Skip to main content

scirs2_io/
enhanced_algorithms.rs

1//! Enhanced Algorithms for Advanced Mode
2//!
3//! This module provides advanced algorithmic enhancements for the advanced coordinator,
4//! including new optimization strategies, advanced pattern recognition, and self-improving
5//! algorithmic components.
6
7#![allow(dead_code)]
8#![allow(clippy::too_many_arguments)]
9
10use crate::error::{IoError, Result};
11use scirs2_core::ndarray::ArrayStatCompat;
12use scirs2_core::ndarray::{Array1, Array2};
13use scirs2_core::random::Rng;
14use statrs::statistics::Statistics;
15use std::collections::{HashMap, VecDeque};
16use std::time::Instant;
17
18/// Advanced pattern recognition system with deep learning capabilities
19#[derive(Debug)]
20pub struct AdvancedPatternRecognizer {
21    /// Multi-layer pattern detection networks
22    pattern_networks: Vec<PatternNetwork>,
23    /// Historical pattern database
24    pattern_database: HashMap<String, PatternMetadata>,
25    /// Real-time pattern analysis buffer
26    analysis_buffer: VecDeque<PatternInstance>,
27    /// Learning rate for pattern adaptation
28    learning_rate: f32,
29}
30
31impl Default for AdvancedPatternRecognizer {
32    fn default() -> Self {
33        Self::new()
34    }
35}
36
37impl AdvancedPatternRecognizer {
38    /// Create a new advanced pattern recognizer
39    pub fn new() -> Self {
40        let pattern_networks = vec![
41            PatternNetwork::new("repetition", 16, 8, 4),
42            PatternNetwork::new("sequential", 16, 8, 4),
43            PatternNetwork::new("fractal", 32, 16, 8),
44            PatternNetwork::new("entropy", 16, 8, 4),
45            PatternNetwork::new("compression", 24, 12, 6),
46        ];
47
48        Self {
49            pattern_networks,
50            pattern_database: HashMap::new(),
51            analysis_buffer: VecDeque::with_capacity(1000),
52            learning_rate: 0.001,
53        }
54    }
55
56    /// Analyze data for advanced patterns using deep learning
57    pub fn analyze_patterns(&mut self, data: &[u8]) -> Result<AdvancedPatternAnalysis> {
58        let mut pattern_scores = HashMap::new();
59        let mut emergent_patterns = Vec::new();
60
61        // Extract multi-scale features
62        let features = self.extract_multiscale_features(data)?;
63
64        // Pre-compute data characteristics to avoid borrow conflicts
65        let data_characteristics = self.characterize_data(data);
66
67        // Collect network analysis results first
68        let mut network_results = Vec::new();
69        for network in &mut self.pattern_networks {
70            let score = network.analyze(&features)?;
71            let pattern_type = network.pattern_type.clone();
72            network_results.push((pattern_type, score));
73        }
74
75        // Now process results without mutable borrow conflicts
76        for (pattern_type, score) in network_results {
77            // Check if pattern is novel
78            let is_novel = self.is_novel_pattern(&pattern_type, score);
79
80            pattern_scores.insert(pattern_type.clone(), score);
81
82            // Detect emergent patterns
83            if score > 0.8 && is_novel {
84                emergent_patterns.push(EmergentPattern {
85                    pattern_type,
86                    confidence: score,
87                    discovered_at: Instant::now(),
88                    data_characteristics: data_characteristics.clone(),
89                });
90            }
91        }
92
93        // Update pattern database
94        self.update_pattern_database(data, &pattern_scores)?;
95
96        // Cross-correlate patterns for meta-patterns
97        let meta_patterns = self.detect_meta_patterns(&pattern_scores)?;
98        let optimization_recommendations =
99            self.generate_optimization_recommendations(&pattern_scores);
100
101        Ok(AdvancedPatternAnalysis {
102            pattern_scores,
103            emergent_patterns,
104            meta_patterns,
105            complexity_index: self.calculate_complexity_index(&features),
106            predictability_score: self.calculate_predictability(data),
107            optimization_recommendations,
108        })
109    }
110
111    /// Extract multi-scale features from data
112    fn extract_multiscale_features(&self, data: &[u8]) -> Result<Array2<f32>> {
113        // Extract features for each scale separately to ensure consistent dimensions
114        let byte_features = self.extract_byte_level_features(data);
115        let local_features_4 = self.extract_local_structure_features(data, 4);
116        let local_features_16 = self.extract_local_structure_features(data, 16);
