scirs2_io/pipeline/advanced_optimization/
performance.rs

1//! Performance tracking and auto-tuning for pipeline optimization
2//!
3//! This module provides machine learning-based performance tracking, historical
4//! analysis, and automatic parameter tuning for optimal pipeline performance.
5
6use crate::error::{IoError, Result};
7use chrono::{DateTime, Utc};
8use std::collections::HashMap;
9
10use super::config::{
11    AutoTuningParameters, ExecutionRecord, OptimizedPipelineConfig, PipelinePerformanceMetrics,
12    RegressionDetector, SystemMetrics,
13};
14
15/// Performance history tracker for machine learning optimization
16#[derive(Debug)]
17pub struct PerformanceHistory {
18    executions: Vec<ExecutionRecord>,
19    pipeline_profiles: HashMap<String, PipelineProfile>,
20    max_history_size: usize,
21}
22
23impl Default for PerformanceHistory {
24    fn default() -> Self {
25        Self::new()
26    }
27}
28
29impl PerformanceHistory {
30    pub fn new() -> Self {
31        Self {
32            executions: Vec::new(),
33            pipeline_profiles: HashMap::new(),
34            max_history_size: 10000,
35        }
36    }
37
38    pub fn record_execution(
39        &mut self,
40        pipeline_id: &str,
41        config: &OptimizedPipelineConfig,
42        metrics: &PipelinePerformanceMetrics,
43    ) -> Result<()> {
44        let record = ExecutionRecord {
45            timestamp: Utc::now(),
46            pipeline_id: pipeline_id.to_string(),
47            config: config.clone(),
48            metrics: metrics.clone(),
49        };
50
51        self.executions.push(record);
52
53        // Maintain history size limit
54        if self.executions.len() > self.max_history_size {
55            self.executions.remove(0);
56        }
57
58        // Update or create pipeline profile
59        self.update_pipeline_profile(pipeline_id, config, metrics);
60
61        Ok(())
62    }
63
64    pub fn get_similar_configurations(
65        &self,
66        pipeline_id: &str,
67        data_size: usize,
68    ) -> Vec<&ExecutionRecord> {
69        let size_threshold = 0.2; // 20% size difference tolerance
70
71        self.executions
72            .iter()
73            .filter(|record| {
74                record.pipeline_id == pipeline_id
75                    && (record.metrics.data_size as f64 - data_size as f64).abs()
76                        / (data_size as f64)
77                        < size_threshold
78            })
79            .collect()
80    }
81
82    fn update_pipeline_profile(
83        &mut self,
84        pipeline_id: &str,
85        config: &OptimizedPipelineConfig,
86        metrics: &PipelinePerformanceMetrics,
87    ) {
88        let profile = self
89            .pipeline_profiles
90            .entry(pipeline_id.to_string())
91            .or_insert_with(|| PipelineProfile::new(pipeline_id));
92
93        profile.update(config, metrics);
94    }
95
96    pub fn get_pipeline_profile(&self, pipeline_id: &str) -> Option<&PipelineProfile> {
97        self.pipeline_profiles.get(pipeline_id)
98    }
99
100    pub fn get_best_configurations(
101        &self,
102        pipeline_id: &str,
103        limit: usize,
104    ) -> Vec<&ExecutionRecord> {
105        let mut records: Vec<&ExecutionRecord> = self
106            .executions
107            .iter()
108            .filter(|record| record.pipeline_id == pipeline_id)
109            .collect();
110
111        records.sort_by(|a, b| {
112            b.metrics
113                .throughput
114                .partial_cmp(&a.metrics.throughput)
115                .unwrap()
116        });
117
118        records.into_iter().take(limit).collect()
119    }
120}
121
122/// Pipeline performance profile with statistical analysis
123#[derive(Debug)]
124pub struct PipelineProfile {
125    pub pipeline_id: String,
126    pub execution_count: usize,
127    pub avg_throughput: f64,
128    pub avg_memory_usage: f64,
129    pub avg_cpu_utilization: f64,
130    pub optimal_configurations: Vec<OptimizedPipelineConfig>,
131    pub performance_regression_detector: RegressionDetector,
132}
133
134impl PipelineProfile {
135    pub fn new(pipeline_id: &str) -> Self {
136        Self {
137            pipeline_id: pipeline_id.to_string(),
138            execution_count: 0,
139            avg_throughput: 0.0,
140            avg_memory_usage: 0.0,
141            avg_cpu_utilization: 0.0,
142            optimal_configurations: Vec::new(),
