scirs2_io/ml_framework/
validation.rs

1//! Model validation and compatibility checking between frameworks
2
3use crate::error::Result;
4use crate::ml_framework::{DataType, MLFramework, MLModel};
5use std::collections::{BTreeMap, HashMap, HashSet};
6
7/// Model validator for checking compatibility between frameworks
8pub struct ModelValidator {
9    source_framework: MLFramework,
10    target_framework: MLFramework,
11    validation_config: ValidationConfig,
12}
13
14#[derive(Debug, Clone)]
15pub struct ValidationConfig {
16    pub check_data_types: bool,
17    pub check_tensorshapes: bool,
18    pub check_operations: bool,
19    pub check_metadata: bool,
20    pub strict_mode: bool,
21    pub allow_type_conversion: bool,
22    pub maxshape_dimension: Option<usize>,
23    pub supported_dtypes: Option<HashSet<DataType>>,
24}
25
26impl Default for ValidationConfig {
27    fn default() -> Self {
28        Self {
29            check_data_types: true,
30            check_tensorshapes: true,
31            check_operations: true,
32            check_metadata: true,
33            strict_mode: false,
34            allow_type_conversion: true,
35            maxshape_dimension: Some(8), // Most frameworks support up to 8D tensors
36            supported_dtypes: None,
37        }
38    }
39}
40
41#[derive(Debug, Clone)]
42pub struct ValidationReport {
43    pub is_compatible: bool,
44    pub compatibility_score: f32, // 0.0 to 1.0
45    pub errors: Vec<ValidationError>,
46    pub warnings: Vec<ValidationWarning>,
47    pub recommendations: Vec<ValidationRecommendation>,
48    pub conversion_path: Option<ConversionPath>,
49}
50
51#[derive(Debug, Clone)]
52pub struct ValidationError {
53    pub category: ErrorCategory,
54    pub severity: ErrorSeverity,
55    pub message: String,
56    pub location: Option<String>, // e.g., tensor name, operation name
57    pub fix_suggestion: Option<String>,
58}
59
60#[derive(Debug, Clone)]
61pub struct ValidationWarning {
62    pub category: WarningCategory,
63    pub message: String,
64    pub location: Option<String>,
65    pub impact: WarningImpact,
66}
67
68#[derive(Debug, Clone)]
69pub struct ValidationRecommendation {
70    pub category: RecommendationCategory,
71    pub message: String,
72    pub priority: RecommendationPriority,
73    pub estimated_effort: EstimatedEffort,
74}
75
76#[derive(Debug, Clone, PartialEq)]
77pub enum ErrorCategory {
78    DataType,
79    Shape,
80    Operation,
81    Metadata,
82    Framework,
83    Version,
84}
85
86#[derive(Debug, Clone, PartialEq)]
87pub enum ErrorSeverity {
88    Critical, // Blocks conversion
89    High,     // Likely to cause runtime errors
90    Medium,   // May cause issues
91    Low,      // Minor issues
92}
93
94#[derive(Debug, Clone, PartialEq)]
95pub enum WarningCategory {
96    Performance,
97    Precision,
98    Compatibility,
99    BestPractice,
100}
101
102#[derive(Debug, Clone, PartialEq)]
103pub enum WarningImpact {
104    High,   // Significant impact on model behavior
105    Medium, // Moderate impact
106    Low,    // Minor impact
107}
108
109#[derive(Debug, Clone, PartialEq)]
110pub enum RecommendationCategory {
111    Optimization,
112    Conversion,
113    Preprocessing,
114    Alternative,
115    BestPractice,
116}
117
118#[derive(Debug, Clone, PartialEq)]
119pub enum RecommendationPriority {
120    High,
121    Medium,
122    Low,
123}
124
125#[derive(Debug, Clone)]
126pub enum EstimatedEffort {
127    Minimal,  // < 1 hour
128    Low,      // 1-4 hours
129    Medium,   // 1-2 days
130    High,     // 1 week
131    VeryHigh, // > 1 week
132}
133
