scirs2_interpolate/advanced_coordinator_modules/
quantum_optimization.rs

1//! Quantum-inspired optimization system for interpolation parameters
2//!
3//! This module provides advanced quantum-inspired algorithms for parameter optimization
4//! in interpolation methods, using quantum annealing, superposition, and entanglement
5//! concepts to find optimal parameter configurations.
6
7use super::types::*;
8use crate::error::InterpolateResult;
9use scirs2_core::ndarray::Array2;
10use scirs2_core::numeric::Float;
11use std::collections::{HashMap, VecDeque};
12use std::fmt::Debug;
13use std::time::Instant;
14
15/// Quantum-inspired parameter optimizer
16#[derive(Debug)]
17pub struct QuantumParameterOptimizer<F: Float + Debug> {
18    /// Quantum state representation
19    quantum_state: QuantumState<F>,
20    /// Quantum operators for optimization
21    quantum_operators: Vec<QuantumOperator<F>>,
22    /// Quantum annealing parameters
23    annealing_params: AnnealingParameters<F>,
24    /// Quantum measurement system
25    measurement_system: QuantumMeasurement<F>,
26    /// Optimization history
27    optimization_history: VecDeque<QuantumOptimizationResult<F>>,
28    /// Population of quantum states (for quantum evolution)
29    state_population: Vec<QuantumState<F>>,
30}
31
32/// Quantum state for optimization
33#[derive(Debug, Clone)]
34pub struct QuantumState<F: Float> {
35    /// State amplitudes (complex numbers represented as pairs of real values)
36    pub amplitudes: Vec<(F, F)>, // (real, imaginary)
37    /// State phases
38    pub phases: Vec<F>,
39    /// Entanglement information
40    pub entanglement: EntanglementInfo,
41    /// Parameter values encoded in quantum state
42    pub parameter_values: HashMap<String, F>,
43    /// Energy level of the state
44    pub energy: F,
45}
46
47/// Entanglement information between parameters
48#[derive(Debug, Clone)]
49pub struct EntanglementInfo {
50    /// Entangled parameter pairs
51    pub entangled_pairs: Vec<(usize, usize)>,
52    /// Entanglement strength (0-1)
53    pub entanglement_strength: f64,
54    /// Entanglement matrix for complex correlations
55    pub entanglement_matrix: Option<Vec<Vec<f64>>>,
56}
57
58/// Quantum operator for parameter manipulation
59#[derive(Debug, Clone)]
60pub enum QuantumOperator<F: Float> {
61    /// Hadamard operator (creates superposition)
62    Hadamard { parameter: usize },
63    /// Pauli-X operator (bit flip)
64    PauliX { parameter: usize },
65    /// Pauli-Y operator (complex rotation)
66    PauliY { parameter: usize },
67    /// Pauli-Z operator (phase flip)
68    PauliZ { parameter: usize },
69    /// CNOT operator (entanglement creation)
70    CNOT { control: usize, target: usize },
71    /// Rotation operator (parameter exploration)
72    Rotation { parameter: usize, angle: F },
73    /// Phase shift operator
74    PhaseShift { parameter: usize, phase: F },
75    /// Quantum Fourier Transform
76    QFT { parameters: Vec<usize> },
77    /// Custom quantum operator
78    Custom {
79        name: String,
80        matrix: Array2<(F, F)>, // Complex matrix as (real, imaginary) pairs
81    },
82}
83
84/// Quantum annealing parameters
85#[derive(Debug, Clone)]
86pub struct AnnealingParameters<F: Float> {
87    /// Initial temperature
88    pub initial_temperature: F,
89    /// Final temperature
90    pub final_temperature: F,
91    /// Annealing schedule
92    pub annealing_schedule: AnnealingSchedule<F>,
93    /// Number of annealing steps
94    pub num_steps: usize,
95    /// Quantum tunneling strength
96    pub tunneling_strength: F,
97    /// Transverse field strength
98    pub transverse_field: F,
99}
100
101/// Annealing schedule types
102#[derive(Debug, Clone)]
103pub enum AnnealingSchedule<F: Float> {
104    /// Linear temperature decrease
105    Linear,
106    /// Exponential temperature decrease
107    Exponential { decay_rate: F },
108    /// Logarithmic schedule
109    Logarithmic { scale_factor: F },
110    /// Custom temperature schedule
111    Custom { schedule: Vec<F> },
112    /// Adaptive schedule based on convergence
113    Adaptive {
114        convergence_threshold: F,
115        adaptation_rate: F,
116    },
117}
118
119/// Quantum measurement system
120#[derive(Debug)]
121pub struct QuantumMeasurement<F: Float> {
122    /// Measurement operators
123    measurement_operators: Vec<MeasurementOperator<F>>,
124    /// Measurement results history
125    measurement_history: VecDeque<MeasurementResult<F>>,
126    /// Measurement bases
127    measurement_bases: Vec<MeasurementBasis<F>>,
128}
129
130/// Measurement operator for quantum observables
131#[derive(Debug, Clone)]
132pub struct MeasurementOperator<F: Float> {
133    /// Operator name
134    pub name: String,
135    /// Operator matrix (complex as real/imaginary pairs)
136    pub operator: Array2<(F, F)>,
137    /// Expected value for this operator
138    pub expected_value: Option<F>,
139    /// Measurement precision
140    pub precision: F,
141}
142
143/// Measurement result from quantum system
144#[derive(Debug, Clone)]
145pub struct MeasurementResult<F: Float> {
146    /// Measured value
147    pub value: F,
148    /// Measurement uncertainty
149    pub uncertainty: F,
150    /// Measurement basis used
151    pub basis: String,
152    /// Measurement time