117        let global_features = self.extract_global_structure_features(data);
118
119        // Find the maximum number of features to ensure consistent dimensions
120        let max_features = [
121            byte_features.len(),
122            local_features_4.len(),
123            local_features_16.len(),
124            global_features.len(),
125        ]
126        .into_iter()
127        .max()
128        .unwrap_or(0);
129
130        // Create padded feature vectors and build the 2D array
131        let mut padded_features = Vec::with_capacity(4 * max_features);
132
133        // Helper function to pad a feature vector
134        let pad_features = |mut features: Vec<f32>, target_len: usize| {
135            features.resize(target_len, 0.0);
136            features
137        };
138
139        // Add all feature scales with consistent padding
140        padded_features.extend(pad_features(byte_features, max_features));
141        padded_features.extend(pad_features(local_features_4, max_features));
142        padded_features.extend(pad_features(local_features_16, max_features));
143        padded_features.extend(pad_features(global_features, max_features));
144
145        // Convert to 2D array (4 scales x max_features)
146        let feature_array = Array2::from_shape_vec((4, max_features), padded_features)
147            .map_err(|e| IoError::Other(format!("Feature extraction error: {e}")))?;
148
149        Ok(feature_array)
150    }
151
152    /// Extract byte-level statistical features
153    fn extract_byte_level_features(&self, data: &[u8]) -> Vec<f32> {
154        let mut frequency = [0u32; 256];
155        for &byte in data {
156            frequency[byte as usize] += 1;
157        }
158
159        let len = data.len() as f32;
160        let mut features = Vec::new();
161
162        // Statistical moments
163        let mean = data.iter().map(|&x| x as f32).sum::<f32>() / len;
164        let variance = data.iter().map(|&x| (x as f32 - mean).powi(2)).sum::<f32>() / len;
165        let skewness = data.iter().map(|&x| (x as f32 - mean).powi(3)).sum::<f32>()
166            / (len * variance.powf(1.5));
167        let kurtosis =
168            data.iter().map(|&x| (x as f32 - mean).powi(4)).sum::<f32>() / (len * variance.powi(2));
169
170        features.extend(&[mean / 255.0, variance / (255.0 * 255.0), skewness, kurtosis]);
171
172        // Entropy measures
173        let mut shannon_entropy = 0.0;
174        let mut gini_index = 0.0;
175
176        for &freq in &frequency {
177            if freq > 0 {
178                let p = freq as f32 / len;
179                shannon_entropy -= p * p.log2();
180                gini_index += p * p;
181            }
182        }
183
184        features.push(shannon_entropy / 8.0);
185        features.push(1.0 - gini_index);
186
187        features
188    }
189
190    /// Extract local structure features with specified window size
191    fn extract_local_structure_features(&self, data: &[u8], window_size: usize) -> Vec<f32> {
192        let mut features = Vec::new();
193
194        if data.len() < window_size {
195            return vec![0.0; 4]; // Return zero features for insufficient data
196        }
197
198        let mut autocorrelations = Vec::new();
199        let mut transitions = 0;
200        let mut periodicity_score: f32 = 0.0;
201
202        // Calculate autocorrelations at different lags
203        for lag in 1..window_size.min(8) {
204            let mut correlation = 0.0;
205            let mut count = 0;
206
207            for i in 0..(data.len() - lag) {
208                if i + lag < data.len() {
209                    correlation += (data[i] as f32) * (data[i + lag] as f32);
210                    count += 1;
211                }
212            }
213
214            if count > 0 {
215                autocorrelations.push(correlation / count as f32);
216            }
217        }
218
219        // Count transitions
220        for window in data.windows(window_size) {
221            for i in 1..window.len() {
222                if window[i] != window[i - 1] {
223                    transitions += 1;
224                }
225            }
226        }
227
228        // Calculate periodicity
229        for period in 2..window_size.min(16) {
230            let mut matches = 0;
231            let mut total = 0;
232
233            for i in 0..(data.len() - period) {
234                if data[i] == data[i + period] {
235                    matches += 1;
236                }
237                total += 1;
238            }
239
240            if total > 0 {
241                periodicity_score = periodicity_score.max(matches as f32 / total as f32);