134#[derive(Debug, Clone)]
135pub struct ConversionPath {
136    pub steps: Vec<ConversionStep>,
137    pub estimated_accuracy_loss: f32,      // 0.0 to 1.0
138    pub estimated_performance_impact: f32, // Relative performance change
139    pub complexity: ConversionComplexity,
140}
141
142#[derive(Debug, Clone)]
143pub struct ConversionStep {
144    pub operation: ConversionOperation,
145    pub description: String,
146    pub required_tools: Vec<String>,
147    pub estimated_time: EstimatedEffort,
148}
149
150#[derive(Debug, Clone)]
151pub enum ConversionOperation {
152    DirectConversion,
153    TypeConversion,
154    ShapeReshaping,
155    OperationMapping,
156    ManualIntervention,
157    AlternativeImplementation,
158}
159
160#[derive(Debug, Clone)]
161pub enum ConversionComplexity {
162    Trivial,     // Direct conversion possible
163    Simple,      // Minor adjustments needed
164    Moderate,    // Some manual work required
165    Complex,     // Significant effort required
166    VeryComplex, // Major rewrite needed
167}
168
169impl ModelValidator {
170    pub fn new(source: MLFramework, target: MLFramework, config: ValidationConfig) -> Self {
171        Self {
172            source_framework: source,
173            target_framework: target,
174            validation_config: config,
175        }
176    }
177
178    /// Validate model compatibility
179    pub fn validate(&self, model: &MLModel) -> Result<ValidationReport> {
180        let mut errors = Vec::new();
181        let mut warnings = Vec::new();
182        let mut recommendations = Vec::new();
183
184        // Check framework compatibility
185        let framework_compatibility = self.check_framework_compatibility(model);
186        if let Some(error) = framework_compatibility.error {
187            errors.push(error);
188        }
189        warnings.extend(framework_compatibility.warnings);
190        recommendations.extend(framework_compatibility.recommendations);
191
192        // Check data types
193        if self.validation_config.check_data_types {
194            let dtype_check = self.check_data_types(model);
195            errors.extend(dtype_check.errors);
196            warnings.extend(dtype_check.warnings);
197            recommendations.extend(dtype_check.recommendations);
198        }
199
200        // Check tensor shapes
201        if self.validation_config.check_tensorshapes {
202            let shape_check = self.check_tensorshapes(model);
203            errors.extend(shape_check.errors);
204            warnings.extend(shape_check.warnings);
205            recommendations.extend(shape_check.recommendations);
206        }
207
208        // Check operations (if applicable)
209        if self.validation_config.check_operations {
210            let ops_check = self.check_operations(model);
211            errors.extend(ops_check.errors);
212            warnings.extend(ops_check.warnings);
213            recommendations.extend(ops_check.recommendations);
214        }
215
216        // Check metadata
217        if self.validation_config.check_metadata {
218            let metadata_check = self.check_metadata(model);
219            errors.extend(metadata_check.errors);
220            warnings.extend(metadata_check.warnings);
221            recommendations.extend(metadata_check.recommendations);
222        }
223
224        // Calculate compatibility score
225        let compatibility_score = self.calculate_compatibility_score(&errors, &warnings);
226        let is_compatible = compatibility_score > 0.7
227            && errors.iter().all(|e| e.severity != ErrorSeverity::Critical);
