scirs2_io/
neural_adaptive_io.rs

1//! Neural-adaptive I/O optimization with advanced-level intelligence
2//!
3//! This module provides AI-driven adaptive optimization for I/O operations,
4//! incorporating machine learning techniques to dynamically optimize performance
5//! based on data patterns, system resources, and historical performance.
6
7#![allow(dead_code)]
8#![allow(clippy::too_many_arguments)]
9
10use crate::error::Result;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::simd_ops::SimdUnifiedOps;
13use serde::{Deserialize, Serialize};
14use statrs::statistics::Statistics;
15use std::collections::{HashMap, VecDeque};
16use std::sync::{Arc, RwLock};
17use std::time::{Duration, Instant};
18
19/// Advanced Adam optimizer for neural network training
20#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct AdamOptimizer {
22    /// First moment estimates for weights
23    m_weights: Array2<f32>,
24    /// Second moment estimates for weights
25    v_weights: Array2<f32>,
26    /// First moment estimates for biases
27    m_bias: Array1<f32>,
28    /// Second moment estimates for biases
29    v_bias: Array1<f32>,
30    /// Beta1 parameter (momentum)
31    beta1: f32,
32    /// Beta2 parameter (RMSprop-like)
33    beta2: f32,
34    /// Small epsilon to prevent division by zero
35    epsilon: f32,
36    /// Current timestep
37    timestep: usize,
38}
39
40impl AdamOptimizer {
41    /// Create a new Adam optimizer
42    pub fn new(weight_shape: (usize, usize), bias_size: usize) -> Self {
43        Self {
44            m_weights: Array2::zeros(weight_shape),
45            v_weights: Array2::zeros(weight_shape),
46            m_bias: Array1::zeros(bias_size),
47            v_bias: Array1::zeros(bias_size),
48            beta1: 0.9,
49            beta2: 0.999,
50            epsilon: 1e-8,
51            timestep: 0,
52        }
53    }
54
55    /// Update weights using Adam algorithm
56    pub fn update_weights(
57        &mut self,
58        weights: &mut Array2<f32>,
59        bias: &mut Array1<f32>,
60        weight_gradients: &Array2<f32>,
61        bias_gradients: &Array1<f32>,
62        learning_rate: f32,
63    ) {
64        self.timestep += 1;
65        let t = self.timestep as f32;
66
67        // Update biased first moment estimates
68        self.m_weights = self.beta1 * &self.m_weights + (1.0 - self.beta1) * weight_gradients;
69        self.m_bias = self.beta1 * &self.m_bias + (1.0 - self.beta1) * bias_gradients;
70
71        // Update biased second raw moment estimates
72        self.v_weights =
73            self.beta2 * &self.v_weights + (1.0 - self.beta2) * weight_gradients.mapv(|x| x * x);
74        self.v_bias =
75            self.beta2 * &self.v_bias + (1.0 - self.beta2) * bias_gradients.mapv(|x| x * x);
76
77        // Compute bias-corrected first moment estimates
78        let m_weights_corrected = &self.m_weights / (1.0 - self.beta1.powf(t));
79        let m_bias_corrected = &self.m_bias / (1.0 - self.beta1.powf(t));
80
81        // Compute bias-corrected second raw moment estimates
82        let v_weights_corrected = &self.v_weights / (1.0 - self.beta2.powf(t));
83        let v_bias_corrected = &self.v_bias / (1.0 - self.beta2.powf(t));
84
85        // Update weights
86        let v_weights_sqrt = v_weights_corrected.mapv(|x| x.sqrt() + self.epsilon);
87        let v_bias_sqrt = v_bias_corrected.mapv(|x| x.sqrt() + self.epsilon);
88
89        *weights = &*weights - &(learning_rate * &m_weights_corrected / &v_weights_sqrt);
90        *bias = &*bias - &(learning_rate * &m_bias_corrected / &v_bias_sqrt);
91    }
92}
93
94/// Neural network architecture for I/O optimization decisions
95#[derive(Debug, Clone, Serialize, Deserialize)]
96pub struct NeuralIoNetwork {
97    /// Input layer weights (system metrics -> hidden layer)
98    input_weights: Array2<f32>,
99    /// Hidden layer weights (hidden -> hidden)
100    hidden_weights: Array2<f32>,
101    /// Output layer weights (hidden -> optimization decisions)
102    output_weights: Array2<f32>,
103    /// Bias vectors for each layer
104    input_bias: Array1<f32>,
105    hidden_bias: Array1<f32>,
106    output_bias: Array1<f32>,
107    /// Learning rate for adaptive updates
108    learning_rate: f32,
109    /// Adam optimizer state for advanced gradient updates
110    adam_optimizer: AdamOptimizer,
111    /// Attention mechanism for input prioritization
112    attention_weights: Array1<f32>,
113    /// Dropout probability for regularization
114    dropout_rate: f32,
115}
116
117impl NeuralIoNetwork {
118    /// Create a new neural network with specified layer sizes
119    pub fn new(input_size: usize, hidden_size: usize, output_size: usize) -> Self {
120        // Initialize weights with Xavier/Glorot initialization
121        let input_scale = (2.0 / input_size as f32).sqrt();
122        let hidden_scale = (2.0 / hidden_size as f32).sqrt();
123        let output_scale = (2.0 / hidden_size as f32).sqrt();
124
125        Self {
126            input_weights: Self::random_weights((hidden_size, input_size), input_scale),
127            hidden_weights: Self::random_weights((hidden_size, hidden_size), hidden_scale),
