scirs2_io/pipeline/advanced_optimization/
quantum.rs1use crate::error::{IoError, Result};
7use scirs2_core::random::Rng;
8use std::collections::HashMap;
9
10use super::config::QuantumOptimizationConfig;
11
12#[derive(Debug)]
14pub struct QuantumState {
15 qubits: Vec<Qubit>,
16 entanglement_matrix: Vec<Vec<f64>>,
17 superposition_weights: Vec<f64>,
18}
19
20impl Default for QuantumState {
21 fn default() -> Self {
22 Self::new(10)
23 }
24}
25
26impl QuantumState {
27 pub fn new(num_qubits: usize) -> Self {
28 Self {
29 qubits: (0..num_qubits).map(|_| Qubit::new()).collect(),
30 entanglement_matrix: vec![vec![0.0; num_qubits]; num_qubits],
31 superposition_weights: vec![1.0 / (num_qubits as f64).sqrt(); num_qubits],
32 }
33 }
34
35 pub fn initialize_superposition(&mut self, dimensions: usize) -> Result<()> {
36 let mut rng = scirs2_core::random::thread_rng();
38 for (i, qubit) in self.qubits.iter_mut().enumerate().take(dimensions) {
39 qubit.set_superposition_state(
40 self.superposition_weights[i],
41 rng.gen::<f64>() * 2.0 * std::f64::consts::PI,
42 );
43 }
44
45 self.create_entanglement_network(dimensions)?;
47
48 Ok(())
49 }
50
51 fn create_entanglement_network(&mut self, dimensions: usize) -> Result<()> {
52 let mut rng = scirs2_core::random::thread_rng();
53 for i in 0..dimensions {
54 for j in (i + 1)..dimensions {
55 let entanglement_strength = (rng.gen::<f64>() * 0.5).exp();
56 self.entanglement_matrix[i][j] = entanglement_strength;
57 self.entanglement_matrix[j][i] = entanglement_strength;
58 }
59 }
60 Ok(())
61 }
62
63 pub fn collapse_to_classical(&self) -> Vec<f64> {
64 self.qubits.iter().map(|qubit| qubit.measure()).collect()
65 }
66
67 pub fn apply_quantum_gate(&mut self, gate: QuantumGate, qubit_indices: &[usize]) -> Result<()> {
68 match gate {
69 QuantumGate::Hadamard => {
70 for &idx in qubit_indices {
71 if idx < self.qubits.len() {
72 self.qubits[idx].apply_hadamard();
73 }
74 }
75 }
76 QuantumGate::PauliX => {
77 for &idx in qubit_indices {
78 if idx < self.qubits.len() {
79 self.qubits[idx].apply_pauli_x();
80 }
81 }
82 }
83 QuantumGate::Rotation { angle } => {
84 for &idx in qubit_indices {
85 if idx < self.qubits.len() {
86 self.qubits[idx].apply_rotation(angle);
87 }
88 }
89 }
90 }
91 Ok(())
92 }
93
94 pub fn get_entanglement_strength(&self, qubit1: usize, qubit2: usize) -> f64 {
95 if qubit1 < self.entanglement_matrix.len()
96 && qubit2 < self.entanglement_matrix[qubit1].len()
97 {
98 self.entanglement_matrix[qubit1][qubit2]
99 } else {
100 0.0
101 }
102 }
103}
104
105#[derive(Debug)]
107pub struct Qubit {
108 amplitude_alpha: f64,
109 amplitude_beta: f64,
110 phase: f64,
111}
112
113impl Qubit {
114 pub fn new() -> Self {
115 Self {
116 amplitude_alpha: 1.0 / std::f64::consts::SQRT_2,
117 amplitude_beta: 1.0 / std::f64::consts::SQRT_2,
118 phase: 0.0,
119 }
120 }
121
122 pub fn set_superposition_state(&mut self, weight: f64, phase: f64) {
123 self.amplitude_alpha = weight.sqrt();
124 self.amplitude_beta = (1.0 - weight).sqrt();
125 self.phase = phase;
126 }
127
128 pub fn measure(&self) -> f64 {
129 let mut rng = scirs2_core::random::thread_rng();
130 if rng.gen::<f64>() < self.amplitude_alpha.powi(2) {
131 0.0
132 } else {
133 1.0
134 }
135 }
136
137 pub fn apply_hadamard(&mut self) {
138 let new_alpha = (self.amplitude_alpha + self.amplitude_beta) / std::f64::consts::SQRT_2;
139 let new_beta = (self.amplitude_alpha - self.amplitude_beta) / std::f64::consts::SQRT_2;
140 self.amplitude_alpha = new_alpha;
141 self.amplitude_beta = new_beta;
142 }
143