242            }
243        }
244
245        features.push(
246            autocorrelations.iter().sum::<f32>()
247                / autocorrelations.len().max(1) as f32
248                / (255.0 * 255.0),
249        );
250        features.push(transitions as f32 / data.len() as f32);
251        features.push(periodicity_score);
252        features.push(autocorrelations.len() as f32 / 8.0);
253
254        features
255    }
256
257    /// Extract global structure features
258    fn extract_global_structure_features(&self, data: &[u8]) -> Vec<f32> {
259        let mut features = Vec::new();
260
261        // Lempel-Ziv complexity
262        let lz_complexity = self.calculate_lempel_ziv_complexity(data);
263        features.push(lz_complexity);
264
265        // Longest common subsequence with reversed data
266        let reversed_data: Vec<u8> = data.iter().rev().cloned().collect();
267        let lcs_ratio = self.calculate_lcs_ratio(data, &reversed_data);
268        features.push(lcs_ratio);
269
270        // Fractal dimension estimate
271        let fractal_dimension = self.estimate_fractal_dimension(data);
272        features.push(fractal_dimension);
273
274        // Run length encoding ratio
275        let rle_ratio = self.calculate_rle_ratio(data);
276        features.push(rle_ratio);
277
278        features
279    }
280
281    /// Calculate Lempel-Ziv complexity
282    fn calculate_lempel_ziv_complexity(&self, data: &[u8]) -> f32 {
283        let mut dictionary = std::collections::HashSet::new();
284        let mut i = 0;
285        let mut complexity = 0;
286
287        while i < data.len() {
288            let mut j = i + 1;
289            while j <= data.len() && dictionary.contains(&data[i..j]) {
290                j += 1;
291            }
292
293            if j <= data.len() {
294                dictionary.insert(data[i..j].to_vec());
295            }
296
297            complexity += 1;
298            i = j.min(data.len());
299        }
300
301        complexity as f32 / data.len() as f32
302    }
303
304    /// Calculate longest common subsequence ratio
305    fn calculate_lcs_ratio(&self, data1: &[u8], data2: &[u8]) -> f32 {
306        let len1 = data1.len();
307        let len2 = data2.len();
308
309        if len1 == 0 || len2 == 0 {
310            return 0.0;
311        }
312
313        // Use a simplified LCS algorithm for large data
314        let sample_size = 100.min(len1).min(len2);
315        let mut dp = vec![vec![0; sample_size + 1]; sample_size + 1];
316
317        for i in 1..=sample_size {
318            for j in 1..=sample_size {
319                if data1[i - 1] == data2[j - 1] {
320                    dp[i][j] = dp[i - 1][j - 1] + 1;
321                } else {
322                    dp[i][j] = dp[i - 1][j].max(dp[i][j - 1]);
323                }
324            }
325        }
326
327        dp[sample_size][sample_size] as f32 / sample_size as f32
328    }
329
330    /// Estimate fractal dimension using box-counting method
331    fn estimate_fractal_dimension(&self, data: &[u8]) -> f32 {
332        if data.len() < 4 {
333            return 1.0;
334        }
335
336        let mut dimensions = Vec::new();
337
338        for scale in [2, 4, 8, 16].iter() {
339            if data.len() >= *scale {
340                let mut boxes = std::collections::HashSet::new();
341
342                for chunk in data.chunks(*scale) {
343                    let min_val = *chunk.iter().min().unwrap_or(&0);
344                    let max_val = *chunk.iter().max().unwrap_or(&255);
345                    boxes.insert((min_val / 16, max_val / 16)); // Quantize to reduce memory
346                }
347
348                if !boxes.is_empty() {
349                    dimensions.push(((*scale as f32).ln(), (boxes.len() as f32).ln()));
350                }
351            }
352        }
353
354        if dimensions.len() < 2 {
355            return 1.0;
356        }
357
358        // Calculate slope (fractal dimension)
359        let n = dimensions.len() as f32;
360        let sum_x: f32 = dimensions.iter().map(|(x, _)| *x).sum();
361        let sum_y: f32 = dimensions.iter().map(|(_, y)| y).sum();
362        let sum_xy: f32 = dimensions.iter().map(|(x, y)| x * y).sum();
363        let sum_x2: f32 = dimensions.iter().map(|(x, _)| x * x).sum();
364
365        let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x);
366        slope.abs().min(2.0) // Clamp to reasonable range
367    }
368
369    /// Calculate run-length encoding compression ratio
370    fn calculate_rle_ratio(&self, data: &[u8]) -> f32 {
371        if data.is_empty() {
372            return 1.0;
373        }
374
