scirs2_io/pipeline/advanced_optimization/
quantum.rs

1//! Quantum-inspired optimization algorithms for pipeline optimization
2//!
3//! This module implements quantum computing-inspired optimization techniques
4//! including quantum annealing, quantum state management, and quantum tunneling.
5
6use crate::error::{IoError, Result};
7use scirs2_core::random::Rng;
8use std::collections::HashMap;
9
10use super::config::QuantumOptimizationConfig;
11
12/// Quantum state representation for optimization problems
13#[derive(Debug)]
14pub struct QuantumState {
15    qubits: Vec<Qubit>,
16    entanglement_matrix: Vec<Vec<f64>>,
17    superposition_weights: Vec<f64>,
18}
19
20impl Default for QuantumState {
21    fn default() -> Self {
22        Self::new(10)
23    }
24}
25
26impl QuantumState {
27    pub fn new(num_qubits: usize) -> Self {
28        Self {
29            qubits: (0..num_qubits).map(|_| Qubit::new()).collect(),
30            entanglement_matrix: vec![vec![0.0; num_qubits]; num_qubits],
31            superposition_weights: vec![1.0 / (num_qubits as f64).sqrt(); num_qubits],
32        }
33    }
34
35    pub fn initialize_superposition(&mut self, dimensions: usize) -> Result<()> {
36        // Initialize quantum superposition state
37        let mut rng = scirs2_core::random::thread_rng();
38        for (i, qubit) in self.qubits.iter_mut().enumerate().take(dimensions) {
39            qubit.set_superposition_state(
40                self.superposition_weights[i],
41                rng.gen::<f64>() * 2.0 * std::f64::consts::PI,
42            );
43        }
44
45        // Create entanglement between optimization variables
46        self.create_entanglement_network(dimensions)?;
47
48        Ok(())
49    }
50
51    fn create_entanglement_network(&mut self, dimensions: usize) -> Result<()> {
52        let mut rng = scirs2_core::random::thread_rng();
53        for i in 0..dimensions {
54            for j in (i + 1)..dimensions {
55                let entanglement_strength = (rng.gen::<f64>() * 0.5).exp();
56                self.entanglement_matrix[i][j] = entanglement_strength;
57                self.entanglement_matrix[j][i] = entanglement_strength;
58            }
59        }
60        Ok(())
61    }
62
63    pub fn collapse_to_classical(&self) -> Vec<f64> {
64        self.qubits.iter().map(|qubit| qubit.measure()).collect()
65    }
66
67    pub fn apply_quantum_gate(&mut self, gate: QuantumGate, qubit_indices: &[usize]) -> Result<()> {
68        match gate {
69            QuantumGate::Hadamard => {
70                for &idx in qubit_indices {
71                    if idx < self.qubits.len() {
72                        self.qubits[idx].apply_hadamard();
73                    }
74                }
75            }
76            QuantumGate::PauliX => {
77                for &idx in qubit_indices {
78                    if idx < self.qubits.len() {
79                        self.qubits[idx].apply_pauli_x();
80                    }
81                }
82            }
83            QuantumGate::Rotation { angle } => {
84                for &idx in qubit_indices {
85                    if idx < self.qubits.len() {
86                        self.qubits[idx].apply_rotation(angle);
87                    }
88                }
89            }
90        }
91        Ok(())
92    }
93
94    pub fn get_entanglement_strength(&self, qubit1: usize, qubit2: usize) -> f64 {
95        if qubit1 < self.entanglement_matrix.len()
96            && qubit2 < self.entanglement_matrix[qubit1].len()
97        {
98            self.entanglement_matrix[qubit1][qubit2]
99        } else {
100            0.0
101        }
102    }
103}
104
105/// Individual qubit with quantum properties
106#[derive(Debug)]
107pub struct Qubit {
108    amplitude_alpha: f64,
109    amplitude_beta: f64,
110    phase: f64,
111}
112
113impl Qubit {
114    pub fn new() -> Self {
115        Self {
116            amplitude_alpha: 1.0 / std::f64::consts::SQRT_2,
117            amplitude_beta: 1.0 / std::f64::consts::SQRT_2,
118            phase: 0.0,
119        }
120    }
121
122    pub fn set_superposition_state(&mut self, weight: f64, phase: f64) {
123        self.amplitude_alpha = weight.sqrt();
124        self.amplitude_beta = (1.0 - weight).sqrt();
125        self.phase = phase;
126    }
127
128    pub fn measure(&self) -> f64 {
129        let mut rng = scirs2_core::random::thread_rng();
130        if rng.gen::<f64>() < self.amplitude_alpha.powi(2) {
131            0.0
132        } else {
133            1.0
134        }
135    }
136
137    pub fn apply_hadamard(&mut self) {
138        let new_alpha = (self.amplitude_alpha + self.amplitude_beta) / std::f64::consts::SQRT_2;
139        let new_beta = (self.amplitude_alpha - self.amplitude_beta) / std::f64::consts::SQRT_2;
140        self.amplitude_alpha = new_alpha;
141        self.amplitude_beta = new_beta;
