scirs2_io/ml_framework/converters/
onnx.rs

1//! ONNX format converter
2#![allow(dead_code)]
3
4use crate::error::{IoError, Result};
5use crate::ml_framework::converters::MLFrameworkConverter;
6use crate::ml_framework::types::{MLFramework, MLModel, MLTensor};
7use scirs2_core::ndarray::{ArrayD, IxDyn};
8use std::fs::File;
9use std::path::Path;
10
11/// ONNX format converter
12pub struct ONNXConverter;
13
14impl MLFrameworkConverter for ONNXConverter {
15    fn save_model(&self, model: &MLModel, path: &Path) -> Result<()> {
16        // Simplified ONNX-like format
17        let onnx_model = serde_json::json!({
18            "format": "onnx",
19            "version": "1.0",
20            "graph": {
21                "name": model.metadata.model_name,
22                "inputs": model.metadata.inputshapes,
23                "outputs": model.metadata.outputshapes,
24                "initializers": model.weights.iter().map(|(name, tensor)| {
25                    serde_json::json!({
26                        "name": name,
27                        "shape": tensor.metadata.shape,
28                        "dtype": tensor.metadata.dtype,
29                    })
30                }).collect::<Vec<_>>(),
31            },
32            "metadata": model.metadata,
33        });
34
35        let file = File::create(path).map_err(IoError::Io)?;
36        serde_json::to_writer_pretty(file, &onnx_model)
37            .map_err(|e| IoError::SerializationError(e.to_string()))
38    }
39
40    fn load_model(&self, path: &Path) -> Result<MLModel> {
41        let file = File::open(path).map_err(IoError::Io)?;
42        let onnx_model: serde_json::Value = serde_json::from_reader(file)
43            .map_err(|e| IoError::SerializationError(e.to_string()))?;
44
45        let mut model = MLModel::new(MLFramework::ONNX);
46
47        // Parse ONNX model metadata
48        if let Some(graph) = onnx_model.get("graph") {
49            if let Some(name) = graph.get("name").and_then(|v| v.as_str()) {
50                model.metadata.model_name = Some(name.to_string());
51            }
52
53            // Parse inputs and outputs
54            if let Some(inputs) = graph.get("inputs").and_then(|v| v.as_object()) {
55                for (name, shape_val) in inputs {
56                    if let Some(shape) = shape_val.as_array() {
57                        let shape_vec: Vec<usize> = shape
58                            .iter()
59                            .filter_map(|v| v.as_u64().map(|u| u as usize))
60                            .collect();
61                        model.metadata.inputshapes.insert(name.clone(), shape_vec);
62                    }
63                }
64            }
65
66            if let Some(outputs) = graph.get("outputs").and_then(|v| v.as_object()) {
67                for (name, shape_val) in outputs {
68                    if let Some(shape) = shape_val.as_array() {
69                        let shape_vec: Vec<usize> = shape
70                            .iter()
71                            .filter_map(|v| v.as_u64().map(|u| u as usize))
72                            .collect();
73                        model.metadata.outputshapes.insert(name.clone(), shape_vec);
74                    }
75                }
76            }
77
78            // Parse initializers (weights)
79            if let Some(initializers) = graph.get("initializers").and_then(|v| v.as_array()) {
80                for init in initializers {
81                    if let Some(init_obj) = init.as_object() {
82                        if let (Some(name), Some(shape), Some(_dtype)) = (
83                            init_obj.get("name").and_then(|v| v.as_str()),
84                            init_obj.get("shape").and_then(|v| v.as_array()),
85                            init_obj.get("dtype"),
86                        ) {
87                            let shape_vec: Vec<usize> = shape
88                                .iter()
89                                .filter_map(|v| v.as_u64().map(|u| u as usize))
90                                .collect();
91
92                            // Read actual tensor data from the JSON
93                            let data = if let Some(data_array) =
94                                init_obj.get("data").and_then(|v| v.as_array())
95                            {
96                                // Extract actual data values
97                                data_array
98                                    .iter()
99                                    .filter_map(|v| v.as_f64().map(|f| f as f32))
100                                    .collect::<Vec<f32>>()
101                            } else {
102                                // Fallback to zeros if no data is provided
103                                let total_elements: usize = shape_vec.iter().product();
104                                vec![0.0f32; total_elements]
105                            };
106
107                            if let Ok(array) = ArrayD::from_shape_vec(IxDyn(&shape_vec), data) {
108                                model.weights.insert(
109                                    name.to_string(),
110                                    MLTensor::new(array, Some(name.to_string())),
111                                );
112                            }
113                        }
114                    }
115                }
116            }
117        }
118
119        Ok(model)
120    }
121
122    fn save_tensor(&self, tensor: &MLTensor, path: &Path) -> Result<()> {
123        let tensor_data = serde_json::json!({
124            "name": tensor.metadata.name,
125            "shape": tensor.metadata.shape,
126            "dtype": "float32",
127            "data": tensor.data.as_slice().unwrap().to_vec(),
128        });
129
130        let file = File::create(path).map_err(IoError::Io)?;
131        serde_json::to_writer_pretty(file, &tensor_data)
132            .map_err(|e| IoError::SerializationError(e.to_string()))
133    }
134
135    fn load_tensor(&self, path: &Path) -> Result<MLTensor> {
136        let file = File::open(path).map_err(IoError::Io)?;
137        let tensor_data: serde_json::Value = serde_json::from_reader(file)
138            .map_err(|e| IoError::SerializationError(e.to_string()))?;
139
140        let shape: Vec<usize> = serde_json::from_value(tensor_data["shape"].clone())
141            .map_err(|e| IoError::SerializationError(e.to_string()))?;
142
143        let data: Vec<f32> = serde_json::from_value(tensor_data["data"].clone())
144            .map_err(|e| IoError::SerializationError(e.to_string()))?;
145
146        let name = tensor_data
147            .get("name")
148            .and_then(|v| v.as_str())
149            .map(|s| s.to_string());
150
151        let array = ArrayD::from_shape_vec(IxDyn(&shape), data)
152            .map_err(|e| IoError::Other(e.to_string()))?;
153
154        Ok(MLTensor::new(array, name))
155    }
156}