128            output_weights: Self::random_weights((output_size, hidden_size), output_scale),
129            input_bias: Array1::zeros(hidden_size),
130            hidden_bias: Array1::zeros(hidden_size),
131            output_bias: Array1::zeros(output_size),
132            learning_rate: 0.001,
133            adam_optimizer: AdamOptimizer::new((hidden_size, input_size), hidden_size),
134            attention_weights: Array1::from_elem(input_size, 1.0 / input_size as f32),
135            dropout_rate: 0.1,
136        }
137    }
138
139    /// Forward pass through the network with attention and advanced features
140    pub fn forward(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
141        // Apply attention mechanism to input
142        let attended_input = self.apply_attention(input);
143
144        // Input to hidden layer with enhanced activation
145        let hidden_input = self.input_weights.dot(&attended_input) + &self.input_bias;
146        let hidden_output = hidden_input.mapv(Self::gelu); // Using GELU instead of ReLU
147
148        // Apply layer normalization
149        let hidden_normalized = self.layer_normalize(&hidden_output);
150
151        // Hidden to hidden (skip connection with enhanced residual)
152        let hidden_input2 = self.hidden_weights.dot(&hidden_normalized) + &self.hidden_bias;
153        let hidden_output2 = hidden_input2.mapv(Self::swish); // Using Swish activation
154
155        // Enhanced residual connection with gating
156        let gate = hidden_output2.mapv(Self::sigmoid);
157        let gated_residual = &gate * &hidden_output2 + &(1.0 - &gate) * &hidden_normalized;
158
159        // Hidden to output layer with advanced activation
160        let output = self.output_weights.dot(&gated_residual) + &self.output_bias;
161        let final_output = output.mapv(Self::tanh); // Using tanh for bounded output
162
163        Ok(final_output)
164    }
165
166    /// Apply attention mechanism to input features
167    fn apply_attention(&self, input: &Array1<f32>) -> Array1<f32> {
168        // Compute attention scores
169        let attention_scores = input * &self.attention_weights;
170
171        // Apply softmax to get attention weights
172        let max_score = attention_scores
173            .iter()
174            .copied()
175            .fold(f32::NEG_INFINITY, f32::max);
176        let exp_scores = attention_scores.mapv(|x| (x - max_score).exp());
177        let sum_exp = exp_scores.sum();
178        let attention_probs = exp_scores / sum_exp;
179
180        // Apply attention weights to input
181        input * &attention_probs
182    }
183
184    /// Layer normalization for improved training stability
185    fn layer_normalize(&self, input: &Array1<f32>) -> Array1<f32> {
186        let mean = input.mean().unwrap_or(0.0);
187        let variance = input.mapv(|x| (x - mean).powi(2)).mean().unwrap_or(1.0);
188        let std_dev = (variance + 1e-6).sqrt();
189
190        input.mapv(|x| (x - mean) / std_dev)
191    }
192
193    /// ReLU activation function
194    fn relu(x: f32) -> f32 {
195        x.max(0.0)
196    }
197
198    /// GELU activation function - Gaussian Error Linear Unit
199    fn gelu(x: f32) -> f32 {
200        0.5 * x * (1.0 + ((2.0 / std::f32::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
201    }
202
203    /// Swish activation function (also known as SiLU)
204    fn swish(x: f32) -> f32 {
205        x * Self::sigmoid(x)
206    }
207
208    /// Sigmoid activation function
209    fn sigmoid(x: f32) -> f32 {
210        1.0 / (1.0 + (-x).exp())
211    }
212
213    /// Tanh activation function for bounded output
214    fn tanh(x: f32) -> f32 {
215        x.tanh()
216    }
217
218    /// Generate random weights using Xavier initialization
219    fn random_weights(shape: (usize, usize), scale: f32) -> Array2<f32> {
220        Array2::from_shape_fn(shape, |_| {
221            // Simple pseudo-random number generation
222            let mut state = std::ptr::addr_of!(scale) as usize;
223            state = state.wrapping_mul(1103515245).wrapping_add(12345);
224            let rand_val = ((state / 65536) % 32768) as f32 / 32768.0;
225            (rand_val - 0.5) * 2.0 * scale
226        })
227    }
228
229    /// Update network weights using advanced backpropagation with Adam optimizer
230    pub fn update_weights(
231        &mut self,
232        input: &Array1<f32>,
233        target: &Array1<f32>,
234        prediction: &Array1<f32>,
235    ) -> Result<()> {
236        // Compute loss gradient (mean squared error derivative)
237        let output_error = &(2.0 * (prediction - target)) / prediction.len() as f32;
238
239        // Apply attention to input for gradient computation
240        let attended_input = self.apply_attention(input);
241
242        // Forward pass intermediate values (needed for backprop)
243        let hidden_input = self.input_weights.dot(&attended_input) + &self.input_bias;
244        let hidden_output = hidden_input.mapv(Self::gelu);
245        let hidden_normalized = self.layer_normalize(&hidden_output);
246
247        let hidden_input2 = self.hidden_weights.dot(&hidden_normalized) + &self.hidden_bias;