228
229        // Generate conversion path if compatible
230        let conversion_path = if is_compatible {
231            Some(self.generate_conversion_path(model, &errors, &warnings)?)
232        } else {
233            None
234        };
235
236        Ok(ValidationReport {
237            is_compatible,
238            compatibility_score,
239            errors,
240            warnings,
241            recommendations,
242            conversion_path,
243        })
244    }
245
246    /// Check framework compatibility
247    fn check_framework_compatibility(&self, model: &MLModel) -> FrameworkCompatibilityResult {
248        let mut warnings = Vec::new();
249        let mut recommendations = Vec::new();
250
251        // Check if frameworks are the same
252        if self.source_framework == self.target_framework {
253            return FrameworkCompatibilityResult {
254                error: None,
255                warnings,
256                recommendations,
257            };
258        }
259
260        // Check common conversion paths
261        let compatibility_score = crate::ml_framework::validation::utils::quick_compatibility_check(
262            self.source_framework,
263            self.target_framework,
264        );
265
266        if compatibility_score < 0.5 {
267            warnings.push(ValidationWarning {
268                category: WarningCategory::Compatibility,
269                message: format!(
270                    "Low compatibility between {:?} and {:?} (score: {:.2})",
271                    self.source_framework, self.target_framework, compatibility_score
272                ),
273                location: None,
274                impact: WarningImpact::High,
275            });
276
277            recommendations.push(ValidationRecommendation {
278                category: RecommendationCategory::Alternative,
279                message: "Consider using ONNX as an intermediate format".to_string(),
280                priority: RecommendationPriority::High,
281                estimated_effort: EstimatedEffort::Medium,
282            });
283        }
284
285        FrameworkCompatibilityResult {
286            error: None,
287            warnings,
288            recommendations,
289        }
290    }
291
292    /// Check data types compatibility
293    fn check_data_types(&self, model: &MLModel) -> ValidationCheckResult {
294        let mut errors = Vec::new();
295        let mut warnings = Vec::new();
296        let recommendations = Vec::new();
297
298        for (tensor_name, tensor) in &model.weights {
299            // Check if data type is supported by target framework
300            if let Some(ref supported_dtypes) = self.validation_config.supported_dtypes {
301                if !supported_dtypes.contains(&tensor.metadata.dtype) {
302                    if self.validation_config.allow_type_conversion {
303                        warnings.push(ValidationWarning {
304                            category: WarningCategory::Precision,
305                            message: format!(
306                                "Tensor '{}' has unsupported data type {:?}, conversion may be needed",
307                                tensor_name, tensor.metadata.dtype
308                            ),
309                            location: Some(tensor_name.clone()),
310                            impact: WarningImpact::Medium,
311                        });
312                    } else {
313                        errors.push(ValidationError {
314                            category: ErrorCategory::DataType,
315                            severity: ErrorSeverity::High,
316                            message: format!(
317                                "Tensor '{}' has unsupported data type {:?}",
318                                tensor_name, tensor.metadata.dtype
319                            ),
320                            location: Some(tensor_name.clone()),
321                            fix_suggestion: Some(
322                                "Enable type conversion or change tensor data type".to_string(),
323                            ),
324                        });
325                    }
326                }
327            }
328
329            // Check for precision loss warnings
330            if let (MLFramework::PyTorch, MLFramework::CoreML, DataType::Float64) = (
331                &self.source_framework,
332                &self.target_framework,
333                &tensor.metadata.dtype,
334            ) {
335                warnings.push(ValidationWarning {
336                    category: WarningCategory::Precision,
337                    message: format!(
338                        "Tensor '{}' uses Float64 which may be converted to Float32 in CoreML",
339                        tensor_name
340                    ),
341                    location: Some(tensor_name.clone()),
342                    impact: WarningImpact::Medium,
343                });