142    }
143
144    pub fn apply_pauli_x(&mut self) {
145        std::mem::swap(&mut self.amplitude_alpha, &mut self.amplitude_beta);
146    }
147
148    pub fn apply_rotation(&mut self, angle: f64) {
149        let cos_half = (angle / 2.0).cos();
150        let sin_half = (angle / 2.0).sin();
151
152        let new_alpha = cos_half * self.amplitude_alpha - sin_half * self.amplitude_beta;
153        let new_beta = sin_half * self.amplitude_alpha + cos_half * self.amplitude_beta;
154
155        self.amplitude_alpha = new_alpha;
156        self.amplitude_beta = new_beta;
157    }
158
159    pub fn get_probability_zero(&self) -> f64 {
160        self.amplitude_alpha.powi(2)
161    }
162
163    pub fn get_probability_one(&self) -> f64 {
164        self.amplitude_beta.powi(2)
165    }
166}
167
168impl Default for Qubit {
169    fn default() -> Self {
170        Self::new()
171    }
172}
173
174/// Quantum gates for state manipulation
175#[derive(Debug, Clone)]
176pub enum QuantumGate {
177    Hadamard,
178    PauliX,
179    Rotation { angle: f64 },
180}
181
182/// Quantum annealing simulator for global optimization
183#[derive(Debug)]
184pub struct QuantumAnnealer {
185    temperature_schedule: Vec<f64>,
186    tunneling_probability: f64,
187    annealing_steps: usize,
188}
189
190impl QuantumAnnealer {
191    pub fn new() -> Self {
192        Self {
193            temperature_schedule: Self::generate_temperature_schedule(1000),
194            tunneling_probability: 0.1,
195            annealing_steps: 1000,
196        }
197    }
198
199    pub fn from_config(config: &QuantumOptimizationConfig) -> Self {
200        Self {
201            temperature_schedule: config.temperature_schedule.clone(),
202            tunneling_probability: config.tunneling_probability,
203            annealing_steps: config.annealing_steps,
204        }
205    }
206
207    pub fn anneal(
208        &self,
209        objective_function: &dyn Fn(&[f64]) -> f64,
210        quantum_state: &QuantumState,
211        constraints: &[QuantumConstraint],
212    ) -> Result<QuantumAnnealingResult> {
213        let mut current_state = self.sample_quantum_state(quantum_state)?;
214        let mut current_energy = objective_function(&current_state);
215        let mut best_state = current_state.clone();
216        let mut best_energy = current_energy;
217
218        for &temperature in self.temperature_schedule.iter() {
219            // Generate candidate state with quantum tunneling
220            let candidate_state = self.quantum_tunnel(&current_state, temperature)?;
221
222            // Check constraints
223            if self.satisfies_constraints(&candidate_state, constraints) {
224                let candidate_energy = objective_function(&candidate_state);
225                let energy_delta = candidate_energy - current_energy;
226
227                // Quantum annealing acceptance criterion
228                if energy_delta < 0.0 || self.quantum_acceptance(energy_delta, temperature) {
229                    current_state = candidate_state;
230                    current_energy = candidate_energy;
231
232                    if current_energy < best_energy {
233                        best_state = current_state.clone();
234                        best_energy = current_energy;
235                    }
236                }
237            }
238        }
239
240        Ok(QuantumAnnealingResult {
241            parameters: best_state,
242            energy: best_energy,
243            convergence_step: self.annealing_steps,
244        })
245    }
246
247    fn generate_temperature_schedule(steps: usize) -> Vec<f64> {
248        (0..steps)
249            .map(|i| {
250                let t = i as f64 / steps as f64;
251                10.0 * (-5.0 * t).exp()
252            })
253            .collect()
254    }
255
256    fn sample_quantum_state(&self, quantum_state: &QuantumState) -> Result<Vec<f64>> {
257        Ok(quantum_state
258            .qubits
259            .iter()
260            .map(|qubit| qubit.measure())
261            .collect())
262    }
263
264    fn quantum_tunnel(&self, state: &[f64], temperature: f64) -> Result<Vec<f64>> {
265        let mut rng = scirs2_core::random::thread_rng();
266        let mut new_state = state.to_vec();
267        for value in &mut new_state {
268            if rng.gen::<f64>() < self.tunneling_probability {
269                let tunnel_distance = temperature * rng.gen::<f64>();
270                *value += tunnel_distance * (rng.gen::<f64>() - 0.5) * 2.0;
271                *value = value.clamp(0.0, 1.0);
272            }
273        }
274        Ok(new_state)
275    }
276
277    fn quantum_acceptance(&self, energy_delta: f64, temperature: f64) -> bool {
278        if temperature <= 0.0 {
279            false
280        } else {
281            let mut rng = scirs2_core::random::thread_rng();
