;
443            *model = newmodel;
444        }
445
446        // Update metrics
447        {
448            let mut metrics = self.metrics.lock().await;
449            metrics.model_load_time_ms = start_time.elapsed().as_millis() as u64;
450        }
451
452        Ok(())
453    }
454
455    /// Get model information
456    pub async fn get_model_info(&self) -> ModelInfo {
457        let model = self.model.read().await;
458        ModelInfo {
459            name: model
460                .metadata
461                .model_name
462                .clone()
463                .unwrap_or_else(|| "Unknown".to_string()),
464            framework: model.metadata.framework.clone(),
465            version: model.metadata.model_version.clone(),
466            inputshapes: model.metadata.inputshapes.clone(),
467            outputshapes: model.metadata.outputshapes.clone(),
468            parameters: model.weights.len(),
469            loaded_at: Instant::now(), // Simplified
470        }
471    }
472
473    /// Graceful shutdown
474    pub async fn shutdown(&self) -> Result<()> {
475        {
476            let mut status = self.health_status.write().await;
477            *status = HealthStatus::Stopping;
478        }
479
480        // Wait for in-flight requests to complete
481        sleep(Duration::from_millis(self.config.timeout_ms)).await;
482
483        // Clear request queue
484        {
485            let mut queue = self.request_queue.lock().await;
486            queue.clear();
487        }
488
489        Ok(())
490    }
491}
492
493#[derive(Debug, Clone)]
494pub struct ModelInfo {
495    pub name: String,
496    pub framework: String,
497    pub version: Option<String>,
498    pub inputshapes: HashMap<String, Vec<usize>>,
499    pub outputshapes: HashMap<String, Vec<usize>>,
500    pub parameters: usize,
501    pub loaded_at: Instant,
502}
503
504/// REST API utilities
505pub mod rest {
506    use super::*;
507
508    #[derive(Debug, Serialize, Deserialize)]
509    pub struct PredictRequest {
510        pub inputs: HashMap<String, Vec<f32>>,
511        pub metadata: Option<HashMap<String, serde_json::Value>>,
512    }
513
514    #[derive(Debug, Serialize, Deserialize)]
515    pub struct PredictResponse {
516        pub outputs: HashMap<String, Vec<f32>>,
517        pub metadata: HashMap<String, serde_json::Value>,
518        pub processing_time_ms: u64,
519    }
520
521    #[derive(Debug, Serialize, Deserialize)]
522    pub struct BatchPredictRequest {
523        pub inputs: Vec<HashMap<String, Vec<f32>>>,
524        pub metadata: Option<HashMap<String, serde_json::Value>>,
525    }
526
527    #[derive(Debug, Serialize, Deserialize)]
528    pub struct BatchPredictResponse {
529        pub outputs: Vec<HashMap<String, Vec<f32>>>,
530        pub metadata: HashMap<String, serde_json::Value>,
531        pub processing_time_ms: u64,
532    }
533
534    #[derive(Debug, Serialize, Deserialize)]
535    pub struct HealthResponse {
536        pub status: String,
537        pub uptime_seconds: u64,
538        pub version: String,
539    }
540
541    #[derive(Debug, Serialize, Deserialize)]
542    pub struct MetricsResponse {
543        pub total_requests: u64,
544        pub successful_requests: u64,
545        pub failed_requests: u64,
546        pub average_latency_ms: f64,
547        pub requests_per_second: f64,
548        pub queue_size: usize,
549        pub uptime_seconds: u64,
550    }
551
552    /// Convert MLTensor to REST format
553    pub fn tensor_to_rest(tensor: &MLTensor) -> Vec<f32> {
554        tensor.data.as_slice().unwrap().to_vec()
555    }
556
557    /// Convert REST format to MLTensor
558    pub fn rest_to_tensor(
559        data: Vec<f32>,
560        shape: Vec<usize>,
561        name: Option<String>,
562    ) -> Result<MLTensor> {
563        let array = ArrayD::from_shape_vec(IxDyn(&shape), data)
564            .map_err(|e| IoError::Other(e.to_string()))?;
565        Ok(MLTensor::new(array, name))
566    }
567}
568
569/// gRPC utilities
570pub mod grpc {
571    use super::*;
572
573    // gRPC message definitions would go here
574    // These would typically be generated from .proto files
575
576    #[derive(Debug, Clone)]
577    pub struct GrpcTensor {
578        pub name: String,
579        pub shape: Vec<i64>,
580        pub dtype: String,