344            }
345        }
346
347        ValidationCheckResult {
348            errors,
349            warnings,
350            recommendations,
351        }
352    }
353
354    /// Check tensor shapes compatibility
355    fn check_tensorshapes(&self, model: &MLModel) -> ValidationCheckResult {
356        let mut errors = Vec::new();
357        let mut warnings = Vec::new();
358        let recommendations = Vec::new();
359
360        for (tensor_name, tensor) in &model.weights {
361            let shape = &tensor.metadata.shape;
362
363            // Check maximum dimensions
364            if let Some(max_dims) = self.validation_config.maxshape_dimension {
365                if shape.len() > max_dims {
366                    errors.push(ValidationError {
367                        category: ErrorCategory::Shape,
368                        severity: ErrorSeverity::High,
369                        message: format!(
370                            "Tensor '{}' has {} dimensions, but target framework supports max {}",
371                            tensor_name,
372                            shape.len(),
373                            max_dims
374                        ),
375                        location: Some(tensor_name.clone()),
376                        fix_suggestion: Some(
377                            "Reshape tensor or use tensor decomposition".to_string(),
378                        ),
379                    });
380                }
381            }
382
383            // Check for dynamic shapes (represented as 0 dimensions)
384            if shape.contains(&0) {
385                warnings.push(ValidationWarning {
386                    category: WarningCategory::Compatibility,
387                    message: format!(
388                        "Tensor '{}' has dynamic shape dimensions which may not be supported",
389                        tensor_name
390                    ),
391                    location: Some(tensor_name.clone()),
392                    impact: WarningImpact::High,
393                });
394            }
395
396            // Check for very large tensors
397            let total_elements: usize = shape.iter().product();
398            if total_elements > 1_000_000_000 {
399                warnings.push(ValidationWarning {
400                    category: WarningCategory::Performance,
401                    message: format!(
402                        "Tensor '{}' is very large ({} elements), may cause memory issues",
403                        tensor_name, total_elements
404                    ),
405                    location: Some(tensor_name.clone()),
406                    impact: WarningImpact::Medium,
407                });
408            }
409        }
410
411        ValidationCheckResult {
412            errors,
413            warnings,
414            recommendations,
415        }
416    }
417
418    /// Check operations compatibility (simplified implementation)
419    fn check_operations(&self, model: &MLModel) -> ValidationCheckResult {
420        let errors = Vec::new();
421        let mut warnings = Vec::new();
422        let mut recommendations = Vec::new();
423
424        // In a real implementation, this would analyze the model graph and operations
425        // For now, we'll just provide framework-specific warnings
426        match (&self.source_framework, &self.target_framework) {
427            (MLFramework::PyTorch, MLFramework::CoreML) => {
428                warnings.push(ValidationWarning {
429                    category: WarningCategory::Compatibility,
430                    message: "Some PyTorch operations may not have direct CoreML equivalents"
431                        .to_string(),
432                    location: None,
433                    impact: WarningImpact::Medium,
434                });
435            }
436            (MLFramework::TensorFlow, MLFramework::PyTorch) => {
437                recommendations.push(ValidationRecommendation {
438                    category: RecommendationCategory::Conversion,
439                    message: "Consider using ONNX as intermediate format for TensorFlow -> PyTorch conversion".to_string(),
440                    priority: RecommendationPriority::Medium,
441                    estimated_effort: EstimatedEffort::Low,
442                });
443            }
444            _ => {}
445        }
446
447        ValidationCheckResult {
448            errors,
449            warnings,
450            recommendations,
451        }
452    }
453
454    /// Check metadata compatibility
455    fn check_metadata(&self, model: &MLModel) -> ValidationCheckResult {
456        let errors = Vec::new();
457        let mut warnings = Vec::new();
458        let mut recommendations = Vec::new();
459
460        // Check if framework version is compatible
461        if let Some(ref framework_version) = model.metadata.framework_version {
462            // This is a simplified check - in practice would have version compatibility matrices