282            rng.gen::<f64>() < (-energy_delta / temperature).exp()
283        }
284    }
285
286    fn satisfies_constraints(&self, state: &[f64], constraints: &[QuantumConstraint]) -> bool {
287        constraints.iter().all(|constraint| constraint.check(state))
288    }
289}
290
291impl Default for QuantumAnnealer {
292    fn default() -> Self {
293        Self::new()
294    }
295}
296
297/// Quantum constraint for optimization problems
298#[derive(Debug)]
299pub struct QuantumConstraint {
300    constraint_type: QuantumConstraintType,
301    parameters: Vec<f64>,
302}
303
304impl QuantumConstraint {
305    pub fn new(constraint_type: QuantumConstraintType, parameters: Vec<f64>) -> Self {
306        Self {
307            constraint_type,
308            parameters,
309        }
310    }
311
312    pub fn check(&self, state: &[f64]) -> bool {
313        match self.constraint_type {
314            QuantumConstraintType::Range => {
315                if self.parameters.len() >= 3 {
316                    let index = self.parameters[0] as usize;
317                    let min_val = self.parameters[1];
318                    let max_val = self.parameters[2];
319                    if index < state.len() {
320                        return state[index] >= min_val && state[index] <= max_val;
321                    }
322                }
323                false
324            }
325            QuantumConstraintType::Sum => {
326                if self.parameters.len() >= 2 {
327                    let target_sum = self.parameters[0];
328                    let tolerance = self.parameters[1];
329                    let actual_sum: f64 = state.iter().sum();
330                    return (actual_sum - target_sum).abs() <= tolerance;
331                }
332                false
333            }
334            QuantumConstraintType::Linear => {
335                if self.parameters.len() >= state.len() + 2 {
336                    let target = self.parameters[0];
337                    let tolerance = self.parameters[1];
338                    let coefficients = &self.parameters[2..];
339                    let linear_combination: f64 = state
340                        .iter()
341                        .zip(coefficients.iter())
342                        .map(|(x, c)| x * c)
343                        .sum();
344                    return (linear_combination - target).abs() <= tolerance;
345                }
346                false
347            }
348        }
349    }
350}
351
352/// Types of quantum constraints
353#[derive(Debug, Clone)]
354pub enum QuantumConstraintType {
355    Range,  // Variable must be within [min, max]
356    Sum,    // Sum of variables must equal target ± tolerance
357    Linear, // Linear combination must equal target ± tolerance
358}
359
360/// Result of quantum annealing optimization
361#[derive(Debug)]
362pub struct QuantumAnnealingResult {
363    pub parameters: Vec<f64>,
364    pub energy: f64,
365    pub convergence_step: usize,
366}
367
368/// Quantum optimization engine for pipeline parameters
369#[derive(Debug)]
370pub struct QuantumOptimizer {
371    quantum_state: QuantumState,
372    annealer: QuantumAnnealer,
373    config: QuantumOptimizationConfig,
374}
375
376impl QuantumOptimizer {
377    pub fn new(config: QuantumOptimizationConfig) -> Self {
378        Self {
379            quantum_state: QuantumState::new(config.num_qubits),
380            annealer: QuantumAnnealer::from_config(&config),
381            config,
382        }
383    }
384
385    pub fn optimize_pipeline_parameters(
386        &mut self,
387        objective_function: &dyn Fn(&[f64]) -> f64,
388        constraints: &[QuantumConstraint],
389        dimensions: usize,
390    ) -> Result<QuantumOptimizationResult> {
391        // Initialize quantum superposition for the optimization space
392        self.quantum_state.initialize_superposition(dimensions)?;
393
394        // Apply quantum gates for exploration
395        self.apply_exploration_gates(dimensions)?;
396
397        // Perform quantum annealing
398        let annealing_result =
399            self.annealer
400                .anneal(objective_function, &self.quantum_state, constraints)?;
401
402        // Analyze quantum entanglement patterns
403        let entanglement_analysis = self.analyze_entanglement(dimensions);
404
405        Ok(QuantumOptimizationResult {
406            optimal_parameters: annealing_result.parameters,
407            objective_value: annealing_result.energy,
408            convergence_info: QuantumConvergenceInfo {
409                converged: true,
410                final_temperature: self
411                    .config
412                    .temperature_schedule
413                    .last()
414                    .copied()
415                    .unwrap_or(0.0),