375        let mut compressed_size = 0;
376        let mut i = 0;
377
378        while i < data.len() {
379            let current_byte = data[i];
380            let mut run_length = 1;
381
382            while i + run_length < data.len() && data[i + run_length] == current_byte {
383                run_length += 1;
384            }
385
386            compressed_size += if run_length > 3 { 2 } else { run_length }; // RLE encoding
387            i += run_length;
388        }
389
390        compressed_size as f32 / data.len() as f32
391    }
392
393    /// Check if pattern is novel
394    fn is_novel_pattern(&self, pattern_type: &str, score: f32) -> bool {
395        if let Some(metadata) = self.pattern_database.get(pattern_type) {
396            score > metadata.max_score * 1.1 // 10% improvement threshold
397        } else {
398            true // New pattern _type
399        }
400    }
401
402    /// Characterize data for pattern metadata
403    fn characterize_data(&self, data: &[u8]) -> DataCharacteristics {
404        DataCharacteristics {
405            size: data.len(),
406            entropy: self.calculate_shannon_entropy(data),
407            mean: data.iter().map(|&x| x as f32).sum::<f32>() / data.len() as f32,
408            variance: {
409                let mean = data.iter().map(|&x| x as f32).sum::<f32>() / data.len() as f32;
410                data.iter().map(|&x| (x as f32 - mean).powi(2)).sum::<f32>() / data.len() as f32
411            },
412        }
413    }
414
415    /// Calculate Shannon entropy
416    fn calculate_shannon_entropy(&self, data: &[u8]) -> f32 {
417        let mut frequency = [0u32; 256];
418        for &byte in data {
419            frequency[byte as usize] += 1;
420        }
421
422        let len = data.len() as f32;
423        let mut entropy = 0.0;
424
425        for &freq in &frequency {
426            if freq > 0 {
427                let p = freq as f32 / len;
428                entropy -= p * p.log2();
429            }
430        }
431
432        entropy / 8.0
433    }
434
435    /// Update pattern database with new observations
436    fn update_pattern_database(
437        &mut self,
438        data: &[u8],
439        pattern_scores: &HashMap<String, f32>,
440    ) -> Result<()> {
441        let data_characteristics = self.characterize_data(data);
442
443        for (pattern_type, &score) in pattern_scores {
444            let metadata = self
445                .pattern_database
446                .entry(pattern_type.clone())
447                .or_insert_with(|| PatternMetadata {
448                    pattern_type: pattern_type.clone(),
449                    observation_count: 0,
450                    max_score: 0.0,
451                    avg_score: 0.0,
452                    last_seen: Instant::now(),
453                    associated_data_characteristics: Vec::new(),
454                });
455
456            metadata.observation_count += 1;
457            metadata.max_score = metadata.max_score.max(score);
458            metadata.avg_score = (metadata.avg_score * (metadata.observation_count - 1) as f32
459                + score)
460                / metadata.observation_count as f32;
461            metadata.last_seen = Instant::now();
462            metadata
463                .associated_data_characteristics
464                .push(data_characteristics.clone());
465
466            // Keep only recent characteristics
467            if metadata.associated_data_characteristics.len() > 100 {
468                metadata.associated_data_characteristics.remove(0);
469            }
470        }
471
472        Ok(())
473    }
474
475    /// Detect meta-patterns by analyzing correlations between different pattern types
476    fn detect_meta_patterns(
477        &self,
478        pattern_scores: &HashMap<String, f32>,
479    ) -> Result<Vec<MetaPattern>> {
480        let mut meta_patterns = Vec::new();
481
482        // Look for correlated patterns
483        let score_pairs: Vec<_> = pattern_scores.iter().collect();
484
485        for i in 0..score_pairs.len() {
486            for j in (i + 1)..score_pairs.len() {
487                let (type1, &score1) = score_pairs[i];
488                let (type2, &score2) = score_pairs[j];
489
490                // Detect strong correlations
491                if score1 > 0.7 && score2 > 0.7 {
492                    meta_patterns.push(MetaPattern {
493                        pattern_combination: vec![type1.clone(), type2.clone()],
494                        correlation_strength: (score1 * score2).sqrt(),
495                        synergy_type: self.determine_synergy_type(type1, type2),
496                    });
497                }