153    pub timestamp: Instant,
154    /// Probability of this measurement
155    pub probability: F,
156}
157
158/// Measurement basis for quantum measurements
159#[derive(Debug, Clone)]
160pub struct MeasurementBasis<F: Float> {
161    /// Basis name
162    pub name: String,
163    /// Basis vectors
164    pub basis_vectors: Vec<Vec<(F, F)>>,
165    /// Basis completeness (0-1)
166    pub completeness: F,
167}
168
169/// Result of quantum optimization
170#[derive(Debug, Clone)]
171pub struct QuantumOptimizationResult<F: Float> {
172    /// Optimized parameters
173    pub optimized_parameters: HashMap<String, F>,
174    /// Final quantum state
175    pub final_state: QuantumState<F>,
176    /// Energy convergence history
177    pub energy_history: Vec<F>,
178    /// Quantum optimization algorithm used
179    pub algorithm_used: QuantumAlgorithm,
180    /// Number of quantum iterations
181    pub quantum_iterations: usize,
182    /// Measurement statistics
183    pub measurement_stats: MeasurementStatistics<F>,
184    /// Optimization success
185    pub success: bool,
186    /// Convergence achieved
187    pub converged: bool,
188}
189
190/// Types of quantum algorithms available
191#[derive(Debug, Clone)]
192pub enum QuantumAlgorithm {
193    /// Quantum Annealing
194    QuantumAnnealing,
195    /// Variational Quantum Eigensolver
196    VQE,
197    /// Quantum Approximate Optimization Algorithm
198    QAOA,
199    /// Adiabatic Quantum Computation
200    AdiabaticQC,
201    /// Quantum Phase Estimation
202    QPE,
203    /// Quantum Amplitude Amplification
204    QAA,
205}
206
207/// Statistics from quantum measurements
208#[derive(Debug, Clone)]
209pub struct MeasurementStatistics<F: Float> {
210    /// Mean measurement value
211    pub mean: F,
212    /// Measurement variance
213    pub variance: F,
214    /// Standard deviation
215    pub std_dev: F,
216    /// Number of measurements
217    pub sample_count: usize,
218    /// Confidence interval
219    pub confidence_interval: (F, F),
220}
221
222impl<F: Float + Debug + std::ops::MulAssign + std::ops::AddAssign + std::ops::SubAssign>
223    QuantumParameterOptimizer<F>
224{
225    /// Create a new quantum parameter optimizer
226    pub fn new() -> InterpolateResult<Self> {
227        Ok(Self {
228            quantum_state: QuantumState::new()?,
229            quantum_operators: Vec::new(),
230            annealing_params: AnnealingParameters::default(),
231            measurement_system: QuantumMeasurement::new()?,
232            optimization_history: VecDeque::new(),
233            state_population: Vec::new(),
234        })
235    }
236
237    /// Initialize quantum state from classical parameters
238    pub fn initialize_quantum_state(
239        &mut self,
240        parameters: &HashMap<String, F>,
241    ) -> InterpolateResult<()> {
242        let param_count = parameters.len();
243
244        // Initialize quantum state with superposition
245        self.quantum_state = QuantumState {
246            amplitudes: vec![
247                (
248                    F::one() / F::from(param_count as f64).unwrap().sqrt(),
249                    F::zero()
250                );
251                param_count
252            ],
253            phases: vec![F::zero(); param_count],
254            entanglement: EntanglementInfo::default(),
255            parameter_values: parameters.clone(),
256            energy: F::zero(),
257        };
258
259        // Create initial entanglements between related parameters
260        self.create_parameter_entanglements(parameters)?;
261
262        // Initialize default quantum operators
263        self.initialize_quantum_operators(param_count)?;
264
265        Ok(())
266    }
267
268    /// Optimize parameters using quantum annealing
269    pub fn quantum_anneal_optimize(
270        &mut self,
271        objective_function: impl Fn(&HashMap<String, F>) -> F,
272        parameter_bounds: &HashMap<String, (F, F)>,
273    ) -> InterpolateResult<QuantumOptimizationResult<F>> {
274        let start_time = Instant::now();
275        let mut energy_history = Vec::new();
276
277        // Initialize population of quantum states
278        self.initialize_population(parameter_bounds, 20)?; // 20 states in population
279
280        let mut current_temperature = self.annealing_params.initial_temperature;
281        let temperature_step = (self.annealing_params.initial_temperature
282            - self.annealing_params.final_temperature)
283            / F::from(self.annealing_params.num_steps as f64).unwrap();
284
285        for step in 0..self.annealing_params.num_steps {
286            // Apply quantum operators to create superposition and entanglement
287            self.apply_quantum_evolution()?;
288
289            // Measure quantum states to get parameter values
290            let measured_params = self.measure_parameters()?;
291
292            // Evaluate objective function
293            let energy = objective_function(&measured_params);
294            energy_history.push(energy);
295
296            // Update quantum state based on energy
297            self.update_quantum_state_energy(energy)?;
298
299            // Apply simulated annealing acceptance criteria
300            let accept_probability =
301                self.calculate_acceptance_probability(energy, current_temperature);