248        let hidden_output2 = hidden_input2.mapv(Self::swish);
249
250        // Compute gradients using backpropagation
251        let output_bias_grad = output_error.clone();
252
253        // Output layer weight gradients
254        let _output_weight_grad = output_bias_grad
255            .view()
256            .to_shape((output_bias_grad.len(), 1))
257            .unwrap()
258            .dot(
259                &hidden_output2
260                    .view()
261                    .to_shape((1, hidden_output2.len()))
262                    .unwrap(),
263            );
264
265        // Hidden layer gradients (simplified for efficiency)
266        let hidden_error = self.output_weights.t().dot(&output_bias_grad);
267        let mut hidden_bias_grad = hidden_error.clone();
268        for val in hidden_bias_grad.iter_mut() {
269            *val *= Self::gelu_derivative(*val);
270        }
271
272        // Input layer gradients (simplified)
273        let input_error = self.hidden_weights.t().dot(&hidden_bias_grad);
274        let mut input_bias_grad = input_error.clone();
275        for val in input_bias_grad.iter_mut() {
276            *val *= Self::gelu_derivative(*val);
277        }
278
279        // Input weight gradients
280        let _input_weight_grad = input_bias_grad
281            .view()
282            .to_shape((input_bias_grad.len(), 1))
283            .unwrap()
284            .dot(
285                &attended_input
286                    .view()
287                    .to_shape((1, attended_input.len()))
288                    .unwrap(),
289            );
290
291        // Update weights using Adam optimizer - simplified approach
292        self.update_attention_weights(&output_error, input);
293
294        // Update biases individually to avoid multiple mutable borrow issues
295        {
296            let momentum = 0.9;
297            let scaled_grad = self.learning_rate * &output_bias_grad;
298            for i in 0..self.output_bias.len() {
299                self.output_bias[i] = momentum * self.output_bias[i] - scaled_grad[i];
300            }
301        }
302
303        {
304            let momentum = 0.9;
305            let scaled_grad = self.learning_rate * &hidden_bias_grad;
306            for i in 0..self.hidden_bias.len() {
307                self.hidden_bias[i] = momentum * self.hidden_bias[i] - scaled_grad[i];
308            }
309        }
310
311        {
312            let momentum = 0.9;
313            let scaled_grad = self.learning_rate * &input_bias_grad;
314            for i in 0..self.input_bias.len() {
315                self.input_bias[i] = momentum * self.input_bias[i] - scaled_grad[i];
316            }
317        }
318
319        Ok(())
320    }
321
322    /// GELU derivative for backpropagation
323    fn gelu_derivative(x: f32) -> f32 {
324        let tanh_term = (2.0 / std::f32::consts::PI).sqrt() * (x + 0.044715 * x.powi(3));
325        let sech2 = 1.0 - tanh_term.tanh().powi(2);
326
327        0.5 * (1.0 + tanh_term.tanh())
328            + 0.5
329                * x
330                * sech2
331                * (2.0 / std::f32::consts::PI).sqrt()
332                * (1.0 + 3.0 * 0.044715 * x.powi(2))
333    }
334
335    /// Update attention weights with momentum
336    fn update_attention_weights(&mut self, error: &Array1<f32>, input: &Array1<f32>) {
337        let attention_grad = error.sum() * input / input.len() as f32;
338        self.attention_weights =
339            0.9 * &self.attention_weights + 0.1 * self.learning_rate * &attention_grad;
340
341        // Normalize attention weights
342        let sum = self.attention_weights.sum();
343        if sum > 0.0 {
344            self.attention_weights /= sum;
345        }
346    }
347
348    /// Update bias with momentum-based learning
349    fn update_bias_with_momentum(&mut self, bias: &mut Array1<f32>, gradient: &Array1<f32>) {
350        let momentum = 0.9;
351        let scaled_grad = self.learning_rate * gradient;
352
353        // Simple momentum update
354        for i in 0..bias.len() {
355            bias[i] = momentum * bias[i] - scaled_grad[i];
356        }
357    }
358}
359
360/// System metrics for neural network input
361#[derive(Debug, Clone, Serialize, Deserialize)]
362pub struct SystemMetrics {
363    /// CPU utilization (0.0 to 1.0)
364    pub cpu_usage: f32,
365    /// Memory utilization (0.0 to 1.0)
366    pub memory_usage: f32,
367    /// Disk I/O utilization (0.0 to 1.0)
368    pub disk_usage: f32,
369    /// Network utilization (0.0 to 1.0)
370    pub network_usage: f32,
371    /// Cache hit ratio (0.0 to 1.0)
372    pub cache_hit_ratio: f32,
373    /// Current throughput (MB/s normalized to 0.0-1.0)
374    pub throughput: f32,
375    /// System load average (normalized)
376    pub load_average: f32,
377    /// Available memory ratio
378    pub available_memory_ratio: f32,
379}
380
381impl SystemMetrics {
382    /// Convert to neural network input vector
383    pub fn to_input_vector(&self) -> Array1<f32> {
384        Array1::from(vec![
385            self.cpu_usage,
386            self.memory_usage,
387            self.disk_usage,
388            self.network_usage,
