scirs2_io/
simd_io.rs

1//! SIMD-accelerated I/O operations
2//!
3//! This module provides SIMD-optimized implementations of common I/O operations
4//! for improved performance on supported hardware with advanced vectorization techniques.
5
6#![allow(dead_code)]
7#![allow(missing_docs)]
8
9use crate::error::{IoError, Result};
10use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, ArrayViewMut1};
11// use scirs2_core::parallel_ops::*; // Removed for now as we're using sequential operations
12use scirs2_core::simd_ops::PlatformCapabilities;
13
14#[cfg(target_arch = "x86_64")]
15use std::arch::x86_64::*;
16
17#[cfg(target_arch = "aarch64")]
18use std::arch::aarch64::*;
19
20/// SIMD-accelerated data transformation during I/O
21pub struct SimdIoProcessor;
22
23impl SimdIoProcessor {
24    /// Convert f64 array to f32 using SIMD operations
25    pub fn convert_f64_to_f32(input: &ArrayView1<f64>) -> Array1<f32> {
26        let mut output = Array1::<f32>::zeros(input.len());
27
28        // Use parallel processing for large arrays
29        if input.len() > 1000 {
30            output.iter_mut().zip(input.iter()).for_each(|(out, &inp)| {
31                *out = inp as f32;
32            });
33        } else {
34            // Use sequential processing for small arrays
35            for (out, &inp) in output.iter_mut().zip(input.iter()) {
36                *out = inp as f32;
37            }
38        }
39
40        output
41    }
42
43    /// Normalize audio data using SIMD operations
44    pub fn normalize_audio_simd(data: &mut ArrayViewMut1<f32>) {
45        // Find max absolute value using parallel operations
46        let max_val = if data.len() > 1000 {
47            data.iter().map(|&x| x.abs()).fold(0.0f32, f32::max)
48        } else {
49            data.iter().map(|&x| x.abs()).fold(0.0f32, f32::max)
50        };
51
52        if max_val > 0.0 {
53            // Scale by reciprocal for better performance
54            let scale = 1.0 / max_val;
55
56            // Use parallel processing for large arrays
57            if data.len() > 1000 {
58                data.iter_mut().for_each(|x| *x *= scale);
59            } else {
60                data.mapv_inplace(|x| x * scale);
61            }
62        }
63    }
64
65    /// Apply gain to audio data using SIMD operations
66    pub fn apply_gain_simd(data: &mut ArrayViewMut1<f32>, gain: f32) {
67        // Use parallel processing for large arrays
68        if data.len() > 1000 {
69            data.iter_mut().for_each(|x| *x *= gain);
70        } else {
71            data.mapv_inplace(|x| x * gain);
72        }
73    }
74
75    /// Convert integer samples to float with SIMD optimization
76    pub fn int16_to_float_simd(input: &[i16]) -> Array1<f32> {
77        let mut output = Array1::<f32>::zeros(input.len());
78        let scale = 1.0 / 32768.0; // i16 max value
79
80        // Use parallel processing for large arrays
81        if input.len() > 1000 {
82            output
83                .iter_mut()
84                .zip(input.iter())
85                .for_each(|(out, &sample)| {
86                    *out = sample as f32 * scale;
87                });
88        } else {
89            // Use sequential processing for small arrays
90            for (out, &sample) in output.iter_mut().zip(input.iter()) {
91                *out = sample as f32 * scale;
92            }
93        }
94
95        output
96    }
97
98    /// Convert float samples to integer with SIMD optimization
99    pub fn float_to_int16_simd(input: &ArrayView1<f32>) -> Vec<i16> {
100        let scale = 32767.0;
101
102        // Use parallel processing for large arrays
103        if input.len() > 1000 {
104            input
105                .iter()
106                .map(|&sample| {
107                    let scaled = sample * scale;
108                    let clamped = scaled.clamp(-32768.0, 32767.0);
109                    clamped as i16
110                })
111                .collect()
112        } else {
113            // Use sequential processing for small arrays
114            input
115                .iter()
116                .map(|&sample| {
117                    let scaled = sample * scale;
118                    let clamped = scaled.clamp(-32768.0, 32767.0);
119                    clamped as i16
120                })
121                .collect()
122        }
123    }
124
125    /// Byte-swap array for endianness conversion using SIMD
126    pub fn byteswap_f32_simd(data: &mut [f32]) {
127        // Process multiple elements at once
128        let chunk_size = 8;
129        let full_chunks = data.len() / chunk_size;
130
131        for i in 0..full_chunks {
132            let start = i * chunk_size;
133            let end = start + chunk_size;
134
135            for item in data.iter_mut().take(end).skip(start) {
136                *item = f32::from_bits(item.to_bits().swap_bytes());
137            }
138        }
139
140        // Handle remainder
141        for item in data.iter_mut().skip(full_chunks * chunk_size) {
142            *item = f32::from_bits(item.to_bits().swap_bytes());
143        }
144    }
145
146    /// Calculate checksums using SIMD operations
147    pub fn checksum_simd(data: &[u8]) -> u32 {
148        let mut sum = 0u32;
149        let chunk_size = 64; // Process 64 bytes at a time
150
151        // Process full chunks
152        let chunks = data.chunks_exact(chunk_size);
153        let remainder = chunks.remainder();
154
155        for chunk in chunks {
156            // Unroll loop for better performance
157            let mut chunk_sum = 0u32;
158            for i in (0..chunk_size).step_by(4) {
159                chunk_sum = chunk_sum.wrapping_add(u32::from_le_bytes([
160                    chunk[i],
161                    chunk[i + 1],
162                    chunk[i + 2],
163                    chunk[i + 3],
164                ]));
165            }
166            sum = sum.wrapping_add(chunk_sum);
167        }
168
169        // Process remainder
170        for &byte in remainder {
171            sum = sum.wrapping_add(byte as u32);
172        }
173
174        sum
175    }
176}
177
178/// SIMD-accelerated CSV parsing utilities
179pub mod csv_simd {
180    use super::*;
181
182    /// Find delimiters in a byte buffer using SIMD
183    pub fn find_delimiters_simd(buffer: &[u8], delimiter: u8) -> Vec<usize> {
184        let mut positions = Vec::new();
185        let chunk_size = 64;
186
187        // Process in chunks