144 pub fn apply_pauli_x(&mut self) {
145 std::mem::swap(&mut self.amplitude_alpha, &mut self.amplitude_beta);
146 }
147
148 pub fn apply_rotation(&mut self, angle: f64) {
149 let cos_half = (angle / 2.0).cos();
150 let sin_half = (angle / 2.0).sin();
151
152 let new_alpha = cos_half * self.amplitude_alpha - sin_half * self.amplitude_beta;
153 let new_beta = sin_half * self.amplitude_alpha + cos_half * self.amplitude_beta;
154
155 self.amplitude_alpha = new_alpha;
156 self.amplitude_beta = new_beta;
157 }
158
159 pub fn get_probability_zero(&self) -> f64 {
160 self.amplitude_alpha.powi(2)
161 }
162
163 pub fn get_probability_one(&self) -> f64 {
164 self.amplitude_beta.powi(2)
165 }
166}
167
168impl Default for Qubit {
169 fn default() -> Self {
170 Self::new()
171 }
172}
173
174#[derive(Debug, Clone)]
176pub enum QuantumGate {
177 Hadamard,
178 PauliX,
179 Rotation { angle: f64 },
180}
181
182#[derive(Debug)]
184pub struct QuantumAnnealer {
185 temperature_schedule: Vec<f64>,
186 tunneling_probability: f64,
187 annealing_steps: usize,
188}
189
190impl QuantumAnnealer {
191 pub fn new() -> Self {
192 Self {
193 temperature_schedule: Self::generate_temperature_schedule(1000),
194 tunneling_probability: 0.1,
195 annealing_steps: 1000,
196 }
197 }
198
199 pub fn from_config(config: &QuantumOptimizationConfig) -> Self {
200 Self {
201 temperature_schedule: config.temperature_schedule.clone(),
202 tunneling_probability: config.tunneling_probability,
203 annealing_steps: config.annealing_steps,
204 }
205 }
206
207 pub fn anneal(
208 &self,
209 objective_function: &dyn Fn(&[f64]) -> f64,
210 quantum_state: &QuantumState,
211 constraints: &[QuantumConstraint],
212 ) -> Result<QuantumAnnealingResult> {
213 let mut current_state = self.sample_quantum_state(quantum_state)?;
214 let mut current_energy = objective_function(¤t_state);
215 let mut best_state = current_state.clone();
216 let mut best_energy = current_energy;
217
218 for &temperature in self.temperature_schedule.iter() {
219 let candidate_state = self.quantum_tunnel(¤t_state, temperature)?;
221
222 if self.satisfies_constraints(&candidate_state, constraints) {
224 let candidate_energy = objective_function(&candidate_state);
225 let energy_delta = candidate_energy - current_energy;
226
227 if energy_delta < 0.0 || self.quantum_acceptance(energy_delta, temperature) {
229 current_state = candidate_state;
230 current_energy = candidate_energy;
231
232 if current_energy < best_energy {
233 best_state = current_state.clone();
234 best_energy = current_energy;
235 }
236 }
237 }
238 }
239
240 Ok(QuantumAnnealingResult {
241 parameters: best_state,
242 energy: best_energy,
243 convergence_step: self.annealing_steps,
244 })
245 }
246
247 fn generate_temperature_schedule(steps: usize) -> Vec<f64> {
248 (0..steps)
249 .map(|i| {
250 let t = i as f64 / steps as f64;
251 10.0 * (-5.0 * t).exp()
252 })
253 .collect()
254 }
255
256 fn sample_quantum_state(&self, quantum_state: &QuantumState) -> Result<Vec<f64>> {
257 Ok(quantum_state
258 .qubits
259 .iter()
260 .map(|qubit| qubit.measure())
261 .collect())
262 }
263
264 fn quantum_tunnel(&self, state: &[f64], temperature: f64) -> Result<Vec<f64>> {
265 let mut rng = scirs2_core::random::thread_rng();
266 let mut new_state = state.to_vec();
267 for value in &mut new_state {
268 if rng.gen::<f64>() < self.tunneling_probability {
269 let tunnel_distance = temperature * rng.gen::<f64>();
270 *value += tunnel_distance * (rng.gen::<f64>() - 0.5) * 2.0;
271 *value = value.clamp(0.0, 1.0);
272 }
273 }
274 Ok(new_state)