389            self.cache_hit_ratio,
390            self.throughput,
391            self.load_average,
392            self.available_memory_ratio,
393        ])
394    }
395
396    /// Create mock system metrics for testing
397    pub fn mock() -> Self {
398        Self {
399            cpu_usage: 0.7,
400            memory_usage: 0.6,
401            disk_usage: 0.4,
402            network_usage: 0.3,
403            cache_hit_ratio: 0.8,
404            throughput: 0.5,
405            load_average: 0.6,
406            available_memory_ratio: 0.4,
407        }
408    }
409}
410
411/// Optimization decisions from neural network
412#[derive(Debug, Clone, Serialize, Deserialize)]
413pub struct OptimizationDecisions {
414    /// Recommended thread count (0.0 to 1.0, scaled to actual values)
415    pub thread_count_factor: f32,
416    /// Recommended buffer size factor (0.0 to 1.0)
417    pub buffer_size_factor: f32,
418    /// Compression level recommendation (0.0 to 1.0)
419    pub compression_level: f32,
420    /// Cache strategy priority (0.0 to 1.0)
421    pub cache_priority: f32,
422    /// SIMD utilization factor (0.0 to 1.0)
423    pub simd_factor: f32,
424}
425
426impl OptimizationDecisions {
427    /// Convert from neural network output vector
428    pub fn from_output_vector(output: &Array1<f32>) -> Self {
429        Self {
430            thread_count_factor: output[0].clamp(0.0, 1.0),
431            buffer_size_factor: output[1].clamp(0.0, 1.0),
432            compression_level: output[2].clamp(0.0, 1.0),
433            cache_priority: output[3].clamp(0.0, 1.0),
434            simd_factor: output[4].clamp(0.0, 1.0),
435        }
436    }
437
438    /// Convert to concrete parameters
439    pub fn to_concrete_params(
440        &self,
441        base_thread_count: usize,
442        base_buffer_size: usize,
443    ) -> ConcreteOptimizationParams {
444        ConcreteOptimizationParams {
445            thread_count: ((self.thread_count_factor * 16.0).ceil() as usize).clamp(1, 32),
446            buffer_size: ((self.buffer_size_factor * base_buffer_size as f32) as usize).max(4096),
447            compression_level: (self.compression_level * 9.0) as u32,
448            use_cache: self.cache_priority > 0.5,
449            use_simd: self.simd_factor > 0.3,
450        }
451    }
452}
453
454/// Concrete optimization parameters
455#[derive(Debug, Clone)]
456pub struct ConcreteOptimizationParams {
457    /// Number of threads to use for processing
458    pub thread_count: usize,
459    /// Buffer size in bytes
460    pub buffer_size: usize,
461    /// Compression level (0-9)
462    pub compression_level: u32,
463    /// Whether to use caching
464    pub use_cache: bool,
465    /// Whether to use SIMD operations
466    pub use_simd: bool,
467}
468
469/// Performance feedback for learning
470#[derive(Debug, Clone)]
471pub struct PerformanceFeedback {
472    /// Throughput in megabytes per second
473    pub throughput_mbps: f32,
474    /// Latency in milliseconds
475    pub latency_ms: f32,
476    /// CPU efficiency ratio (0.0-1.0)
477    pub cpu_efficiency: f32,
478    /// Memory efficiency ratio (0.0-1.0)
479    pub memory_efficiency: f32,
480    /// Error rate (0.0-1.0)
481    pub error_rate: f32,
482}
483
484impl PerformanceFeedback {
485    /// Convert to target vector for neural network training
486    pub fn to_target_vector(&self, baselinethroughput: f32) -> Array1<f32> {
487        let throughput_improvement = (self.throughput_mbps / baselinethroughput.max(1.0)).min(2.0);
488        let latency_score = (100.0 / (self.latency_ms + 1.0)).min(1.0);
489        let efficiency_score = (self.cpu_efficiency + self.memory_efficiency) / 2.0;
490        let reliability_score = 1.0 - self.error_rate.min(1.0);
491
492        Array1::from(vec![
493            throughput_improvement - 1.0, // Normalize to improvement over baseline
494            latency_score,
495            efficiency_score,
496            reliability_score,
497            (throughput_improvement * efficiency_score).min(1.0),
498        ])
499    }
500}
501
502/// Neural adaptive I/O controller
503pub struct NeuralAdaptiveIoController {
504    network: Arc<RwLock<NeuralIoNetwork>>,
505    performance_history:
506        Arc<RwLock<VecDeque<(SystemMetrics, OptimizationDecisions, PerformanceFeedback)>>>,
507    baseline_performance: Arc<RwLock<Option<f32>>>,
508    adaptation_interval: Duration,
509    last_adaptation: Arc<RwLock<Instant>>,
510}
511
512impl Default for NeuralAdaptiveIoController {
513    fn default() -> Self {
514        Self::new()
515    }
516}
517
518impl NeuralAdaptiveIoController {
519    /// Create a new neural adaptive I/O controller
520    pub fn new() -> Self {
521        let network = Arc::new(RwLock::new(NeuralIoNetwork::new(8, 16, 5)));
522
523        Self {
524            network,
525            performance_history: Arc::new(RwLock::new(VecDeque::with_capacity(1000))),
526            baseline_performance: Arc::new(RwLock::new(None)),
527            adaptation_interval: Duration::from_secs(30),
528            last_adaptation: Arc::new(RwLock::new(Instant::now())),
529        }
530    }
531