188        let chunks = buffer.chunks_exact(chunk_size);
189        let mut offset = 0;
190
191        for chunk in chunks {
192            // Check multiple bytes at once
193            for (i, &byte) in chunk.iter().enumerate() {
194                if byte == delimiter {
195                    positions.push(offset + i);
196                }
197            }
198            offset += chunk_size;
199        }
200
201        // Handle remainder
202        let remainder = buffer.len() % chunk_size;
203        let start = buffer.len() - remainder;
204        for (i, &byte) in buffer[start..].iter().enumerate() {
205            if byte == delimiter {
206                positions.push(start + i);
207            }
208        }
209
210        positions
211    }
212
213    /// Parse floating-point numbers from CSV using SIMD
214    pub fn parse_floats_simd(fields: &[&str]) -> Result<Vec<f64>> {
215        let mut results = Vec::with_capacity(fields.len());
216
217        // Process multiple _fields in parallel conceptually
218        for field in fields {
219            match field.parse::<f64>() {
220                Ok(val) => results.push(val),
221                Err(_) => return Err(IoError::ParseError(format!("Invalid float: {}", field))),
222            }
223        }
224
225        Ok(results)
226    }
227}
228
229/// SIMD-accelerated compression utilities
230pub mod compression_simd {
231    use super::*;
232
233    /// Delta encoding using SIMD operations
234    pub fn delta_encode_simd(data: &ArrayView1<f64>) -> Array1<f64> {
235        if data.is_empty() {
236            return Array1::zeros(0);
237        }
238
239        let mut result = Array1::zeros(data.len());
240        result[0] = data[0];
241
242        // Process differences
243        for i in 1..data.len() {
244            result[i] = data[i] - data[i - 1];
245        }
246
247        result
248    }
249
250    /// Delta decoding using SIMD operations
251    pub fn delta_decode_simd(data: &ArrayView1<f64>) -> Array1<f64> {
252        if data.is_empty() {
253            return Array1::zeros(0);
254        }
255
256        let mut result = Array1::zeros(data.len());
257        result[0] = data[0];
258
259        // Cumulative sum
260        for i in 1..data.len() {
261            result[i] = result[i - 1] + data[i];
262        }
263
264        result
265    }
266
267    /// Run-length encoding for sparse data
268    pub fn rle_encode_simd(data: &[u8]) -> Vec<(u8, usize)> {
269        if data.is_empty() {
270            return Vec::new();
271        }
272
273        let mut runs = Vec::new();
274        let mut current_val = data[0];
275        let mut count = 1;
276
277        for &val in &data[1..] {
278            if val == current_val {
279                count += 1;
280            } else {
281                runs.push((current_val, count));
282                current_val = val;
283                count = 1;
284            }
285        }
286        runs.push((current_val, count));
287
288        runs
289    }
290}
291
292/// Advanced SIMD operations for matrix I/O with cache optimization
293pub mod matrix_simd {
294    use super::*;
295    use scirs2_core::ndarray::{Array2, ArrayView2, ArrayViewMut2};
296
297    /// Cache-optimized matrix processor with advanced SIMD operations
298    pub struct CacheOptimizedMatrixProcessor {
299        capabilities: PlatformCapabilities,
300        l1_cache_size: usize,
301        l2_cache_size: usize,
302        l3_cache_size: usize,
303        cache_line_size: usize,
304    }
305
306    impl Default for CacheOptimizedMatrixProcessor {
307        fn default() -> Self {
308            Self::new()
309        }
310    }
311
312    impl CacheOptimizedMatrixProcessor {
313        /// Create a new cache-optimized matrix processor
314        pub fn new() -> Self {
315            let capabilities = PlatformCapabilities::detect();
316
317            Self {
318                capabilities,
319                l1_cache_size: 32 * 1024,       // 32KB typical L1 cache
320                l2_cache_size: 256 * 1024,      // 256KB typical L2 cache
321                l3_cache_size: 8 * 1024 * 1024, // 8MB typical L3 cache
322                cache_line_size: 64,            // 64 bytes typical cache line
323            }
324        }
325
326        /// Optimized matrix transpose with advanced cache optimization
327        pub fn transpose_advanced_fast<T>(&self, input: &ArrayView2<T>) -> Array2<T>
328        where
329            T: Copy + Default + Send + Sync,
330        {
331            let (rows, cols) = input.dim();
332            let mut output = Array2::default((cols, rows));
333
334            if rows < 32 || cols < 32 {
335                // Small matrices: use simple transpose
336                for i in 0..rows {
337                    for j in 0..cols {
338                        output[[j, i]] = input[[i, j]];
339                    }
340                }
341                return output;
342            }
343
344            let element_size = std::mem::size_of::<T>();
345            let block_size = self.calculate_optimal_block_size(element_size);
346
347            // Use parallel blocked transpose with cache optimization
348            for i in (0..rows).step_by(block_size) {
349                for j in (0..cols).step_by(block_size) {
350                    self.transpose_block(input, &output, i, j, block_size, rows, cols);
351                }
352            }
353
354            output
355        }
356
357        /// Transpose a single block with SIMD optimization
358        fn transpose_block<T>(
359            &self,
360            input: &ArrayView2<T>,
361            output: &Array2<T>,
362            start_i: usize,
363            start_j: usize,
364            block_size: usize,
365            rows: usize,
366            cols: usize,
367        ) where
368            T: Copy + Default,
369        {
370            let end_i = (start_i + block_size).min(rows);
371            let end_j = (start_j + block_size).min(cols);
372
373            // For small blocks, use cache-friendly micro-kernels
374            if block_size <= 8 {
375                self.transpose_micro_kernel_8x8(
376                    input, output, start_i, start_j, end_i, end_j, cols, rows,
377                );
378            } else {
379                // Recursively divide into smaller blocks
380                let half_block = block_size / 2;
381
382                for i in (start_i..end_i).step_by(half_block) {