416                annealing_steps: annealing_result.convergence_step,
417            },
418            entanglement_analysis,
419            quantum_state_info: self.get_quantum_state_info(),
420        })
421    }
422
423    fn apply_exploration_gates(&mut self, dimensions: usize) -> Result<()> {
424        // Apply Hadamard gates for superposition
425        let hadamard_indices: Vec<usize> = (0..dimensions).collect();
426        self.quantum_state
427            .apply_quantum_gate(QuantumGate::Hadamard, &hadamard_indices)?;
428
429        // Apply rotation gates for fine-tuning
430        let mut rng = scirs2_core::random::thread_rng();
431        for i in 0..dimensions {
432            let rotation_angle = rng.gen::<f64>() * std::f64::consts::PI;
433            self.quantum_state.apply_quantum_gate(
434                QuantumGate::Rotation {
435                    angle: rotation_angle,
436                },
437                &[i],
438            )?;
439        }
440
441        Ok(())
442    }
443
444    fn analyze_entanglement(&self, dimensions: usize) -> EntanglementAnalysis {
445        let mut total_entanglement = 0.0;
446        let mut max_entanglement: f64 = 0.0;
447        let mut entangled_pairs = Vec::new();
448
449        for i in 0..dimensions {
450            for j in (i + 1)..dimensions {
451                let entanglement = self.quantum_state.get_entanglement_strength(i, j);
452                total_entanglement += entanglement;
453                max_entanglement = max_entanglement.max(entanglement);
454
455                if entanglement > 0.5 {
456                    entangled_pairs.push((i, j, entanglement));
457                }
458            }
459        }
460
461        let connectivity =
462            entangled_pairs.len() as f64 / (dimensions * (dimensions - 1) / 2) as f64;
463
464        EntanglementAnalysis {
465            average_entanglement: total_entanglement / (dimensions * (dimensions - 1) / 2) as f64,
466            max_entanglement,
467            entangled_pairs,
468            connectivity,
469        }
470    }
471
472    fn get_quantum_state_info(&self) -> QuantumStateInfo {
473        let superposition_entropy = self.calculate_superposition_entropy();
474        let coherence_measure = self.calculate_coherence();
475
476        QuantumStateInfo {
477            num_qubits: self.quantum_state.qubits.len(),
478            superposition_entropy,
479            coherence_measure,
480            measurement_probabilities: self
481                .quantum_state
482                .qubits
483                .iter()
484                .map(|q| (q.get_probability_zero(), q.get_probability_one()))
485                .collect(),
486        }
487    }
488
489    fn calculate_superposition_entropy(&self) -> f64 {
490        self.quantum_state
491            .qubits
492            .iter()
493            .map(|qubit| {
494                let p0 = qubit.get_probability_zero();
495                let p1 = qubit.get_probability_one();
496                -(p0 * p0.ln() + p1 * p1.ln())
497            })
498            .sum::<f64>()
499            / self.quantum_state.qubits.len() as f64
500    }
501
502    fn calculate_coherence(&self) -> f64 {
503        // Simplified coherence measure
504        self.quantum_state
505            .qubits
506            .iter()
507            .map(|qubit| {
508                let p_diff = (qubit.get_probability_zero() - qubit.get_probability_one()).abs();
509                1.0 - p_diff
510            })
511            .sum::<f64>()
512            / self.quantum_state.qubits.len() as f64
513    }
514}
515
516impl Default for QuantumOptimizer {
517    fn default() -> Self {
518        Self::new(QuantumOptimizationConfig::default())
519    }
520}
521
522/// Complete result of quantum optimization
523#[derive(Debug)]
524pub struct QuantumOptimizationResult {
525    pub optimal_parameters: Vec<f64>,
526    pub objective_value: f64,
527    pub convergence_info: QuantumConvergenceInfo,
528    pub entanglement_analysis: EntanglementAnalysis,
529    pub quantum_state_info: QuantumStateInfo,
530}
531
532/// Convergence information for quantum optimization
533#[derive(Debug)]
534pub struct QuantumConvergenceInfo {
535    pub converged: bool,
536    pub final_temperature: f64,
537    pub annealing_steps: usize,
538}
539
540/// Analysis of quantum entanglement in the optimization process
541#[derive(Debug)]
542pub struct EntanglementAnalysis {
543    pub average_entanglement: f64,
544    pub max_entanglement: f64,
545    pub entangled_pairs: Vec<(usize, usize, f64)>,
546    pub connectivity: f64,
547}
548
549/// Information about the quantum state
550#[derive(Debug)]
551pub struct QuantumStateInfo {
552    pub num_qubits: usize,
553    pub superposition_entropy: f64,
554    pub coherence_measure: f64,
555    pub measurement_probabilities: Vec<(f64, f64)>,
556}