143            performance_regression_detector: RegressionDetector::new(),
144        }
145    }
146
147    pub fn update(
148        &mut self,
149        config: &OptimizedPipelineConfig,
150        metrics: &PipelinePerformanceMetrics,
151    ) {
152        self.execution_count += 1;
153
154        // Update running averages
155        let weight = 1.0 / self.execution_count as f64;
156        self.avg_throughput += weight * (metrics.throughput - self.avg_throughput);
157        self.avg_memory_usage +=
158            weight * (metrics.peak_memory_usage as f64 - self.avg_memory_usage);
159        self.avg_cpu_utilization += weight * (metrics.cpu_utilization - self.avg_cpu_utilization);
160
161        // Check for performance regression
162        self.performance_regression_detector
163            .check_regression(metrics);
164
165        // Update optimal configurations if this is better
166        if self.is_better_configuration(config, metrics) {
167            self.optimal_configurations.push(config.clone());
168            // Keep only top 5 configurations
169            if self.optimal_configurations.len() > 5 {
170                self.optimal_configurations.remove(0);
171            }
172        }
173    }
174
175    fn is_better_configuration(
176        &self,
177        _config: &OptimizedPipelineConfig,
178        metrics: &PipelinePerformanceMetrics,
179    ) -> bool {
180        // Score based on throughput, memory efficiency, and CPU utilization
181        let score = metrics.throughput * 0.5
182            + (1.0 / metrics.peak_memory_usage as f64) * 0.3
183            + metrics.cpu_utilization * 0.2;
184
185        // Compare with average performance
186        let avg_score = self.avg_throughput * 0.5
187            + (1.0 / self.avg_memory_usage) * 0.3
188            + self.avg_cpu_utilization * 0.2;
189
190        score > avg_score * 1.1 // 10% improvement threshold
191    }
192
193    pub fn get_performance_trend(&self) -> PerformanceTrend {
194        // Simplified trend analysis
195        PerformanceTrend {
196            direction: TrendDirection::Stable,
197            magnitude: 0.0,
198            confidence: 0.8,
199        }
200    }
201}
202
203#[derive(Debug)]
204pub struct PerformanceTrend {
205    pub direction: TrendDirection,
206    pub magnitude: f64,
207    pub confidence: f64,
208}
209
210#[derive(Debug)]
211pub enum TrendDirection {
212    Improving,
213    Degrading,
214    Stable,
215}
216
217/// Machine learning-based auto-tuner for optimal parameter selection
218#[derive(Debug)]
219pub struct AutoTuner {
220    /// Feature weights for parameter optimization
221    feature_weights: Vec<f64>,
222    /// Learning rate for model updates
223    learning_rate: f64,
224    /// Historical performance data for model training
225    training_data: Vec<TrainingExample>,
226    /// Maximum number of training examples to keep
227    max_training_data: usize,
228}
229
230impl Default for AutoTuner {
231    fn default() -> Self {
232        Self::new()
233    }
234}
235
236impl AutoTuner {
237    pub fn new() -> Self {
238        Self {
239            feature_weights: vec![0.1; 10], // Initialize with small random weights
240            learning_rate: 0.01,
241            training_data: Vec::new(),
242            max_training_data: 1000,
243        }
244    }
245
246    pub fn optimize_parameters(
247        &mut self,
248        system_metrics: &SystemMetrics,
249        historical_data: &[&ExecutionRecord],
250        estimated_data_size: usize,
251    ) -> Result<AutoTuningParameters> {
252        // Extract features from system metrics and historical data
253        let features = self.extract_features(system_metrics, historical_data, estimated_data_size);
254
255        // Use learned model to predict optimal parameters
256        let predicted_params = self.predict_optimal_parameters(&features)?;
257
258        Ok(predicted_params)
259    }
260
261    pub fn update_model(
262        &mut self,
263        config: &OptimizedPipelineConfig,
264        metrics: &PipelinePerformanceMetrics,
265    ) -> Result<()> {
266        // Convert config and metrics to training example
267        let training_example = TrainingExample {
268            features: self.config_to_features(config),
269            performance_score: metrics.throughput,
270        };
271
272        self.training_data.push(training_example);
273
274        // Maintain training data size limit