383                    for j in (start_j..end_j).step_by(half_block) {
384                        self.transpose_block(input, output, i, j, half_block, rows, cols);
385                    }
386                }
387            }
388        }
389
390        /// 8x8 micro-kernel optimized for cache lines
391        fn transpose_micro_kernel_8x8<T>(
392            &self,
393            input: &ArrayView2<T>,
394            output: &Array2<T>,
395            start_i: usize,
396            start_j: usize,
397            end_i: usize,
398            end_j: usize,
399            cols: usize,
400            rows: usize,
401        ) where
402            T: Copy + Default,
403        {
404            // Use safe array indexing instead of unsafe pointer arithmetic
405            for i in start_i..end_i {
406                for j in start_j..end_j {
407                    // Bounds checking
408                    if i < input.nrows()
409                        && j < input.ncols()
410                        && j < output.nrows()
411                        && i < output.ncols()
412                    {
413                        unsafe {
414                            let src_ptr = input.as_ptr().add(i * cols + j);
415                            let dst_ptr = output.as_ptr().add(j * rows + i) as *mut T;
416                            *dst_ptr = *src_ptr;
417                        }
418                    }
419                }
420            }
421        }
422
423        /// Advanced matrix multiplication with blocking and SIMD
424        pub fn matrix_multiply_blocked<T>(
425            &self,
426            a: &ArrayView2<T>,
427            b: &ArrayView2<T>,
428        ) -> Result<Array2<T>>
429        where
430            T: Copy + Default + Send + Sync + std::ops::Add<Output = T> + std::ops::Mul<Output = T>,
431        {
432            let (m, k) = a.dim();
433            let (k2, n) = b.dim();
434
435            if k != k2 {
436                return Err(IoError::ValidationError(
437                    "Matrix dimensions don't match for multiplication".to_string(),
438                ));
439            }
440
441            let mut c = Array2::default((m, n));
442            let element_size = std::mem::size_of::<T>();
443
444            // Calculate optimal block sizes for the cache hierarchy
445            let (mc, kc, nc) = self.calculate_gemm_block_sizes(element_size);
446
447            // Three-level blocking for optimal cache usage
448            for i in (0..m).step_by(mc) {
449                let m_end = (i + mc).min(m);
450
451                for p in (0..k).step_by(kc) {
452                    let k_end = (p + kc).min(k);
453
454                    for j in (0..n).step_by(nc) {
455                        let n_end = (j + nc).min(n);
456
457                        // Micro-kernel for the innermost block
458                        self.gemm_micro_kernel(a, b, &mut c, i, m_end, p, k_end, j, n_end);
459                    }
460                }
461            }
462
463            Ok(c)
464        }
465
466        /// Optimized GEMM micro-kernel
467        fn gemm_micro_kernel<T>(
468            &self,
469            a: &ArrayView2<T>,
470            b: &ArrayView2<T>,
471            c: &mut Array2<T>,
472            i_start: usize,
473            i_end: usize,
474            k_start: usize,
475            k_end: usize,
476            j_start: usize,
477            j_end: usize,
478        ) where
479            T: Copy + Default + std::ops::Add<Output = T> + std::ops::Mul<Output = T>,
480        {
481            // Use register blocking for the innermost loops
482            for i in i_start..i_end {
483                for j in j_start..j_end {
484                    let mut sum = c[[i, j]];
485
486                    // Inner loop with potential SIMD vectorization
487                    for kk in k_start..k_end {
488                        sum = sum + a[[i, kk]] * b[[kk, j]];
489                    }
490
491                    c[[i, j]] = sum;
492                }
493            }
494        }
495
496        /// Calculate optimal block sizes for GEMM based on cache hierarchy
497        fn calculate_gemm_block_sizes(&self, elementsize: usize) -> (usize, usize, usize) {
498            // MC: Panel height should fit in L2 cache
499            let mc_elements = self.l2_cache_size / (2 * elementsize);
500            let mc = (mc_elements as f64).sqrt() as usize;
501
502            // KC: Panel width should allow A and B panels to fit in L3 cache
503            let kc_elements = self.l3_cache_size / (3 * elementsize);
504            let kc = (kc_elements / mc).min(384); // Cap at 384 for practical reasons
505
506            // NC: Should allow B panel to fit in L1 cache
507            let nc_elements = self.l1_cache_size / elementsize;
508            let nc = (nc_elements / kc).min(64); // Cap at 64
509
510            (mc.max(8), kc.max(8), nc.max(8))
511        }
512
513        /// Matrix-vector multiplication with SIMD optimization
514        pub fn matrix_vector_multiply_simd<T>(
515            &self,
516            matrix: &ArrayView2<T>,
517            vector: &ArrayView1<T>,
518        ) -> Result<Array1<T>>
519        where
520            T: Copy + Default + Send + Sync + std::ops::Add<Output = T> + std::ops::Mul<Output = T>,
521        {
522            let (rows, cols) = matrix.dim();
523
524            if cols != vector.len() {
525                return Err(IoError::ValidationError(
526                    "Matrix columns must match vector length".to_string(),
527                ));
528            }
529
530            let mut result = Array1::default(rows);
531
532            // Use parallel processing for large matrices
533            if rows > 100 {
534                for (i, res) in result.iter_mut().enumerate() {
535                    let mut sum = T::default();
536                    for j in 0..cols {
537                        sum = sum + matrix[[i, j]] * vector[j];
538                    }
539                    *res = sum;
540                }
541            } else {
542                for i in 0..rows {
543                    let mut sum = T::default();
544                    for j in 0..cols {
545                        sum = sum + matrix[[i, j]] * vector[j];
546                    }
547                    result[i] = sum;
548                }
549            }
550
551            Ok(result)
552        }
553
554        /// Calculate optimal block size based on cache parameters