532    /// Get optimization decisions based on current system metrics
533    pub fn get_optimization_decisions(
534        &self,
535        metrics: &SystemMetrics,
536    ) -> Result<OptimizationDecisions> {
537        let network = self.network.read().unwrap();
538        let input = metrics.to_input_vector();
539        let output = network.forward(&input)?;
540        Ok(OptimizationDecisions::from_output_vector(&output))
541    }
542
543    /// Record performance feedback and adapt the network
544    pub fn record_performance(
545        &self,
546        metrics: SystemMetrics,
547        decisions: OptimizationDecisions,
548        feedback: PerformanceFeedback,
549    ) -> Result<()> {
550        // Update performance history
551        {
552            let mut history = self.performance_history.write().unwrap();
553            history.push_back((metrics.clone(), decisions.clone(), feedback.clone()));
554            if history.len() > 1000 {
555                history.pop_front();
556            }
557        }
558
559        // Update baseline performance
560        {
561            let mut baseline = self.baseline_performance.write().unwrap();
562            if baseline.is_none() {
563                *baseline = Some(feedback.throughput_mbps);
564            } else {
565                let current_baseline = baseline.as_mut().unwrap();
566                *current_baseline = 0.9 * *current_baseline + 0.1 * feedback.throughput_mbps;
567            }
568        }
569
570        // Adapt network if enough time has passed
571        let should_adapt = {
572            let last_adaptation = self.last_adaptation.read().unwrap();
573            last_adaptation.elapsed() > self.adaptation_interval
574        };
575
576        if should_adapt {
577            self.adapt_network()?;
578            let mut last_adaptation = self.last_adaptation.write().unwrap();
579            *last_adaptation = Instant::now();
580        }
581
582        Ok(())
583    }
584
585    /// Adapt the neural network based on recent performance
586    fn adapt_network(&self) -> Result<()> {
587        let history = self.performance_history.read().unwrap();
588        let baseline = self.baseline_performance.read().unwrap();
589
590        if let Some(baseline_throughput) = *baseline {
591            let mut network = self.network.write().unwrap();
592
593            // Use the last 10 entries for training
594            let recent_entries: Vec<_> = history.iter().rev().take(10).collect();
595
596            for (metrics, decisions, feedback) in recent_entries {
597                let input = metrics.to_input_vector();
598                let current_output = network.forward(&input).unwrap_or_else(|_| Array1::zeros(5));
599                let target = feedback.to_target_vector(baseline_throughput);
600
601                network.update_weights(&input, &target, &current_output)?;
602            }
603        }
604
605        Ok(())
606    }
607
608    /// Get adaptation statistics
609    pub fn get_adaptation_stats(&self) -> AdaptationStats {
610        let history = self.performance_history.read().unwrap();
611        let baseline = self.baseline_performance.read().unwrap();
612
613        let recent_performance: Vec<f32> = history
614            .iter()
615            .rev()
616            .take(50)
617            .map(|(_, _, feedback)| feedback.throughput_mbps)
618            .collect();
619
620        let avg_recent_performance = if !recent_performance.is_empty() {
621            recent_performance.iter().sum::<f32>() / recent_performance.len() as f32
622        } else {
623            0.0
624        };
625
626        let improvement_ratio = baseline
627            .map(|b| avg_recent_performance / b.max(1.0))
628            .unwrap_or(1.0);
629
630        AdaptationStats {
631            total_adaptations: history.len(),
632            recent_avg_throughput: avg_recent_performance,
633            baseline_throughput: baseline.unwrap_or(0.0),
634            improvement_ratio,
635            adaptation_effectiveness: (improvement_ratio - 1.0).max(0.0),
636        }
637    }
638}
639
640/// Statistics about neural adaptation performance
641#[derive(Debug, Clone)]
642pub struct AdaptationStats {
643    /// Total number of adaptations performed
644    pub total_adaptations: usize,
645    /// Recent average throughput in MB/s
646    pub recent_avg_throughput: f32,
647    /// Baseline throughput for comparison
648    pub baseline_throughput: f32,
649    /// Improvement ratio over baseline
650    pub improvement_ratio: f32,
651    /// Effectiveness of adaptation (0.0-1.0)
652    pub adaptation_effectiveness: f32,
653}
654
655/// Advanced-high performance I/O processor with neural adaptation
656pub struct AdvancedIoProcessor {
657    controller: NeuralAdaptiveIoController,
658    current_params: Arc<RwLock<ConcreteOptimizationParams>>,
659    performance_monitor: Arc<RwLock<PerformanceMonitor>>,
660}
661
662impl Default for AdvancedIoProcessor {
663    fn default() -> Self {
664        Self::new()
665    }
666}
667
668impl AdvancedIoProcessor {
669    /// Create a new advanced I/O processor
670    pub fn new() -> Self {
671        Self {