275        if self.training_data.len() > self.max_training_data {
276            self.training_data.remove(0);
277        }
278
279        // Update model weights using gradient descent
280        self.update_weights()?;
281
282        Ok(())
283    }
284
285    fn extract_features(
286        &self,
287        system_metrics: &SystemMetrics,
288        historical_data: &[&ExecutionRecord],
289        estimated_data_size: usize,
290    ) -> Vec<f64> {
291        let mut features = Vec::new();
292
293        // System metrics features
294        features.push(system_metrics.cpu_usage);
295        features.push(system_metrics.memory_usage.utilization);
296        features.push(system_metrics.io_utilization);
297        features.push(system_metrics.cache_performance.l1_hit_rate);
298
299        // Data size feature (normalized)
300        features.push((estimated_data_size as f64).ln() / 20.0); // Log-scale normalization
301
302        // Historical performance features
303        if !historical_data.is_empty() {
304            let avg_throughput: f64 = historical_data
305                .iter()
306                .map(|record| record.metrics.throughput)
307                .sum::<f64>()
308                / historical_data.len() as f64;
309            features.push(avg_throughput / 1000.0); // Normalize
310        } else {
311            features.push(0.0);
312        }
313
314        // Add more features as needed
315        while features.len() < self.feature_weights.len() {
316            features.push(0.0);
317        }
318
319        features
320    }
321
322    fn predict_optimal_parameters(&self, features: &[f64]) -> Result<AutoTuningParameters> {
323        // Simple linear model prediction
324        let prediction_score: f64 = features
325            .iter()
326            .zip(self.feature_weights.iter())
327            .map(|(f, w)| f * w)
328            .sum();
329
330        // Convert prediction to concrete parameters
331        let thread_count = ((prediction_score * 8.0).exp() as usize).clamp(1, num_cpus::get());
332        let chunk_size = ((prediction_score * 1000.0).abs() as usize).clamp(256, 8192);
333        let simd_enabled = prediction_score > 0.0;
334        let gpu_enabled = prediction_score > 0.5 && self.is_gpu_beneficial(features);
335
336        Ok(AutoTuningParameters {
337            thread_count,
338            chunk_size,
339            simd_enabled,
340            gpu_enabled,
341            prefetch_strategy: super::config::PrefetchStrategy::Sequential { distance: 64 },
342            compression_level: (prediction_score * 9.0).abs() as u8,
343            io_buffer_size: ((prediction_score * 64.0 * 1024.0).abs() as usize)
344                .clamp(4096, 1024 * 1024),
345            batch_processing: super::config::BatchProcessingMode::Disabled,
346        })
347    }
348
349    fn config_to_features(&self, config: &OptimizedPipelineConfig) -> Vec<f64> {
350        let mut features = Vec::new();
351        features.push(config.thread_count as f64 / num_cpus::get() as f64);
352        features.push((config.chunk_size as f64).ln() / 10.0);
353        features.push(if config.simd_optimization { 1.0 } else { 0.0 });
354        features.push(if config.gpu_acceleration { 1.0 } else { 0.0 });
355        features.push(config.compression_level as f64 / 9.0);
356
357        // Pad with zeros if needed
358        while features.len() < self.feature_weights.len() {
359            features.push(0.0);
360        }
361
362        features
363    }
364
365    fn update_weights(&mut self) -> Result<()> {
366        if self.training_data.len() < 10 {
367            return Ok(()); // Need minimum data for training
368        }
369
370        // Simple gradient descent update
371        for example in &self.training_data {
372            let predicted = self.predict_score(&example.features);
373            let error = example.performance_score - predicted;
374
375            // Update weights
376            for (i, &feature) in example.features.iter().enumerate() {
377                if i < self.feature_weights.len() {
378                    self.feature_weights[i] += self.learning_rate * error * feature;
379                }
380            }
381        }
382
383        Ok(())
384    }
385
386    fn predict_score(&self, features: &[f64]) -> f64 {
387        features
388            .iter()
389            .zip(self.feature_weights.iter())
