Module ml_framework

Module ml_framework 

Source
Expand description

Machine learning framework compatibility

Provides conversion utilities and interfaces for ML frameworks:

  • Support for PyTorch, TensorFlow, ONNX, SafeTensors formats
  • Model and tensor serialization/deserialization
  • Data type conversions between frameworks
  • Dataset utilities for ML pipelines
  • Seamless integration with ndarray Machine learning framework compatibility layer

Provides conversion utilities and interfaces for seamless integration with popular machine learning frameworks, enabling easy data exchange and model I/O.

Re-exports§

pub use batch_processing::BatchProcessor;
pub use batch_processing::DataLoader;
pub use converters::get_converter;
pub use converters::CoreMLConverter;
pub use converters::HuggingFaceConverter;
pub use converters::JAXConverter;
pub use converters::MLFrameworkConverter;
pub use converters::MXNetConverter;
pub use converters::ONNXConverter;
pub use converters::PyTorchConverter;
pub use converters::SafeTensorsConverter;
pub use converters::TensorFlowConverter;
pub use datasets::MLDataset;
pub use optimization::ModelOptimizer;
pub use optimization::OptimizationTechnique;
pub use quantization::ModelQuantizer;
pub use quantization::QuantizationMethod;
pub use quantization::QuantizedModel;
pub use quantization::QuantizedTensor;
pub use serving::ApiConfig;
pub use serving::HealthStatus;
pub use serving::InferenceRequest;
pub use serving::InferenceResponse;
pub use serving::LoadBalancer;
pub use serving::ModelInfo;
pub use serving::ModelServer;
pub use serving::ResponseStatus;
pub use serving::ServerConfig;
pub use serving::ServerMetrics;
pub use types::DataType;
pub use types::MLFramework;
pub use types::MLModel;
pub use types::MLTensor;
pub use types::ModelMetadata;
pub use types::TensorMetadata;
pub use validation::BatchValidator;
pub use validation::ModelValidator;
pub use validation::ValidationConfig;
pub use validation::ValidationReport;

Modules§

batch_processing
Batch processing support for ML models
converters
ML framework converters
datasets
Dataset utilities for ML frameworks
optimization
Model optimization features
quantization
Model quantization support
serving
Model serving capabilities with REST API and gRPC support
types
Core types for ML framework compatibility
utils
Utility functions for ML framework operations
validation
Model validation and compatibility checking between frameworks