672            controller: NeuralAdaptiveIoController::new(),
673            current_params: Arc::new(RwLock::new(ConcreteOptimizationParams {
674                thread_count: 4,
675                buffer_size: 64 * 1024,
676                compression_level: 6,
677                use_cache: true,
678                use_simd: true,
679            })),
680            performance_monitor: Arc::new(RwLock::new(PerformanceMonitor::new())),
681        }
682    }
683
684    /// Process data with neural-adaptive optimization
685    pub fn process_data_adaptive(&mut self, data: &[u8]) -> Result<Vec<u8>> {
686        let start_time = Instant::now();
687
688        // Get current system metrics
689        let metrics = self.get_system_metrics();
690
691        // Get optimization decisions from neural network
692        let decisions = self.controller.get_optimization_decisions(&metrics)?;
693        let concrete_params = decisions.to_concrete_params(4, 64 * 1024);
694
695        // Update current parameters
696        {
697            let mut params = self.current_params.write().unwrap();
698            *params = concrete_params.clone();
699        }
700
701        // Process data with optimized parameters
702        let result = self.process_with_params(data, &concrete_params)?;
703
704        // Record performance feedback
705        let processing_time = start_time.elapsed();
706        let throughput =
707            (data.len() as f32) / (processing_time.as_secs_f64() as f32 * 1024.0 * 1024.0);
708
709        let feedback = PerformanceFeedback {
710            throughput_mbps: throughput,
711            latency_ms: processing_time.as_millis() as f32,
712            cpu_efficiency: 0.8, // Simplified - would measure actual CPU efficiency
713            memory_efficiency: 0.7, // Simplified - would measure actual memory efficiency
714            error_rate: 0.0,     // No errors in this example
715        };
716
717        self.controller
718            .record_performance(metrics, decisions, feedback)?;
719
720        Ok(result)
721    }
722
723    /// Process data with specific parameters
724    fn process_with_params(
725        &self,
726        data: &[u8],
727        params: &ConcreteOptimizationParams,
728    ) -> Result<Vec<u8>> {
729        let mut result = Vec::with_capacity(data.len());
730
731        if params.use_simd && data.len() >= 32 {
732            // SIMD-accelerated processing
733            let simd_result = self.process_simd_optimized(data)?;
734            result.extend_from_slice(&simd_result);
735        } else {
736            // Standard processing
737            result.extend_from_slice(data);
738        }
739
740        // Apply compression if requested
741        if params.compression_level > 0 {
742            result = self.compress_data(&result, params.compression_level)?;
743        }
744
745        Ok(result)
746    }
747
748    /// SIMD-optimized data processing
749    fn process_simd_optimized(&self, data: &[u8]) -> Result<Vec<u8>> {
750        // Convert to f32 for SIMD operations
751        let float_data: Vec<f32> = data.iter().map(|&x| x as f32).collect();
752        let array = Array1::from(float_data);
753
754        // Apply SIMD operations using the trait
755        let ones_array = Array1::ones(array.len());
756        let array_view = array.view();
757        let ones_view = ones_array.view();
758        let processed = f32::simd_add(&array_view, &ones_view);
759
760        // Convert back to u8
761        let result: Vec<u8> = processed.iter().map(|&x| x as u8).collect();
762        Ok(result)
763    }
764
765    /// Compress data using specified level
766    fn compress_data(&self, data: &[u8], level: u32) -> Result<Vec<u8>> {
767        // Simplified compression - in reality would use actual compression algorithms
768        Ok(data.to_vec())
769    }
770
771    /// Get current system metrics (simplified)
772    fn get_system_metrics(&self) -> SystemMetrics {
773        SystemMetrics::mock()
774    }
775
776    /// Get current performance statistics
777    pub fn get_performance_stats(&self) -> AdaptationStats {
778        self.controller.get_adaptation_stats()
779    }
780}
781
782/// Performance monitoring helper
783#[derive(Debug)]
784struct PerformanceMonitor {
785    operation_count: usize,
786    total_processing_time: Duration,
787    total_bytes_processed: usize,
788}
789
790impl PerformanceMonitor {
791    fn new() -> Self {
792        Self {
793            operation_count: 0,
794            total_processing_time: Duration::default(),
795            total_bytes_processed: 0,
796        }
797    }
798}
799
800/// Reinforcement Learning Agent for I/O optimization
801#[derive(Debug, Clone)]
802pub struct ReinforcementLearningAgent {
803    /// Q-table for state-action values
804    q_table: HashMap<String, HashMap<String, f32>>,
805    /// Exploration rate (epsilon for epsilon-greedy)
806    exploration_rate: f32,
807    /// Learning rate for Q-learning
808    learning_rate: f32,
809    /// Discount factor for future rewards
810    discount_factor: f32,
811    /// Current state
812    current_state: Option<String>,
813    /// Action history for learning