463            if framework_version.starts_with("0.") {
464                warnings.push(ValidationWarning {
465                    category: WarningCategory::Compatibility,
466                    message: format!(
467                        "Framework version {} appears to be a pre-release version",
468                        framework_version
469                    ),
470                    location: None,
471                    impact: WarningImpact::Low,
472                });
473            }
474        }
475
476        // Check for missing critical metadata
477        if model.metadata.model_name.is_none() {
478            recommendations.push(ValidationRecommendation {
479                category: RecommendationCategory::BestPractice,
480                message: "Consider adding a model name for better tracking".to_string(),
481                priority: RecommendationPriority::Low,
482                estimated_effort: EstimatedEffort::Minimal,
483            });
484        }
485
486        // Check for empty configurations
487        if model.config.is_empty() {
488            warnings.push(ValidationWarning {
489                category: WarningCategory::BestPractice,
490                message: "Model configuration is empty, may cause issues during conversion"
491                    .to_string(),
492                location: None,
493                impact: WarningImpact::Low,
494            });
495        }
496
497        ValidationCheckResult {
498            errors,
499            warnings,
500            recommendations,
501        }
502    }
503
504    /// Calculate overall compatibility score
505    fn calculate_compatibility_score(
506        &self,
507        errors: &[ValidationError],
508        warnings: &[ValidationWarning],
509    ) -> f32 {
510        let base_score = crate::ml_framework::validation::utils::quick_compatibility_check(
511            self.source_framework,
512            self.target_framework,
513        );
514
515        // Reduce score based on errors and warnings
516        let error_penalty: f32 = errors
517            .iter()
518            .map(|e| match e.severity {
519                ErrorSeverity::Critical => 0.5,
520                ErrorSeverity::High => 0.3,
521                ErrorSeverity::Medium => 0.1,
522                ErrorSeverity::Low => 0.05,
523            })
524            .sum();
525
526        let warning_penalty: f32 = warnings
527            .iter()
528            .map(|w| match w.impact {
529                WarningImpact::High => 0.1,
530                WarningImpact::Medium => 0.05,
531                WarningImpact::Low => 0.02,
532            })
533            .sum();
534
535        (base_score - error_penalty - warning_penalty)
536            .max(0.0)
537            .min(1.0)
538    }
539
540    /// Generate conversion path
541    fn generate_conversion_path(
542        &self,
543        _model: &MLModel,
544        errors: &[ValidationError],
545        warnings: &[ValidationWarning],
546    ) -> Result<ConversionPath> {
547        let mut steps = Vec::new();
548
549        // Analyze errors and warnings to determine conversion steps
550        let has_dtype_issues = errors.iter().any(|e| e.category == ErrorCategory::DataType)
551            || warnings
552                .iter()
553                .any(|w| w.category == WarningCategory::Precision);
554
555        let hasshape_issues = errors.iter().any(|e| e.category == ErrorCategory::Shape);
556
557        if has_dtype_issues {
558            steps.push(ConversionStep {
559                operation: ConversionOperation::TypeConversion,
560                description: "Convert incompatible data types".to_string(),
561                required_tools: vec!["dtype_converter".to_string()],
562                estimated_time: EstimatedEffort::Low,
563            });
564        }
565
566        if hasshape_issues {
567            steps.push(ConversionStep {
568                operation: ConversionOperation::ShapeReshaping,
569                description: "Reshape tensors for target framework".to_string(),
570                required_tools: vec!["shape_converter".to_string()],
571                estimated_time: EstimatedEffort::Medium,
572            });
573        }
574
575        // Add main conversion step
576        let conversion_complexity = if steps.is_empty() {
577            ConversionComplexity::Trivial
578        } else if steps.len() <= 2 {
579            ConversionComplexity::Simple
580        } else {
581            ConversionComplexity::Moderate
582        };
583
584        steps.push(ConversionStep {
585            operation: ConversionOperation::DirectConversion,
586            description: format!(
587                "Convert from {:?} to {:?}",
588                self.source_framework, self.target_framework
589            ),
590            required_tools: vec![format!("{:?}_converter", self.target_framework)],