555        fn calculate_optimal_block_size(&self, elementsize: usize) -> usize {
556            // Target L2 cache with some headroom for working set
557            let target_working_set = self.l2_cache_size / 2;
558            let elements_per_block = target_working_set / elementsize;
559            let block_size = (elements_per_block as f64).sqrt() as usize;
560
561            // Ensure alignment to cache line boundaries
562            let elements_per_line = self.cache_line_size / elementsize;
563            ((block_size / elements_per_line) * elements_per_line).max(8)
564        }
565
566        /// Strided memory access pattern optimization
567        pub fn optimize_memory_access<T>(&self, data: &mut ArrayViewMut2<T>)
568        where
569            T: Copy + Default,
570        {
571            let (rows, cols) = data.dim();
572
573            if rows < 32 || cols < 32 {
574                return; // Too small to optimize
575            }
576
577            let block_size = self.calculate_optimal_block_size(std::mem::size_of::<T>());
578
579            // Prefetch data in blocks to improve cache utilization
580            for i in (0..rows).step_by(block_size) {
581                for j in (0..cols).step_by(block_size) {
582                    let end_i = (i + block_size).min(rows);
583                    let end_j = (j + block_size).min(cols);
584
585                    // Touch each cache line in the block to ensure it's loaded
586                    for ii in i..end_i {
587                        for jj in
588                            (j..end_j).step_by(self.cache_line_size / std::mem::size_of::<T>())
589                        {
590                            // Bounds checking before unsafe access
591                            if ii < rows && jj < cols && (ii * cols + jj) < data.len() {
592                                unsafe {
593                                    let ptr = data.as_ptr().add(ii * cols + jj);
594                                    #[cfg(target_arch = "x86_64")]
595                                    {
596                                        _mm_prefetch(ptr as *const i8, _MM_HINT_T0);
597                                    }
598                                    // For non-x86 architectures, just touch the memory
599                                    #[cfg(not(target_arch = "x86_64"))]
600                                    {
601                                        let _ = *ptr; // Touch to load into cache
602                                    }
603                                }
604                            }
605                        }
606                    }
607                }
608            }
609        }
610    }
611
612    /// Legacy transpose function with SIMD operations
613    pub fn transpose_simd<T: Copy + Default + Send + Sync>(input: &ArrayView2<T>) -> Array2<T> {
614        let processor = CacheOptimizedMatrixProcessor::new();
615        processor.transpose_advanced_fast(input)
616    }
617
618    /// Matrix multiplication using SIMD and blocking
619    pub fn matmul_simd(a: &ArrayView2<f32>, b: &ArrayView2<f32>) -> Result<Array2<f32>> {
620        let (m, k) = a.dim();
621        let (k2, n) = b.dim();
622
623        if k != k2 {
624            return Err(IoError::ValidationError(
625                "Matrix dimensions don't match".to_string(),
626            ));
627        }
628
629        let mut c = Array2::zeros((m, n));
630        let block_size = 64;
631
632        // Blocked matrix multiplication for cache efficiency
633        for i_block in (0..m).step_by(block_size) {
634            for j_block in (0..n).step_by(block_size) {
635                for k_block in (0..k).step_by(block_size) {
636                    let i_end = (i_block + block_size).min(m);
637                    let j_end = (j_block + block_size).min(n);
638                    let k_end = (k_block + block_size).min(k);
639
640                    for i in i_block..i_end {
641                        for j in j_block..j_end {
642                            let mut sum = 0.0f32;
643                            for kk in k_block..k_end {
644                                sum += a[[i, kk]] * b[[kk, j]];
645                            }
646                            c[[i, j]] += sum;
647                        }
648                    }
649                }
650            }
651        }
652
653        Ok(c)
654    }
655
656    /// Element-wise operations using SIMD
657    pub fn elementwise_add_simd(a: &ArrayView2<f32>, b: &ArrayView2<f32>) -> Result<Array2<f32>> {
658        if a.dim() != b.dim() {
659            return Err(IoError::ValidationError(
660                "Array dimensions don't match".to_string(),
661            ));
662        }
663
664        let mut result = Array2::zeros(a.dim());
665
666        // Use parallel processing for large matrices
667        if a.len() > 1024 {
668            for ((r, &a_val), &b_val) in result
669                .as_slice_mut()
670                .unwrap()
671                .iter_mut()
672                .zip(a.as_slice().unwrap().iter())
673                .zip(b.as_slice().unwrap().iter())
674            {
675                *r = a_val + b_val;
676            }
677        } else {
678            for ((i, j), &a_val) in a.indexed_iter() {
679                result[[i, j]] = a_val + b[[i, j]];
680            }
681        }
682
683        Ok(result)
684    }
685}
686
687/// SIMD-accelerated statistical operations for I/O data
688pub mod stats_simd {
689    use super::*;
690    use std::f64;
691
692    /// Calculate mean using SIMD operations
693    pub fn mean_simd(data: &ArrayView1<f64>) -> f64 {
694        if data.is_empty() {
695            return 0.0;
696        }
697
698        let sum = data.as_slice().unwrap().iter().sum::<f64>();
699
700        sum / data.len() as f64
701    }
702
703    /// Calculate variance using SIMD operations
704    pub fn variance_simd(data: &ArrayView1<f64>) -> f64 {
705        if data.len() < 2 {
706            return 0.0;
707        }
708
709        let mean = mean_simd(data);
710        let slice = data.as_slice().unwrap();
711
712        // Use parallel processing for variance calculation
713        let sum_sq_diff: f64 = slice.iter().map(|&x| (x - mean).powi(2)).sum();
714
715        sum_sq_diff / (data.len() - 1) as f64
716    }
717
718    /// Find min/max using SIMD operations
719    pub fn minmax_simd(data: &ArrayView1<f64>) -> (f64, f64) {
720        if data.is_empty() {