275 }
276
277 fn quantum_acceptance(&self, energy_delta: f64, temperature: f64) -> bool {
278 if temperature <= 0.0 {
279 false
280 } else {
281 let mut rng = scirs2_core::random::thread_rng();
282 rng.gen::<f64>() < (-energy_delta / temperature).exp()
283 }
284 }
285
286 fn satisfies_constraints(&self, state: &[f64], constraints: &[QuantumConstraint]) -> bool {
287 constraints.iter().all(|constraint| constraint.check(state))
288 }
289}
290
291impl Default for QuantumAnnealer {
292 fn default() -> Self {
293 Self::new()
294 }
295}
296
297#[derive(Debug)]
299pub struct QuantumConstraint {
300 constraint_type: QuantumConstraintType,
301 parameters: Vec<f64>,
302}
303
304impl QuantumConstraint {
305 pub fn new(constraint_type: QuantumConstraintType, parameters: Vec<f64>) -> Self {
306 Self {
307 constraint_type,
308 parameters,
309 }
310 }
311
312 pub fn check(&self, state: &[f64]) -> bool {
313 match self.constraint_type {
314 QuantumConstraintType::Range => {
315 if self.parameters.len() >= 3 {
316 let index = self.parameters[0] as usize;
317 let min_val = self.parameters[1];
318 let max_val = self.parameters[2];
319 if index < state.len() {
320 return state[index] >= min_val && state[index] <= max_val;
321 }
322 }
323 false
324 }
325 QuantumConstraintType::Sum => {
326 if self.parameters.len() >= 2 {
327 let target_sum = self.parameters[0];
328 let tolerance = self.parameters[1];
329 let actual_sum: f64 = state.iter().sum();
330 return (actual_sum - target_sum).abs() <= tolerance;
331 }
332 false
333 }
334 QuantumConstraintType::Linear => {
335 if self.parameters.len() >= state.len() + 2 {
336 let target = self.parameters[0];
337 let tolerance = self.parameters[1];
338 let coefficients = &self.parameters[2..];
339 let linear_combination: f64 = state
340 .iter()
341 .zip(coefficients.iter())
342 .map(|(x, c)| x * c)
343 .sum();
344 return (linear_combination - target).abs() <= tolerance;
345 }
346 false
347 }
348 }
349 }
350}
351
352#[derive(Debug, Clone)]
354pub enum QuantumConstraintType {
355 Range, Sum, Linear, }
359
360#[derive(Debug)]
362pub struct QuantumAnnealingResult {
363 pub parameters: Vec<f64>,
364 pub energy: f64,
365 pub convergence_step: usize,
366}
367
368#[derive(Debug)]
370pub struct QuantumOptimizer {
371 quantum_state: QuantumState,
372 annealer: QuantumAnnealer,
373 config: QuantumOptimizationConfig,
374}
375
376impl QuantumOptimizer {
377 pub fn new(config: QuantumOptimizationConfig) -> Self {
378 Self {
379 quantum_state: QuantumState::new(config.num_qubits),
380 annealer: QuantumAnnealer::from_config(&config),
381 config,
382 }
383 }
384
385 pub fn optimize_pipeline_parameters(
386 &mut self,
387 objective_function: &dyn Fn(&[f64]) -> f64,
388 constraints: &[QuantumConstraint],
389 dimensions: usize,
390 ) -> Result<QuantumOptimizationResult> {
391 self.quantum_state.initialize_superposition(dimensions)?;
393
394 self.apply_exploration_gates(dimensions)?;
396
397 let annealing_result =
399 self.annealer
400 .anneal(objective_function, &self.quantum_state, constraints)?;
401
402 let entanglement_analysis = self.analyze_entanglement(dimensions);
404
405 Ok(QuantumOptimizationResult {
406 optimal_parameters: annealing_result.parameters,
407 objective_value: annealing_result.energy,
408 convergence_info: QuantumConvergenceInfo {
409 converged: true,
410 final_temperature: self
411 .config
412 .temperature_schedule
413 .last()
414 .copied()
415 .unwrap_or(0.0),
416 annealing_steps: annealing_result.convergence_step,
417 },
418 entanglement_analysis,