498            }
499        }
500
501        Ok(meta_patterns)
502    }
503
504    /// Determine synergy type between patterns
505    fn determine_synergy_type(&self, type1: &str, type2: &str) -> SynergyType {
506        match (type1, type2) {
507            ("repetition", "compression") => SynergyType::ReinforcingCompression,
508            ("sequential", "entropy") => SynergyType::ContrastedRandomness,
509            ("fractal", "periodicity") => SynergyType::HierarchicalStructure,
510            _ => SynergyType::Unknown,
511        }
512    }
513
514    /// Calculate complexity index from multi-scale features
515    fn calculate_complexity_index(&self, features: &Array2<f32>) -> f32 {
516        // Calculate weighted sum across scales
517        let weights = Array1::from(vec![0.4, 0.3, 0.2, 0.1]); // Higher weight for finer scales
518        let scale_complexities = features
519            .mean_axis(scirs2_core::ndarray::Axis(1))
520            .expect("Operation failed");
521        weights.dot(&scale_complexities)
522    }
523
524    /// Calculate predictability score
525    fn calculate_predictability(&self, data: &[u8]) -> f32 {
526        if data.len() < 10 {
527            return 0.5;
528        }
529
530        let mut correct_predictions = 0;
531        let prediction_window = 5.min(data.len() - 1);
532
533        for i in prediction_window..data.len() {
534            // Simple predictor based on recent history
535            let recent_bytes = &data[i - prediction_window..i];
536            let predicted = self.predict_next_byte(recent_bytes);
537
538            if predicted == data[i] {
539                correct_predictions += 1;
540            }
541        }
542
543        correct_predictions as f32 / (data.len() - prediction_window) as f32
544    }
545
546    /// Simple byte prediction based on history
547    fn predict_next_byte(&self, history: &[u8]) -> u8 {
548        if history.is_empty() {
549            return 0;
550        }
551
552        // Use most frequent byte in recent history
553        let mut frequency = [0u32; 256];
554        for &byte in history {
555            frequency[byte as usize] += 1;
556        }
557
558        frequency
559            .iter()
560            .enumerate()
561            .max_by_key(|(_, &count)| count)
562            .map(|(byte, _)| byte as u8)
563            .unwrap_or(0)
564    }
565
566    /// Generate optimization recommendations based on pattern analysis
567    fn generate_optimization_recommendations(
568        &self,
569        pattern_scores: &HashMap<String, f32>,
570    ) -> Vec<OptimizationRecommendation> {
571        let mut recommendations = Vec::new();
572
573        for (pattern_type, &score) in pattern_scores {
574            match pattern_type.as_str() {
575                "repetition" if score > 0.8 => {
576                    recommendations.push(OptimizationRecommendation {
577                        optimization_type: "compression".to_string(),
578                        reason: "High repetition detected - compression will be highly effective"
579                            .to_string(),
580                        expected_improvement: score * 0.7,
581                        confidence: score,
582                    });
583                }
584                "sequential" if score > 0.7 => {
585                    recommendations.push(OptimizationRecommendation {
586                        optimization_type: "streaming".to_string(),
587                        reason: "Sequential access pattern - streaming optimization recommended"
588                            .to_string(),
589                        expected_improvement: score * 0.5,
590                        confidence: score,
591                    });
592                }
593                "fractal" if score > 0.8 => {
594                    recommendations.push(OptimizationRecommendation {
595                        optimization_type: "hierarchical_processing".to_string(),
596                        reason:
597                            "Fractal structure detected - hierarchical processing will be efficient"
598                                .to_string(),
599                        expected_improvement: score * 0.6,
600                        confidence: score,
601                    });
602                }
603                "entropy" if score < 0.3 => {
604                    recommendations.push(OptimizationRecommendation {
605                        optimization_type: "aggressive_compression".to_string(),
606                        reason: "Low entropy - aggressive compression algorithms recommended"
607                            .to_string(),