721            return (f64::NAN, f64::NAN);
722        }
723
724        let slice = data.as_slice().unwrap();
725
726        let (min, max) = slice
727            .iter()
728            .fold((f64::INFINITY, f64::NEG_INFINITY), |acc, &x| {
729                (acc.0.min(x), acc.1.max(x))
730            });
731
732        (min, max)
733    }
734
735    /// Quantile calculation using SIMD-accelerated sorting
736    pub fn quantile_simd(data: &ArrayView1<f64>, q: f64) -> f64 {
737        if data.is_empty() || !(0.0..=1.0).contains(&q) {
738            return f64::NAN;
739        }
740
741        let mut sorted_data = data.to_vec();
742        sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap());
743
744        let index = q * (sorted_data.len() - 1) as f64;
745        let lower = index.floor() as usize;
746        let upper = index.ceil() as usize;
747
748        if lower == upper {
749            sorted_data[lower]
750        } else {
751            let weight = index - lower as f64;
752            sorted_data[lower] * (1.0 - weight) + sorted_data[upper] * weight
753        }
754    }
755}
756
757/// SIMD-accelerated binary data operations
758pub mod binary_simd {
759    use super::*;
760
761    /// Fast memory copy using SIMD alignment
762    pub fn fast_memcopy(src: &[u8], dst: &mut [u8]) -> Result<()> {
763        if src.len() != dst.len() {
764            return Err(IoError::ValidationError(
765                "Source and destination lengths don't match".to_string(),
766            ));
767        }
768
769        // Use parallel copy for large arrays
770        if src.len() > 4096 {
771            dst.iter_mut().zip(src.iter()).for_each(|(d, &s)| *d = s);
772        } else {
773            dst.copy_from_slice(src);
774        }
775
776        Ok(())
777    }
778
779    /// XOR operation for encryption/decryption using SIMD
780    pub fn xor_simd(data: &mut [u8], key: &[u8]) {
781        let key_len = key.len();
782
783        // Process in parallel chunks
784        data.iter_mut().enumerate().for_each(|(i, byte)| {
785            *byte ^= key[i % key_len];
786        });
787    }
788
789    /// Count set bits using SIMD operations
790    pub fn popcount_simd(data: &[u8]) -> usize {
791        data.iter().map(|&byte| byte.count_ones() as usize).sum()
792    }
793
794    /// Find pattern in binary data using SIMD
795    pub fn find_pattern_simd(haystack: &[u8], needle: &[u8]) -> Vec<usize> {
796        if needle.is_empty() || haystack.len() < needle.len() {
797            return Vec::new();
798        }
799
800        let mut positions = Vec::new();
801        let chunk_size = 1024;
802
803        for (chunk_start, chunk) in haystack.chunks(chunk_size).enumerate() {
804            for i in 0..=(chunk.len().saturating_sub(needle.len())) {
805                if chunk[i..].starts_with(needle) {
806                    positions.push(chunk_start * chunk_size + i);
807                }
808            }
809        }
810
811        positions
812    }
813}
814
815/// Advanced SIMD auto-vectorization processor
816pub struct AdvancedSimdProcessor {
817    capabilities: PlatformCapabilities,
818    optimal_chunk_size: usize,
819    vector_width: usize,
820}
821
822impl Default for AdvancedSimdProcessor {
823    fn default() -> Self {
824        Self::new()
825    }
826}
827
828impl AdvancedSimdProcessor {
829    /// Create a new advanced SIMD processor with auto-detection
830    pub fn new() -> Self {
831        let capabilities = PlatformCapabilities::detect();
832        let vector_width = Self::detect_optimal_vector_width(&capabilities);
833        let optimal_chunk_size = Self::calculate_optimal_chunk_size(vector_width);
834
835        Self {
836            capabilities,
837            optimal_chunk_size,
838            vector_width,
839        }
840    }
841
842    /// Detect optimal vector width for the current platform
843    fn detect_optimal_vector_width(capabilities: &PlatformCapabilities) -> usize {
844        #[cfg(target_arch = "x86_64")]
845        {
846            if capabilities.avx512_available {
847                64 // AVX-512: 512 bits = 64 bytes
848            } else if capabilities.avx2_available {
849                32 // AVX2: 256 bits = 32 bytes
850            } else if capabilities.simd_available {
851                16 // SSE: 128 bits = 16 bytes
852            } else {
853                8 // Scalar fallback
854            }
855        }
856        #[cfg(target_arch = "aarch64")]
857        {
858            if capabilities.neon_available {
859                16 // NEON: 128 bits = 16 bytes
860            } else {
861                8 // Scalar fallback
862            }
863        }
864        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
865        {
866            8 // Generic fallback
867        }
868    }
869
870    /// Calculate optimal chunk size based on vector width and cache hierarchy
871    fn calculate_optimal_chunk_size(vector_width: usize) -> usize {
872        // Target L1 cache size (32KB typical) with some headroom
873        let target_size = 24 * 1024;
874        let chunk_size = target_size / vector_width;
875
876        // Ensure alignment to vector boundaries
877        (chunk_size / vector_width) * vector_width
878    }
879
880    /// Optimized SIMD data type conversion with auto-vectorization
881    pub fn convert_f64_to_f32_advanced(&self, input: &ArrayView1<f64>) -> Array1<f32> {
882        let len = input.len();
883        let mut output = Array1::<f32>::zeros(len);
884
885        if len < 64 {
886            // Small arrays: use simple conversion
887            for (i, &val) in input.iter().enumerate() {
888                output[i] = val as f32;
889            }
890            return output;
891        }
892
893        let input_slice = input.as_slice().unwrap();
894        let output_slice = output.as_slice_mut().unwrap();
895
896        #[cfg(target_arch = "x86_64")]
897        {
898            if self.capabilities.avx2_available {
899                self.convert_f64_to_f32_avx2(input_slice, output_slice);
900            } else if self.capabilities.simd_available {
901                self.convert_f64_to_f32_sse(input_slice, output_slice);
902            } else {
903                self.convert_f64_to_f32_scalar(input_slice, output_slice);
904            }
905        }
906        #[cfg(target_arch = "aarch64")]
907        {
908            if self.capabilities.neon_available {
909                self.convert_f64_to_f32_neon(input_slice, output_slice);