591            estimated_time: match conversion_complexity {
592                ConversionComplexity::Trivial => EstimatedEffort::Minimal,
593                ConversionComplexity::Simple => EstimatedEffort::Low,
594                _ => EstimatedEffort::Medium,
595            },
596        });
597
598        Ok(ConversionPath {
599            steps,
600            estimated_accuracy_loss: if has_dtype_issues { 0.05 } else { 0.01 },
601            estimated_performance_impact: if hasshape_issues { 0.1 } else { 0.02 },
602            complexity: conversion_complexity,
603        })
604    }
605}
606
607/// Batch validation for multiple models
608pub struct BatchValidator {
609    validators: Vec<ModelValidator>,
610    #[allow(dead_code)]
611    parallel: bool,
612}
613
614impl Default for BatchValidator {
615    fn default() -> Self {
616        Self::new()
617    }
618}
619
620impl BatchValidator {
621    pub fn new() -> Self {
622        Self {
623            validators: Vec::new(),
624            parallel: true,
625        }
626    }
627
628    pub fn add_validation(
629        &mut self,
630        source: MLFramework,
631        target: MLFramework,
632        config: ValidationConfig,
633    ) {
634        self.validators
635            .push(ModelValidator::new(source, target, config));
636    }
637
638    pub fn validate_all(&self, models: &[MLModel]) -> Result<Vec<ValidationReport>> {
639        let mut reports = Vec::new();
640
641        for model in models {
642            for validator in &self.validators {
643                reports.push(validator.validate(model)?);
644            }
645        }
646
647        Ok(reports)
648    }
649}
650
651/// Validation utilities
652pub mod utils {
653    use super::*;
654
655    /// Quick compatibility check
656    pub fn quick_compatibility_check(source: MLFramework, target: MLFramework) -> f32 {
657        // Simplified compatibility check
658        if source == target {
659            1.0
660        } else if matches!(
661            (source, target),
662            (MLFramework::PyTorch, MLFramework::ONNX)
663                | (MLFramework::TensorFlow, MLFramework::ONNX)
664                | (MLFramework::ONNX, MLFramework::PyTorch)
665                | (MLFramework::ONNX, MLFramework::TensorFlow)
666        ) {
667            0.9
668        } else {
669            0.5
670        }
671    }
672
673    /// Generate compatibility matrix for all frameworks
674    pub fn generate_compatibility_matrix() -> BTreeMap<String, BTreeMap<String, f32>> {
675        let frameworks = [
676            MLFramework::PyTorch,
677            MLFramework::TensorFlow,
678            MLFramework::ONNX,
679            MLFramework::SafeTensors,
680            MLFramework::JAX,
681            MLFramework::MXNet,
682            MLFramework::CoreML,
683            MLFramework::HuggingFace,
684        ];
685
686        let mut matrix = BTreeMap::new();
687
688        for source in &frameworks {
689            let mut row = BTreeMap::new();
690            for target in &frameworks {
691                let score = quick_compatibility_check(*source, *target);
692                row.insert(format!("{:?}", target), score);
693            }
694            matrix.insert(format!("{:?}", source), row);
695        }
696
697        matrix
698    }
699
700    /// Find best conversion path between frameworks
701    pub fn find_best_conversion_path(source: MLFramework, target: MLFramework) -> Vec<MLFramework> {
702        // Simple pathfinding - in practice could use more sophisticated algorithms
703        if source == target {
704            return vec![source];
705        }
706
707        // Try direct conversion first
708        if quick_compatibility_check(source, target) > 0.7 {
709            return vec![source, target];
710        }
711
712        // Try via ONNX as intermediate
713        if quick_compatibility_check(source, MLFramework::ONNX) > 0.7
714            && quick_compatibility_check(MLFramework::ONNX, target) > 0.7
715        {
716            return vec![source, MLFramework::ONNX, target];
717        }
718
719        // Fallback to direct conversion
720        vec![source, target]
721    }
722}
723
724// Supporting structures
725#[derive(Debug, Clone)]
726struct FrameworkCompatibilityResult {
727    error: Option<ValidationError>,
728    warnings: Vec<ValidationWarning>,
729    recommendations: Vec<ValidationRecommendation>,
730}
731
732#[derive(Debug, Clone)]
733struct ValidationCheckResult {
734    errors: Vec<ValidationError>,
735    warnings: Vec<ValidationWarning>,
736    recommendations: Vec<ValidationRecommendation>,
737}
738
739#[derive(Debug, Clone)]
740struct FrameworkCompatibility {
741    level: CompatibilityLevel,
742    recommendations: Vec<ValidationRecommendation>,
743}
744
745#[derive(Debug, Clone)]
746enum CompatibilityLevel {
747    FullyCompatible,
748    MostlyCompatible,
749    PartiallyCompatible,
750    #[allow(dead_code)]
751    Incompatible,
752}