608                        expected_improvement: (1.0 - score) * 0.8,
609                        confidence: 1.0 - score,
610                    });
611                }
612                _ => {}
613            }
614        }
615
616        recommendations
617    }
618}
619
620/// Specialized pattern detection network
621#[derive(Debug)]
622struct PatternNetwork {
623    pattern_type: String,
624    weights: Array2<f32>,
625    bias: Array1<f32>,
626    activation_history: VecDeque<f32>,
627}
628
629impl PatternNetwork {
630    fn new(pattern_type: &str, input_size: usize, hidden_size: usize, _output_size: usize) -> Self {
631        // Xavier initialization for weights
632        let scale = (2.0 / (input_size + hidden_size) as f32).sqrt();
633        let mut rng = scirs2_core::random::rng();
634        let weights = Array2::from_shape_fn((hidden_size, input_size), |_| {
635            (rng.random::<f32>() - 0.5) * 2.0 * scale
636        });
637
638        Self {
639            pattern_type: pattern_type.to_string(),
640            weights,
641            bias: Array1::zeros(hidden_size),
642            activation_history: VecDeque::with_capacity(100),
643        }
644    }
645
646    fn analyze(&mut self, features: &Array2<f32>) -> Result<f32> {
647        // Flatten features for network input
648        let flattened = features.as_slice().expect("Operation failed");
649        let input = Array1::from(flattened.to_vec());
650
651        // Resize input to match network size if necessary
652        let network_input = if input.len() > self.weights.ncols() {
653            input
654                .slice(scirs2_core::ndarray::s![..self.weights.ncols()])
655                .to_owned()
656        } else {
657            let mut padded = Array1::zeros(self.weights.ncols());
658            padded
659                .slice_mut(scirs2_core::ndarray::s![..input.len()])
660                .assign(&input);
661            padded
662        };
663
664        // Forward pass
665        let hidden = self.weights.dot(&network_input) + &self.bias;
666        let activated = hidden.mapv(Self::relu);
667
668        // Pattern-specific scoring
669        let score = match self.pattern_type.as_str() {
670            "repetition" => self.score_repetition_pattern(&activated),
671            "sequential" => self.score_sequential_pattern(&activated),
672            "fractal" => self.score_fractal_pattern(&activated),
673            "entropy" => self.score_entropy_pattern(&activated),
674            "compression" => self.score_compression_pattern(&activated),
675            _ => activated.mean_or(0.0),
676        };
677
678        self.activation_history.push_back(score);
679        if self.activation_history.len() > 100 {
680            self.activation_history.pop_front();
681        }
682
683        Ok(score.clamp(0.0, 1.0))
684    }
685
686    fn relu(x: f32) -> f32 {
687        x.max(0.0)
688    }
689
690    fn score_repetition_pattern(&self, activations: &Array1<f32>) -> f32 {
691        // Look for repeating patterns in activations
692        let mut max_repetition: f32 = 0.0;
693
694        for window_size in 2..=activations.len() / 2 {
695            let mut repetition_score = 0.0;
696            let mut count = 0;
697
698            for i in 0..=(activations.len() - 2 * window_size) {
699                let window1 = activations.slice(scirs2_core::ndarray::s![i..i + window_size]);
700                let window2 = activations.slice(scirs2_core::ndarray::s![
701                    i + window_size..i + 2 * window_size
702                ]);
703
704                let similarity = window1
705                    .iter()
706                    .zip(window2.iter())
707                    .map(|(a, b)| 1.0 - (a - b).abs())
708                    .sum::<f32>()
709                    / window_size as f32;
710
711                repetition_score += similarity;
712                count += 1;
713            }
714
715            if count > 0 {
716                max_repetition = max_repetition.max(repetition_score / count as f32);
717            }
718        }
719
720        max_repetition
721    }
722
723    fn score_sequential_pattern(&self, activations: &Array1<f32>) -> f32 {
724        if activations.len() < 2 {
725            return 0.0;
726        }
727
728        // Calculate how sequential/monotonic the activations are
729        let mut increasing = 0;
730        let mut decreasing = 0;
731
732        for i in 1..activations.len() {
733            if activations[i] > activations[i - 1] {
734                increasing += 1;
735            } else if activations[i] < activations[i - 1] {
736                decreasing += 1;
737            }