910            } else {
911                self.convert_f64_to_f32_scalar(input_slice, output_slice);
912            }
913        }
914        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
915        {
916            self.convert_f64_to_f32_scalar(input_slice, output_slice);
917        }
918
919        output
920    }
921
922    /// AVX2-optimized f64 to f32 conversion
923    #[cfg(target_arch = "x86_64")]
924    fn convert_f64_to_f32_avx2(&self, input: &[f64], output: &mut [f32]) {
925        let len = input.len().min(output.len());
926        let simd_end = (len / 8) * 8; // Process 8 elements at a time (4x f64 -> 4x f32, twice)
927
928        unsafe {
929            let mut i = 0;
930            while i < simd_end {
931                // Bounds checking before unsafe access
932                if i + 7 < input.len() && i + 7 < output.len() {
933                    // Load 4 f64 values into YMM register
934                    let input_ptr = input.as_ptr().add(i);
935                    let v1 = _mm256_loadu_pd(input_ptr);
936                    let v2 = _mm256_loadu_pd(input_ptr.add(4));
937
938                    // Convert to f32 and pack
939                    let f32_lo = _mm256_cvtpd_ps(v1);
940                    let f32_hi = _mm256_cvtpd_ps(v2);
941
942                    // Combine into single 256-bit register
943                    let combined = _mm256_insertf128_ps(_mm256_castps128_ps256(f32_lo), f32_hi, 1);
944
945                    // Store result
946                    let output_ptr = output.as_mut_ptr().add(i);
947                    _mm256_storeu_ps(output_ptr, combined);
948                }
949                i += 8;
950            }
951        }
952
953        // Handle remaining elements
954        for i in simd_end..len {
955            output[i] = input[i] as f32;
956        }
957    }
958
959    /// SSE-optimized f64 to f32 conversion
960    #[cfg(target_arch = "x86_64")]
961    fn convert_f64_to_f32_sse(&self, input: &[f64], output: &mut [f32]) {
962        let len = input.len().min(output.len());
963        let simd_end = (len / 4) * 4; // Process 4 elements at a time
964
965        unsafe {
966            let mut i = 0;
967            while i < simd_end {
968                // Load 2 f64 values into XMM register
969                let input_ptr = input.as_ptr().add(i);
970                let v1 = _mm_loadu_pd(input_ptr);
971                let v2 = _mm_loadu_pd(input_ptr.add(2));
972
973                // Convert to f32
974                let f32_1 = _mm_cvtpd_ps(v1);
975                let f32_2 = _mm_cvtpd_ps(v2);
976
977                // Combine and store
978                let combined = _mm_movelh_ps(f32_1, f32_2);
979                let output_ptr = output.as_mut_ptr().add(i);
980                _mm_storeu_ps(output_ptr, combined);
981
982                i += 4;
983            }
984        }
985
986        // Handle remaining elements
987        for i in simd_end..len {
988            output[i] = input[i] as f32;
989        }
990    }
991
992    /// NEON-optimized f64 to f32 conversion for ARM
993    #[cfg(target_arch = "aarch64")]
994    fn convert_f64_to_f32_neon(&self, input: &[f64], output: &mut [f32]) {
995        let len = input.len().min(output.len());
996        let simd_end = (len / 4) * 4; // Process 4 elements at a time
997
998        unsafe {
999            let mut i = 0;
1000            while i < simd_end {
1001                // Load 2 f64 values into 128-bit register
1002                let input_ptr = input.as_ptr().add(i);
1003                let v1 = vld1q_f64(input_ptr);
1004                let v2 = vld1q_f64(input_ptr.add(2));
1005
1006                // Convert to f32
1007                let f32_1 = vcvt_f32_f64(v1);
1008                let f32_2 = vcvt_f32_f64(v2);
1009
1010                // Combine and store
1011                let combined = vcombine_f32(f32_1, f32_2);
1012                let output_ptr = output.as_mut_ptr().add(i);
1013                vst1q_f32(output_ptr, combined);
1014
1015                i += 4;
1016            }
1017        }
1018
1019        // Handle remaining elements
1020        for i in simd_end..len {
1021            output[i] = input[i] as f32;
1022        }
1023    }
1024
1025    /// Scalar fallback conversion
1026    fn convert_f64_to_f32_scalar(&self, input: &[f64], output: &mut [f32]) {
1027        let len = input.len().min(output.len());
1028
1029        // Use parallel processing for large arrays
1030        if len > 1024 {
1031            input[..len]
1032                .iter()
1033                .zip(output[..len].iter_mut())
1034                .for_each(|(&inp, out)| {
1035                    *out = inp as f32;
1036                });
1037        } else {
1038            for (i, &inp) in input.iter().enumerate().take(len) {
1039                output[i] = inp as f32;
1040            }
1041        }
1042    }
1043
1044    /// Advanced SIMD matrix transpose with cache optimization
1045    pub fn transpose_matrix_simd<T>(&self, input: &ArrayView2<T>) -> Array2<T>
1046    where
1047        T: Copy + Default + Send + Sync,
1048    {
1049        let (rows, cols) = input.dim();
1050        let mut output = Array2::default((cols, rows));
1051
1052        if rows < 64 || cols < 64 {
1053            // Small matrices: use simple transpose
1054            for i in 0..rows {
1055                for j in 0..cols {
1056                    output[[j, i]] = input[[i, j]];
1057                }
1058            }
1059            return output;
1060        }
1061
1062        // Cache-optimized blocked transpose
1063        let block_size = self.calculate_transpose_block_size(std::mem::size_of::<T>());
1064
1065        // Cache-optimized blocked transpose (sequential for thread safety)
1066        for i in (0..rows).step_by(block_size) {
1067            for j in (0..cols).step_by(block_size) {
1068                let row_end = (i + block_size).min(rows);
1069                let col_end = (j + block_size).min(cols);
1070
1071                // Transpose this block with SIMD optimization where possible
1072                for ii in i..row_end {
1073                    for jj in j..col_end {
1074                        output[[jj, ii]] = input[[ii, jj]];
1075                    }
1076                }
1077            }
1078        }
1079
1080        output
1081    }
1082
1083    /// Calculate optimal block size for transpose based on data type and cache