419 quantum_state_info: self.get_quantum_state_info(),
420 })
421 }
422
423 fn apply_exploration_gates(&mut self, dimensions: usize) -> Result<()> {
424 let hadamard_indices: Vec<usize> = (0..dimensions).collect();
426 self.quantum_state
427 .apply_quantum_gate(QuantumGate::Hadamard, &hadamard_indices)?;
428
429 let mut rng = scirs2_core::random::thread_rng();
431 for i in 0..dimensions {
432 let rotation_angle = rng.gen::<f64>() * std::f64::consts::PI;
433 self.quantum_state.apply_quantum_gate(
434 QuantumGate::Rotation {
435 angle: rotation_angle,
436 },
437 &[i],
438 )?;
439 }
440
441 Ok(())
442 }
443
444 fn analyze_entanglement(&self, dimensions: usize) -> EntanglementAnalysis {
445 let mut total_entanglement = 0.0;
446 let mut max_entanglement: f64 = 0.0;
447 let mut entangled_pairs = Vec::new();
448
449 for i in 0..dimensions {
450 for j in (i + 1)..dimensions {
451 let entanglement = self.quantum_state.get_entanglement_strength(i, j);
452 total_entanglement += entanglement;
453 max_entanglement = max_entanglement.max(entanglement);
454
455 if entanglement > 0.5 {
456 entangled_pairs.push((i, j, entanglement));
457 }
458 }
459 }
460
461 let connectivity =
462 entangled_pairs.len() as f64 / (dimensions * (dimensions - 1) / 2) as f64;
463
464 EntanglementAnalysis {
465 average_entanglement: total_entanglement / (dimensions * (dimensions - 1) / 2) as f64,
466 max_entanglement,
467 entangled_pairs,
468 connectivity,
469 }
470 }
471
472 fn get_quantum_state_info(&self) -> QuantumStateInfo {
473 let superposition_entropy = self.calculate_superposition_entropy();
474 let coherence_measure = self.calculate_coherence();
475
476 QuantumStateInfo {
477 num_qubits: self.quantum_state.qubits.len(),
478 superposition_entropy,
479 coherence_measure,
480 measurement_probabilities: self
481 .quantum_state
482 .qubits
483 .iter()
484 .map(|q| (q.get_probability_zero(), q.get_probability_one()))
485 .collect(),
486 }
487 }
488
489 fn calculate_superposition_entropy(&self) -> f64 {
490 self.quantum_state
491 .qubits
492 .iter()
493 .map(|qubit| {
494 let p0 = qubit.get_probability_zero();
495 let p1 = qubit.get_probability_one();
496 -(p0 * p0.ln() + p1 * p1.ln())
497 })
498 .sum::<f64>()
499 / self.quantum_state.qubits.len() as f64
500 }
501
502 fn calculate_coherence(&self) -> f64 {
503 self.quantum_state
505 .qubits
506 .iter()
507 .map(|qubit| {
508 let p_diff = (qubit.get_probability_zero() - qubit.get_probability_one()).abs();
509 1.0 - p_diff
510 })
511 .sum::<f64>()
512 / self.quantum_state.qubits.len() as f64
513 }
514}
515
516impl Default for QuantumOptimizer {
517 fn default() -> Self {
518 Self::new(QuantumOptimizationConfig::default())
519 }
520}
521
522#[derive(Debug)]
524pub struct QuantumOptimizationResult {
525 pub optimal_parameters: Vec<f64>,
526 pub objective_value: f64,
527 pub convergence_info: QuantumConvergenceInfo,
528 pub entanglement_analysis: EntanglementAnalysis,
529 pub quantum_state_info: QuantumStateInfo,
530}
531
532#[derive(Debug)]
534pub struct QuantumConvergenceInfo {
535 pub converged: bool,
536 pub final_temperature: f64,
537 pub annealing_steps: usize,
538}
539
540#[derive(Debug)]
542pub struct EntanglementAnalysis {
543 pub average_entanglement: f64,
544 pub max_entanglement: f64,
545 pub entangled_pairs: Vec<(usize, usize, f64)>,
546 pub connectivity: f64,
547}
548
549#[derive(Debug)]
551pub struct QuantumStateInfo {
552 pub num_qubits: usize,
553 pub superposition_entropy: f64,
554 pub coherence_measure: f64,
555 pub measurement_probabilities: Vec<(f64, f64)>,
556}