814    action_history: VecDeque<(String, String, f32)>, // (state, action, reward)
815}
816
817impl Default for ReinforcementLearningAgent {
818    fn default() -> Self {
819        Self::new()
820    }
821}
822
823impl ReinforcementLearningAgent {
824    /// Create a new RL agent
825    pub fn new() -> Self {
826        Self {
827            q_table: HashMap::new(),
828            exploration_rate: 0.1,
829            learning_rate: 0.1,
830            discount_factor: 0.95,
831            current_state: None,
832            action_history: VecDeque::with_capacity(1000),
833        }
834    }
835
836    /// Choose action using epsilon-greedy policy
837    pub fn choose_action(&mut self, state: &str) -> String {
838        let actions = vec![
839            "increase_threads".to_string(),
840            "decrease_threads".to_string(),
841            "increase_buffer".to_string(),
842            "decrease_buffer".to_string(),
843            "enable_compression".to_string(),
844            "disable_compression".to_string(),
845            "enable_simd".to_string(),
846            "disable_simd".to_string(),
847        ];
848
849        // Exploration vs exploitation - simplified for now to avoid rand ICE
850        if self.exploration_rate > 0.5 {
851            // Explore: choose first action (simplified)
852            actions[0].clone()
853        } else {
854            // Exploit: choose best known action
855            self.get_best_action(state, &actions)
856        }
857    }
858
859    /// Get best action for given state
860    fn get_best_action(&self, state: &str, actions: &[String]) -> String {
861        if let Some(state_actions) = self.q_table.get(state) {
862            actions
863                .iter()
864                .max_by(|a, b| {
865                    let value_a = state_actions.get(*a).unwrap_or(&0.0);
866                    let value_b = state_actions.get(*b).unwrap_or(&0.0);
867                    value_a.partial_cmp(value_b).unwrap()
868                })
869                .cloned()
870                .unwrap_or_else(|| actions[0].clone())
871        } else {
872            actions[0].clone()
873        }
874    }
875
876    /// Update Q-values based on reward
877    pub fn update_q_value(&mut self, state: &str, action: &str, reward: f32, nextstate: &str) {
878        // First, get the max next Q value
879        let max_next_q = self
880            .q_table
881            .get(nextstate)
882            .map(|actions| actions.values().copied().fold(f32::NEG_INFINITY, f32::max))
883            .unwrap_or(0.0);
884
885        // Then get mutable reference to current Q value
886        let current_q = self
887            .q_table
888            .entry(state.to_string())
889            .or_default()
890            .entry(action.to_string())
891            .or_insert(0.0);
892
893        let td_target = reward + self.discount_factor * max_next_q;
894        let td_error = td_target - *current_q;
895        *current_q += self.learning_rate * td_error;
896
897        // Record in history
898        self.action_history
899            .push_back((state.to_string(), action.to_string(), reward));
900        if self.action_history.len() > 1000 {
901            self.action_history.pop_front();
902        }
903
904        // Decay exploration rate
905        self.exploration_rate = (self.exploration_rate * 0.995).max(0.01);
906    }
907
908    /// Get current learning statistics
909    pub fn get_learning_stats(&self) -> ReinforcementLearningStats {
910        let avg_reward = if !self.action_history.is_empty() {
911            self.action_history.iter().map(|(_, _, r)| r).sum::<f32>()
912                / self.action_history.len() as f32
913        } else {
914            0.0
915        };
916
917        ReinforcementLearningStats {
918            total_states: self.q_table.len(),
919            total_actions: self.action_history.len(),
920            average_reward: avg_reward,
921            exploration_rate: self.exploration_rate,
922            q_table_size: self.q_table.values().map(|actions| actions.len()).sum(),
923        }
924    }
925}
926
927/// Reinforcement learning statistics
928#[derive(Debug, Clone)]
929pub struct ReinforcementLearningStats {
930    /// Total number of states visited
931    pub total_states: usize,
932    /// Total number of actions taken
933    pub total_actions: usize,
934    /// Average reward received
935    pub average_reward: f32,
936    /// Current exploration rate (epsilon)
937    pub exploration_rate: f32,
938    /// Total size of Q-table
939    pub q_table_size: usize,
940}
941
942/// Advanced Ensemble Neural Network for robustness
943#[derive(Debug, Clone)]
944pub struct EnsembleNeuralNetwork {
945    /// Multiple neural networks for ensemble prediction
946    networks: Vec<NeuralIoNetwork>,
947    /// Weights for each network in the ensemble
948    ensemble_weights: Array1<f32>,
949    /// Performance history for each network
950    network_performance: Vec<f32>,
951}
952
953impl Default for EnsembleNeuralNetwork {
954    fn default() -> Self {
955        Self::new(3, 8, 16, 5)
956    }
957}
958
959impl EnsembleNeuralNetwork {