738        }
739
740        let total_transitions = activations.len() - 1;
741        let max_direction = increasing.max(decreasing);
742
743        max_direction as f32 / total_transitions as f32
744    }
745
746    fn score_fractal_pattern(&self, activations: &Array1<f32>) -> f32 {
747        // Look for self-similar patterns at different scales
748        let mut fractal_score = 0.0;
749        let mut scale_count = 0;
750
751        for scale in [2, 4, 8].iter() {
752            if activations.len() >= scale * 2 {
753                let downsampled1 = self.downsample(activations, *scale, 0);
754                let downsampled2 = self.downsample(activations, *scale, *scale);
755
756                if !downsampled1.is_empty() && !downsampled2.is_empty() {
757                    let similarity = self.calculate_similarity(&downsampled1, &downsampled2);
758                    fractal_score += similarity;
759                    scale_count += 1;
760                }
761            }
762        }
763
764        if scale_count > 0 {
765            fractal_score / scale_count as f32
766        } else {
767            0.0
768        }
769    }
770
771    fn score_entropy_pattern(&self, activations: &Array1<f32>) -> f32 {
772        // Calculate entropy of quantized activations
773        let quantized: Vec<u8> = activations.iter().map(|&x| (x * 255.0) as u8).collect();
774
775        let mut frequency = [0u32; 256];
776        for &val in &quantized {
777            frequency[val as usize] += 1;
778        }
779
780        let len = quantized.len() as f32;
781        let mut entropy = 0.0;
782
783        for &freq in &frequency {
784            if freq > 0 {
785                let p = freq as f32 / len;
786                entropy -= p * p.log2();
787            }
788        }
789
790        entropy / 8.0 // Normalize to [0, 1]
791    }
792
793    fn score_compression_pattern(&self, activations: &Array1<f32>) -> f32 {
794        // Estimate compressibility based on run-length encoding potential
795        let quantized: Vec<u8> = activations.iter().map(|&x| (x * 255.0) as u8).collect();
796
797        let mut compressed_size = 0;
798        let mut i = 0;
799
800        while i < quantized.len() {
801            let current = quantized[i];
802            let mut run_length = 1;
803
804            while i + run_length < quantized.len() && quantized[i + run_length] == current {
805                run_length += 1;
806            }
807
808            compressed_size += if run_length > 2 { 2 } else { run_length };
809            i += run_length;
810        }
811
812        1.0 - (compressed_size as f32 / quantized.len() as f32)
813    }
814
815    fn downsample(&self, data: &Array1<f32>, scale: usize, offset: usize) -> Vec<f32> {
816        data.iter().skip(offset).step_by(scale).cloned().collect()
817    }
818
819    fn calculate_similarity(&self, data1: &[f32], data2: &[f32]) -> f32 {
820        if data1.is_empty() || data2.is_empty() {
821            return 0.0;
822        }
823
824        let min_len = data1.len().min(data2.len());
825        let mut similarity = 0.0;
826
827        for i in 0..min_len {
828            similarity += 1.0 - (data1[i] - data2[i]).abs();
829        }
830
831        similarity / min_len as f32
832    }
833}
834
835// Supporting data structures
836
837/// Complete analysis result from advanced pattern recognition
838#[derive(Debug, Clone)]
839pub struct AdvancedPatternAnalysis {
840    /// Scores for each detected pattern type, ranging from 0.0 to 1.0
841    pub pattern_scores: HashMap<String, f32>,
842    /// List of emergent patterns discovered during analysis
843    pub emergent_patterns: Vec<EmergentPattern>,
844    /// Meta-patterns formed by correlations between multiple pattern types
845    pub meta_patterns: Vec<MetaPattern>,
846    /// Overall complexity index of the analyzed data (0.0 to 1.0)
847    pub complexity_index: f32,
848    /// Predictability score indicating how predictable the data is (0.0 to 1.0)
849    pub predictability_score: f32,
850    /// Optimization recommendations based on the pattern analysis
851    pub optimization_recommendations: Vec<OptimizationRecommendation>,
852}
853
854/// Represents an emergent pattern discovered during data analysis
855#[derive(Debug, Clone)]
856pub struct EmergentPattern {
857    /// Type of the emergent pattern that was discovered
858    pub pattern_type: String,
859    /// Confidence score for the pattern detection (0.0 to 1.0)
860    pub confidence: f32,
861    /// Timestamp when the pattern was discovered
862    pub discovered_at: Instant,
863    /// Characteristics of the data where the pattern was found