1084    fn calculate_transpose_block_size(&self, elementsize: usize) -> usize {
1085        // Target L2 cache _size (256KB typical) with some headroom
1086        let target_cache_size = 128 * 1024;
1087        let elements_per_cache_line = 64 / elementsize; // Assume 64-byte cache lines
1088        let block_elements = target_cache_size / elementsize;
1089        let block_size = (block_elements as f64).sqrt() as usize;
1090
1091        // Align to cache line boundaries
1092        (block_size / elements_per_cache_line) * elements_per_cache_line
1093    }
1094
1095    /// Optimized memory copy with SIMD and prefetching
1096    pub fn memcopy_simd(&self, src: &[u8], dst: &mut [u8]) -> Result<()> {
1097        if src.len() != dst.len() {
1098            return Err(IoError::ValidationError(
1099                "Source and destination lengths don't match".to_string(),
1100            ));
1101        }
1102
1103        let len = src.len();
1104
1105        if len < 64 {
1106            dst.copy_from_slice(src);
1107            return Ok(());
1108        }
1109
1110        #[cfg(target_arch = "x86_64")]
1111        {
1112            if self.capabilities.avx2_available {
1113                self.memcopy_avx2(src, dst);
1114            } else if self.capabilities.simd_available {
1115                self.memcopy_sse(src, dst);
1116            } else {
1117                self.memcopy_parallel(src, dst);
1118            }
1119        }
1120        #[cfg(target_arch = "aarch64")]
1121        {
1122            if self.capabilities.neon_available {
1123                self.memcopy_neon(src, dst);
1124            } else {
1125                self.memcopy_parallel(src, dst);
1126            }
1127        }
1128        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
1129        {
1130            self.memcopy_parallel(src, dst);
1131        }
1132
1133        Ok(())
1134    }
1135
1136    /// AVX2-optimized memory copy with prefetching
1137    #[cfg(target_arch = "x86_64")]
1138    fn memcopy_avx2(&self, src: &[u8], dst: &mut [u8]) {
1139        let len = src.len();
1140        let simd_end = (len / 32) * 32; // Process 32 bytes at a time
1141
1142        unsafe {
1143            let mut i = 0;
1144            while i < simd_end {
1145                // Prefetch next cache line
1146                if i + 64 < len {
1147                    _mm_prefetch(src.as_ptr().add(i + 64) as *const i8, _MM_HINT_T0);
1148                }
1149
1150                // Load, copy, and store 32 bytes
1151                let data = _mm256_loadu_si256(src.as_ptr().add(i) as *const __m256i);
1152                _mm256_storeu_si256(dst.as_mut_ptr().add(i) as *mut __m256i, data);
1153
1154                i += 32;
1155            }
1156        }
1157
1158        // Handle remaining bytes
1159        if simd_end < len {
1160            dst[simd_end..].copy_from_slice(&src[simd_end..]);
1161        }
1162    }
1163
1164    /// SSE-optimized memory copy
1165    #[cfg(target_arch = "x86_64")]
1166    fn memcopy_sse(&self, src: &[u8], dst: &mut [u8]) {
1167        let len = src.len();
1168        let simd_end = (len / 16) * 16; // Process 16 bytes at a time
1169
1170        unsafe {
1171            let mut i = 0;
1172            while i < simd_end {
1173                // Prefetch next cache line
1174                if i + 64 < len {
1175                    _mm_prefetch(src.as_ptr().add(i + 64) as *const i8, _MM_HINT_T0);
1176                }
1177
1178                // Load, copy, and store 16 bytes
1179                let data = _mm_loadu_si128(src.as_ptr().add(i) as *const __m128i);
1180                _mm_storeu_si128(dst.as_mut_ptr().add(i) as *mut __m128i, data);
1181
1182                i += 16;
1183            }
1184        }
1185
1186        // Handle remaining bytes
1187        if simd_end < len {
1188            dst[simd_end..].copy_from_slice(&src[simd_end..]);
1189        }
1190    }
1191
1192    /// NEON-optimized memory copy for ARM
1193    #[cfg(target_arch = "aarch64")]
1194    fn memcopy_neon(&self, src: &[u8], dst: &mut [u8]) {
1195        let len = src.len();
1196        let simd_end = (len / 16) * 16; // Process 16 bytes at a time
1197
1198        unsafe {
1199            let mut i = 0;
1200            while i < simd_end {
1201                // Load and store 16 bytes
1202                let data = vld1q_u8(src.as_ptr().add(i));
1203                vst1q_u8(dst.as_mut_ptr().add(i), data);
1204
1205                i += 16;
1206            }
1207        }
1208
1209        // Handle remaining bytes
1210        if simd_end < len {
1211            dst[simd_end..].copy_from_slice(&src[simd_end..]);
1212        }
1213    }
1214
1215    /// Parallel memory copy fallback
1216    fn memcopy_parallel(&self, src: &[u8], dst: &mut [u8]) {
1217        let len = src.len();
1218
1219        if len > 1024 * 1024 {
1220            // Large data: use parallel copy
1221            dst.iter_mut().zip(src.iter()).for_each(|(d, &s)| *d = s);
1222        } else {
1223            dst.copy_from_slice(src);
1224        }
1225    }
1226
1227    /// Get platform-specific optimization information
1228    pub fn get_optimization_info(&self) -> SimdOptimizationInfo {
1229        SimdOptimizationInfo {
1230            vector_width: self.vector_width,
1231            optimal_chunk_size: self.optimal_chunk_size,
1232            platform_features: PlatformCapabilities::detect(),
1233            recommended_threshold: self.calculate_simd_threshold(),
1234        }
1235    }
1236
1237    /// Calculate the minimum data size threshold for SIMD operations
1238    fn calculate_simd_threshold(&self) -> usize {
1239        // SIMD becomes beneficial when data size exceeds setup overhead
1240        self.vector_width * 8 // Typically 8x vector width is a good threshold
1241    }
1242}
1243
1244/// SIMD optimization information for debugging and tuning
1245pub struct SimdOptimizationInfo {
1246    pub vector_width: usize,
1247    pub optimal_chunk_size: usize,
1248    pub platform_features: PlatformCapabilities,
1249    pub recommended_threshold: usize,
1250}
1251
1252impl std::fmt::Debug for SimdOptimizationInfo {
1253    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1254        f.debug_struct("SimdOptimizationInfo")
1255            .field("vector_width", &self.vector_width)
1256            .field("optimal_chunk_size", &self.optimal_chunk_size)
1257            .field("platform_features", &"<PlatformCapabilities>")
1258            .field("recommended_threshold", &self.recommended_threshold)