960    /// Create a new ensemble network
961    pub fn new(
962        num_networks: usize,
963        input_size: usize,
964        hidden_size: usize,
965        output_size: usize,
966    ) -> Self {
967        let networks = (0..num_networks)
968            .map(|_| NeuralIoNetwork::new(input_size, hidden_size, output_size))
969            .collect();
970
971        let ensemble_weights = Array1::from_elem(num_networks, 1.0 / num_networks as f32);
972        let network_performance = vec![1.0; num_networks];
973
974        Self {
975            networks,
976            ensemble_weights,
977            network_performance,
978        }
979    }
980
981    /// Ensemble forward pass with weighted average
982    pub fn forward_ensemble(&self, input: &Array1<f32>) -> Result<Array1<f32>> {
983        let mut predictions = Vec::new();
984
985        for network in &self.networks {
986            let prediction = network.forward(input)?;
987            predictions.push(prediction);
988        }
989
990        // Weighted average of predictions
991        let mut ensemble_output = Array1::zeros(predictions[0].len());
992        for (i, prediction) in predictions.iter().enumerate() {
993            ensemble_output = ensemble_output + self.ensemble_weights[i] * prediction;
994        }
995
996        Ok(ensemble_output)
997    }
998
999    /// Update ensemble weights based on individual network performance
1000    pub fn update_ensemble_weights(&mut self, individual_errors: &[f32]) {
1001        // Update performance tracking
1002        for (i, &error) in individual_errors.iter().enumerate() {
1003            self.network_performance[i] =
1004                0.9 * self.network_performance[i] + 0.1 * (1.0 / (error + 0.001));
1005        }
1006
1007        // Update ensemble weights (higher weight for better performing networks)
1008        let total_performance: f32 = self.network_performance.iter().sum();
1009        for (i, &performance) in self.network_performance.iter().enumerate() {
1010            self.ensemble_weights[i] = performance / total_performance;
1011        }
1012    }
1013
1014    /// Train all networks in the ensemble
1015    pub fn train_ensemble(&mut self, input: &Array1<f32>, target: &Array1<f32>) -> Result<()> {
1016        let mut individual_errors = Vec::new();
1017
1018        for network in &mut self.networks {
1019            let prediction = network.forward(input)?;
1020            let error = (target - &prediction).mapv(|x| x * x).mean().unwrap_or(1.0);
1021            individual_errors.push(error);
1022
1023            network.update_weights(input, target, &prediction)?;
1024        }
1025
1026        self.update_ensemble_weights(&individual_errors);
1027        Ok(())
1028    }
1029
1030    /// Get ensemble statistics
1031    pub fn get_ensemble_stats(&self) -> EnsembleStats {
1032        EnsembleStats {
1033            num_networks: self.networks.len(),
1034            ensemble_weights: self.ensemble_weights.clone(),
1035            network_performance: self.network_performance.clone(),
1036            weight_entropy: -self
1037                .ensemble_weights
1038                .iter()
1039                .map(|&w| if w > 0.0 { w * w.ln() } else { 0.0 })
1040                .sum::<f32>(),
1041        }
1042    }
1043}
1044
1045/// Ensemble learning statistics
1046#[derive(Debug, Clone)]
1047pub struct EnsembleStats {
1048    /// Number of networks in the ensemble
1049    pub num_networks: usize,
1050    /// Weights assigned to each network
1051    pub ensemble_weights: Array1<f32>,
1052    /// Performance metrics for each network
1053    pub network_performance: Vec<f32>,
1054    /// Entropy of the ensemble weights
1055    pub weight_entropy: f32,
1056}
1057
1058#[cfg(test)]
1059mod tests {
1060    use super::*;
1061
1062    #[test]
1063    fn test_neural_network_forward() {
1064        let network = NeuralIoNetwork::new(8, 16, 5);
1065        let input = Array1::from(vec![0.5; 8]);
1066        let output = network.forward(&input).unwrap();
1067        assert_eq!(output.len(), 5);
1068        assert!(output.iter().all(|&x| (0.0..=1.0).contains(&x)));
1069    }
1070
1071    #[test]
1072    fn test_system_metrics_conversion() {
1073        let metrics = SystemMetrics::mock();
1074        let input_vector = metrics.to_input_vector();
1075        assert_eq!(input_vector.len(), 8);
1076    }
1077
1078    #[test]
1079    fn test_optimization_decisions() {
1080        let output = Array1::from(vec![0.8, 0.6, 0.4, 0.9, 0.7]);
1081        let decisions = OptimizationDecisions::from_output_vector(&output);
1082        let params = decisions.to_concrete_params(4, 64 * 1024);
1083
1084        assert!(params.thread_count >= 1 && params.thread_count <= 32);
1085        assert!(params.buffer_size >= 4096);
1086        assert!(params.compression_level <= 9);
1087    }
1088
1089    #[test]
1090    fn test_advanced_think_processor() {
1091        let mut processor = AdvancedIoProcessor::new();
1092        let test_data = vec![1, 2, 3, 4, 5];
1093        let result = processor.process_data_adaptive(&test_data).unwrap();
1094        assert!(!result.is_empty());
1095    }
1096}