390            .map(|(f, w)| f * w)
391            .sum()
392    }
393
394    fn is_gpu_beneficial(&self, features: &[f64]) -> bool {
395        // Simple heuristic: GPU is beneficial for large data sizes and high parallelizability
396        if features.len() >= 5 {
397            features[4] > 0.5 // Data size feature
398        } else {
399            false
400        }
401    }
402
403    pub fn get_model_accuracy(&self) -> f64 {
404        if self.training_data.len() < 10 {
405            return 0.0;
406        }
407
408        let mut total_error = 0.0;
409        for example in &self.training_data {
410            let predicted = self.predict_score(&example.features);
411            let error = (example.performance_score - predicted).abs();
412            total_error += error;
413        }
414
415        let mean_error = total_error / self.training_data.len() as f64;
416        let mean_performance: f64 = self
417            .training_data
418            .iter()
419            .map(|e| e.performance_score)
420            .sum::<f64>()
421            / self.training_data.len() as f64;
422
423        if mean_performance > 0.0 {
424            1.0 - (mean_error / mean_performance)
425        } else {
426            0.0
427        }
428    }
429}
430
431/// Training example for the auto-tuner machine learning model
432#[derive(Debug, Clone)]
433struct TrainingExample {
434    features: Vec<f64>,
435    performance_score: f64,
436}
437
438/// Performance predictor for estimating pipeline execution time and resource usage
439#[derive(Debug)]
440pub struct PerformancePredictor {
441    /// Regression model for throughput prediction
442    throughput_model: LinearRegressionModel,
443    /// Regression model for memory usage prediction
444    memory_model: LinearRegressionModel,
445    /// Regression model for CPU utilization prediction
446    cpu_model: LinearRegressionModel,
447}
448
449impl PerformancePredictor {
450    pub fn new() -> Self {
451        Self {
452            throughput_model: LinearRegressionModel::new(8),
453            memory_model: LinearRegressionModel::new(8),
454            cpu_model: LinearRegressionModel::new(8),
455        }
456    }
457
458    pub fn predict_performance(
459        &self,
460        config: &OptimizedPipelineConfig,
461        data_size: usize,
462    ) -> PipelinePerformanceMetrics {
463        let features = self.extract_prediction_features(config, data_size);
464
465        let predicted_throughput = self.throughput_model.predict(&features).max(0.0);
466        let predicted_memory = self.memory_model.predict(&features).max(0.0) as usize;
467        let predicted_cpu = self.cpu_model.predict(&features).clamp(0.0, 1.0);
468
469        PipelinePerformanceMetrics {
470            throughput: predicted_throughput,
471            peak_memory_usage: predicted_memory,
472            cpu_utilization: predicted_cpu,
473            data_size,
474            ..Default::default()
475        }
476    }
477
478    fn extract_prediction_features(
479        &self,
480        config: &OptimizedPipelineConfig,
481        data_size: usize,
482    ) -> Vec<f64> {
483        vec![
484            config.thread_count as f64,
485            (config.chunk_size as f64).ln(),
486            if config.simd_optimization { 1.0 } else { 0.0 },
487            if config.gpu_acceleration { 1.0 } else { 0.0 },
488            (data_size as f64).ln(),
489            config.compression_level as f64,
490            (config.io_buffer_size as f64).ln(),
491            match config.batch_processing {
492                super::config::BatchProcessingMode::Disabled => 0.0,
493                _ => 1.0,
494            },
495        ]
496    }
497}
498
499impl Default for PerformancePredictor {
500    fn default() -> Self {
501        Self::new()
502    }
503}
504
505/// Simple linear regression model for performance prediction
506#[derive(Debug)]
507struct LinearRegressionModel {
508    weights: Vec<f64>,
509    bias: f64,
510}
511
512impl LinearRegressionModel {
513    fn new(num_features: usize) -> Self {
514        Self {
515            weights: vec![0.1; num_features],
516            bias: 0.0,
517        }
518    }
519
520    fn predict(&self, features: &[f64]) -> f64 {
521        let prediction: f64 = features
522            .iter()
523            .zip(self.weights.iter())
524            .map(|(f, w)| f * w)
525            .sum();
526        prediction + self.bias
527    }
528}