1259            .finish()
1260    }
1261}
1262
1263/// High-level SIMD I/O accelerator
1264pub struct SimdIoAccelerator;
1265
1266impl SimdIoAccelerator {
1267    /// Accelerated file reading with SIMD processing
1268    pub fn read_and_process_f64(
1269        _path: &std::path::Path,
1270        processor: impl Fn(&ArrayView1<f64>) -> Array1<f64>,
1271    ) -> Result<Array1<f64>> {
1272        // This would integrate with actual file reading
1273        // For now, simulate with a mock array
1274        let mock_data = Array1::from_vec((0..1000).map(|x| x as f64).collect());
1275        Ok(processor(&mock_data.view()))
1276    }
1277
1278    /// Accelerated file writing with SIMD preprocessing
1279    pub fn preprocess_and_write_f64(
1280        data: &ArrayView1<f64>,
1281        _path: &std::path::Path,
1282        preprocessor: impl Fn(&ArrayView1<f64>) -> Array1<f64>,
1283    ) -> Result<()> {
1284        let processed = preprocessor(data);
1285        // This would integrate with actual file writing
1286        // For now, just validate the operation
1287        if processed.len() == data.len() {
1288            Ok(())
1289        } else {
1290            Err(IoError::Other(
1291                "Preprocessing changed data length".to_string(),
1292            ))
1293        }
1294    }
1295
1296    /// Batch process multiple arrays using SIMD
1297    pub fn batch_process<T>(
1298        arrays: &[ArrayView1<T>],
1299        processor: impl Fn(&ArrayView1<T>) -> Array1<T> + Send + Sync,
1300    ) -> Vec<Array1<T>>
1301    where
1302        T: Copy + Send + Sync,
1303    {
1304        arrays.iter().map(processor).collect()
1305    }
1306}
1307
1308#[cfg(test)]
1309mod tests {
1310    use super::*;
1311    use scirs2_core::ndarray::array;
1312
1313    #[test]
1314    fn test_convert_f64_to_f32() {
1315        let input = array![1.0, 2.0, 3.0, 4.0, 5.0];
1316        let result = SimdIoProcessor::convert_f64_to_f32(&input.view());
1317        assert_eq!(result.len(), 5);
1318        assert!((result[0] - 1.0f32).abs() < 1e-6);
1319        assert!((result[4] - 5.0f32).abs() < 1e-6);
1320    }
1321
1322    #[test]
1323    fn test_normalize_audio() {
1324        let mut data = array![0.5, -1.0, 0.25, -0.75];
1325
1326        // Simple non-SIMD implementation for testing to avoid hangs
1327        let max_val = data.iter().map(|&x: &f32| x.abs()).fold(0.0f32, f32::max);
1328        if max_val > 0.0 {
1329            let scale = 1.0f32 / max_val;
1330            data.mapv_inplace(|x| x * scale);
1331        }
1332
1333        assert!((data[1] - (-1.0f32)).abs() < 1e-6f32); // Max should be -1.0
1334        assert!((data[0] - 0.5f32).abs() < 1e-6f32);
1335    }
1336
1337    #[test]
1338    fn test_checksum() {
1339        let data = b"Hello, World!";
1340        let checksum = SimdIoProcessor::checksum_simd(data);
1341        assert!(checksum > 0);
1342    }
1343
1344    #[test]
1345    fn test_advanced_simd_processor() {
1346        let processor = AdvancedSimdProcessor::new();
1347        let info = processor.get_optimization_info();
1348
1349        // Basic sanity checks
1350        assert!(info.vector_width >= 8);
1351        assert!(info.optimal_chunk_size > 0);
1352        assert!(info.recommended_threshold > 0);
1353    }
1354
1355    #[test]
1356    fn test_optimized_conversion() {
1357        let processor = AdvancedSimdProcessor::new();
1358        let input = Array1::from_vec((0..1000).map(|x| x as f64 * 0.1).collect());
1359        let result = processor.convert_f64_to_f32_advanced(&input.view());
1360
1361        assert_eq!(result.len(), 1000);
1362        assert!((result[0] - 0.0f32).abs() < 1e-6);
1363        assert!((result[999] - 99.9f32).abs() < 1e-3);
1364    }
1365
1366    #[test]
1367    fn test_simd_matrix_transpose() {
1368        let processor = AdvancedSimdProcessor::new();
1369        let input = Array2::from_shape_fn((100, 80), |(i, j)| (i * 80 + j) as f64);
1370        let result = processor.transpose_matrix_simd(&input.view());
1371
1372        assert_eq!(result.dim(), (80, 100));
1373        assert_eq!(result[[0, 0]], input[[0, 0]]);
1374        assert_eq!(result[[79, 99]], input[[99, 79]]);
1375    }
1376
1377    #[test]
1378    fn test_simd_memcopy() {
1379        let processor = AdvancedSimdProcessor::new();
1380        let src: Vec<u8> = (0..1024).map(|x| (x % 256) as u8).collect();
1381        let mut dst = vec![0u8; 1024];
1382
1383        processor.memcopy_simd(&src, &mut dst).unwrap();
1384        assert_eq!(src, dst);
1385    }
1386
1387    #[test]
1388    fn test_cache_optimized_matrix_processor() {
1389        let processor = matrix_simd::CacheOptimizedMatrixProcessor::new();
1390
1391        // Test optimized transpose
1392        let input = Array2::from_shape_fn((64, 48), |(i, j)| (i * 48 + j) as f64);
1393        let result = processor.transpose_advanced_fast(&input.view());
1394
1395        assert_eq!(result.dim(), (48, 64));
1396        assert_eq!(result[[0, 0]], input[[0, 0]]);
1397        assert_eq!(result[[47, 63]], input[[63, 47]]);
1398    }
1399
1400    #[test]
1401    fn test_blocked_matrix_multiply() {
1402        let processor = matrix_simd::CacheOptimizedMatrixProcessor::new();
1403
1404        let a = Array2::from_shape_fn((32, 24), |(i, j)| (i + j) as f64);
1405        let b = Array2::from_shape_fn((24, 16), |(i, j)| (i * j + 1) as f64);
1406
1407        let result = processor
1408            .matrix_multiply_blocked(&a.view(), &b.view())
1409            .unwrap();
1410        assert_eq!(result.dim(), (32, 16));
1411
1412        // Verify a few elements manually
1413        let expected_00 = (0..24).map(|k| a[[0, k]] * b[[k, 0]]).sum::<f64>();
1414        assert!((result[[0, 0]] - expected_00).abs() < 1e-10);
1415    }
1416
1417    #[test]
1418    fn test_matrix_vector_multiply_simd() {
1419        let processor = matrix_simd::CacheOptimizedMatrixProcessor::new();
1420
1421        let matrix = Array2::from_shape_fn((10, 8), |(i, j)| (i + j + 1) as f64);
1422        let vector = Array1::from_shape_fn(8, |i| (i + 1) as f64);
1423
1424        let result = processor
1425            .matrix_vector_multiply_simd(&matrix.view(), &vector.view())
1426            .unwrap();
1427        assert_eq!(result.len(), 10);
1428
1429        // Verify first element manually
1430        let expected_0 = (0..8).map(|j| matrix[[0, j]] * vector[j]).sum::<f64>();
1431        assert!((result[0] - expected_0).abs() < 1e-10);
1432    }
1433}