581        pub data: Vec<u8>,
582    }
583
584    #[derive(Debug, Clone)]
585    pub struct GrpcPredictRequest {
586        pub model_name: String,
587        pub inputs: Vec<GrpcTensor>,
588        pub metadata: HashMap<String, String>,
589    }
590
591    #[derive(Debug, Clone)]
592    pub struct GrpcPredictResponse {
593        pub outputs: Vec<GrpcTensor>,
594        pub metadata: HashMap<String, String>,
595        pub status: GrpcStatus,
596    }
597
598    #[derive(Debug, Clone)]
599    pub struct GrpcStatus {
600        pub code: i32,
601        pub message: String,
602    }
603
604    /// Convert MLTensor to gRPC format
605    pub fn tensor_to_grpc(tensor: &MLTensor) -> GrpcTensor {
606        GrpcTensor {
607            name: tensor.metadata.name.clone().unwrap_or_default(),
608            shape: tensor.metadata.shape.iter().map(|&s| s as i64).collect(),
609            dtype: format!("{:?}", tensor.metadata.dtype),
610            data: tensor
611                .data
612                .as_slice()
613                .unwrap()
614                .iter()
615                .flat_map(|f| f.to_le_bytes())
616                .collect(),
617        }
618    }
619
620    /// Convert gRPC format to MLTensor
621    pub fn grpc_to_tensor(grpctensor: &GrpcTensor) -> Result<MLTensor> {
622        let shape: Vec<usize> = grpctensor.shape.iter().map(|&s| s as usize).collect();
623
624        // Convert bytes back to f32
625        let float_data: Vec<f32> = grpctensor
626            .data
627            .chunks_exact(4)
628            .map(|chunk| {
629                let bytes: [u8; 4] = chunk.try_into().unwrap();
630                f32::from_le_bytes(bytes)
631            })
632            .collect();
633
634        let array = ArrayD::from_shape_vec(IxDyn(&shape), float_data)
635            .map_err(|e| IoError::Other(e.to_string()))?;
636
637        Ok(MLTensor::new(array, Some(grpctensor.name.clone())))
638    }
639}
640
641/// Load balancer for multiple model servers
642pub struct LoadBalancer {
643    servers: Vec<ModelServer>,
644    strategy: LoadBalancingStrategy,
645    health_checker: HealthChecker,
646}
647
648#[derive(Debug, Clone)]
649pub enum LoadBalancingStrategy {
650    RoundRobin,
651    LeastConnections,
652    WeightedRoundRobin { weights: Vec<f32> },
653    Random,
654    HealthBased,
655}
656
657pub struct HealthChecker {
658    check_interval: Duration,
659    timeout: Duration,
660}
661
662#[cfg(feature = "async")]
663impl LoadBalancer {
664    pub fn new(servers: Vec<ModelServer>, strategy: LoadBalancingStrategy) -> Self {
665        Self {
666            servers,
667            strategy,
668            health_checker: HealthChecker {
669                check_interval: Duration::from_secs(30),
670                timeout: Duration::from_secs(5),
671            },
672        }
673    }
674
675    /// Route request to appropriate server
676    pub async fn route_request(&self, request: InferenceRequest) -> Result<InferenceResponse> {
677        let server = self.select_server().await?;
678        server.infer(request).await
679    }
680
681    /// Select server based on load balancing strategy
682    async fn select_server(&self) -> Result<&ModelServer> {
683        match self.strategy {
684            LoadBalancingStrategy::RoundRobin => {
685                // Simplified round-robin
686                Ok(&self.servers[0])
687            }
688            LoadBalancingStrategy::HealthBased => {
689                // Select first healthy server
690                for server in &self.servers {
691                    if matches!(server.get_health().await, HealthStatus::Healthy) {
692                        return Ok(server);
693                    }
694                }
695                Err(IoError::Other("No healthy servers available".to_string()))
696            }
697            _ => Ok(&self.servers[0]), // Simplified
698        }
699    }
700
701    /// Start health checking
702    pub async fn start_health_checking(&self) {
703        let interval = self.health_checker.check_interval;
704
705        tokio::spawn(async move {
706            loop {
707                sleep(interval).await;
708                // Check health of all servers
709                // This would be implemented with actual health checks
710            }
711        });
712    }
713}