864    pub data_characteristics: DataCharacteristics,
865}
866
867/// Represents a meta-pattern formed by correlations between multiple pattern types
868#[derive(Debug, Clone)]
869pub struct MetaPattern {
870    /// Combination of pattern types that form this meta-pattern
871    pub pattern_combination: Vec<String>,
872    /// Strength of correlation between the combined patterns (0.0 to 1.0)
873    pub correlation_strength: f32,
874    /// Type of synergy observed between the patterns
875    pub synergy_type: SynergyType,
876}
877
878/// Types of synergy between different patterns
879#[derive(Debug, Clone)]
880pub enum SynergyType {
881    /// Patterns that reinforce compression effectiveness
882    ReinforcingCompression,
883    /// Patterns with contrasted randomness characteristics
884    ContrastedRandomness,
885    /// Patterns that exhibit hierarchical structure relationships
886    HierarchicalStructure,
887    /// Unknown or undefined synergy type
888    Unknown,
889}
890
891/// Represents an optimization recommendation based on pattern analysis
892#[derive(Debug, Clone)]
893pub struct OptimizationRecommendation {
894    /// Type of optimization that is recommended
895    pub optimization_type: String,
896    /// Explanation of why this optimization is recommended
897    pub reason: String,
898    /// Expected performance improvement ratio (e.g., 0.25 = 25% improvement)
899    pub expected_improvement: f32,
900    /// Confidence level in this recommendation (0.0 to 1.0)
901    pub confidence: f32,
902}
903
904#[derive(Debug, Clone)]
905struct PatternMetadata {
906    pattern_type: String,
907    observation_count: usize,
908    max_score: f32,
909    avg_score: f32,
910    last_seen: Instant,
911    associated_data_characteristics: Vec<DataCharacteristics>,
912}
913
914#[derive(Debug, Clone)]
915/// Statistical characteristics of data for pattern analysis
916pub struct DataCharacteristics {
917    /// Size of the data in bytes
918    pub size: usize,
919    /// Shannon entropy of the data (0.0 to 1.0, normalized)
920    pub entropy: f32,
921    /// Arithmetic mean of the data values
922    pub mean: f32,
923    /// Statistical variance of the data values
924    pub variance: f32,
925}
926
927#[derive(Debug, Clone)]
928struct PatternInstance {
929    pattern_type: String,
930    score: f32,
931    timestamp: Instant,
932    data_hash: u64,
933}
934
935#[cfg(test)]
936mod tests {
937    use super::*;
938
939    #[test]
940    fn test_advanced_pattern_recognizer_creation() {
941        let recognizer = AdvancedPatternRecognizer::new();
942        assert_eq!(recognizer.pattern_networks.len(), 5);
943    }
944
945    #[test]
946    fn test_pattern_analysis() {
947        let mut recognizer = AdvancedPatternRecognizer::new();
948        let test_data = vec![1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5];
949
950        let analysis = recognizer
951            .analyze_patterns(&test_data)
952            .expect("Operation failed");
953        assert!(!analysis.pattern_scores.is_empty());
954        assert!(analysis.complexity_index >= 0.0 && analysis.complexity_index <= 1.0);
955        assert!(analysis.predictability_score >= 0.0 && analysis.predictability_score <= 1.0);
956    }
957
958    #[test]
959    fn test_multiscale_feature_extraction() {
960        let recognizer = AdvancedPatternRecognizer::new();
961        let test_data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
962
963        let features = recognizer
964            .extract_multiscale_features(&test_data)
965            .expect("Operation failed");
966        assert_eq!(features.nrows(), 4); // 4 scales
967        assert!(features.ncols() > 0);
968    }
969
970    #[test]
971    fn test_lempel_ziv_complexity() {
972        let recognizer = AdvancedPatternRecognizer::new();
973
974        // Test with repetitive data
975        let repetitive_data = vec![1, 1, 1, 1, 1, 1, 1, 1];
976        let complexity1 = recognizer.calculate_lempel_ziv_complexity(&repetitive_data);
977
978        // Test with random data
979        let random_data = vec![1, 2, 3, 4, 5, 6, 7, 8];
980        let complexity2 = recognizer.calculate_lempel_ziv_complexity(&random_data);
981
982        assert!(complexity2 > complexity1); // Random data should be more complex
983    }
984
985    #[test]
986    fn test_pattern_network() {
987        let mut network = PatternNetwork::new("test", 10, 5, 3);
988        let mut rng = scirs2_core::random::rng();
989        let features = Array2::from_shape_fn((2, 5), |_| rng.random::<f32>());
990
991        let score = network.analyze(&features).expect("Operation failed");
992        assert!((0.0..=1.0).contains(&score));
993    }
994}