302
303            if self.should_accept_state(accept_probability)? {
304                self.quantum_state.parameter_values = measured_params;
305                self.quantum_state.energy = energy;
306            }
307
308            // Cool down temperature
309            current_temperature = match &self.annealing_params.annealing_schedule {
310                AnnealingSchedule::Linear => {
311                    self.annealing_params.initial_temperature
312                        - temperature_step * F::from(step as f64).unwrap()
313                }
314                AnnealingSchedule::Exponential { decay_rate } => current_temperature * *decay_rate,
315                AnnealingSchedule::Logarithmic { scale_factor } => {
316                    self.annealing_params.initial_temperature
317                        / (F::one() + *scale_factor * F::from(step as f64).unwrap().ln())
318                }
319                AnnealingSchedule::Custom { schedule } => {
320                    if step < schedule.len() {
321                        schedule[step]
322                    } else {
323                        self.annealing_params.final_temperature
324                    }
325                }
326                AnnealingSchedule::Adaptive {
327                    convergence_threshold,
328                    adaptation_rate,
329                } => {
330                    if energy_history.len() > 10 {
331                        let recent_variance = self.calculate_energy_variance(
332                            &energy_history[energy_history.len() - 10..],
333                        );
334                        if recent_variance < *convergence_threshold {
335                            current_temperature * *adaptation_rate
336                        } else {
337                            current_temperature
338                        }
339                    } else {
340                        current_temperature
341                    }
342                }
343            };
344
345            // Apply quantum tunneling for escaping local minima
346            if step % 100 == 0 {
347                self.apply_quantum_tunneling()?;
348            }
349        }
350
351        // Perform final measurement
352        let final_measurement = self.perform_final_measurement()?;
353        let measurement_stats = self.calculate_measurement_statistics(&energy_history);
354
355        let result = QuantumOptimizationResult {
356            optimized_parameters: self.quantum_state.parameter_values.clone(),
357            final_state: self.quantum_state.clone(),
358            energy_history,
359            algorithm_used: QuantumAlgorithm::QuantumAnnealing,
360            quantum_iterations: self.annealing_params.num_steps,
361            measurement_stats,
362            success: true,
363            converged: self.check_convergence(&final_measurement)?,
364        };
365
366        // Store optimization result
367        self.optimization_history.push_back(result.clone());
368        if self.optimization_history.len() > 50 {
369            self.optimization_history.pop_front();
370        }
371
372        Ok(result)
373    }
374
375    /// Optimize using Variational Quantum Eigensolver (VQE)
376    pub fn vqe_optimize(
377        &mut self,
378        hamiltonian: impl Fn(&HashMap<String, F>) -> F,
379        parameter_bounds: &HashMap<String, (F, F)>,
380        max_iterations: usize,
381    ) -> InterpolateResult<QuantumOptimizationResult<F>> {
382        let mut energy_history = Vec::new();
383        let mut current_best_energy = F::infinity();
384        let mut current_best_params = self.quantum_state.parameter_values.clone();
385
386        for iteration in 0..max_iterations {
387            // Prepare ansatz state
388            self.prepare_ansatz_state()?;
389
390            // Measure expectation value of Hamiltonian
391            let measured_params = self.measure_parameters()?;
392            let energy = hamiltonian(&measured_params);
393            energy_history.push(energy);
394
395            // Update best solution
396            if energy < current_best_energy {
397                current_best_energy = energy;
398                current_best_params = measured_params.clone();
399                self.quantum_state.parameter_values = measured_params;
400                self.quantum_state.energy = energy;
401            }
402
403            // Apply variational updates to quantum state
404            self.apply_variational_updates(energy)?;
405
406            // Check for convergence
407            if iteration > 10
408                && self.check_vqe_convergence(&energy_history[iteration - 10..iteration])
409            {
410                break;
411            }
412        }
413
414        let measurement_stats = self.calculate_measurement_statistics(&energy_history);
415
416        Ok(QuantumOptimizationResult {
417            optimized_parameters: current_best_params,
418            final_state: self.quantum_state.clone(),
419            energy_history,
420            algorithm_used: QuantumAlgorithm::VQE,
421            quantum_iterations: max_iterations,
422            measurement_stats,
423            success: true,
424            converged: true,
425        })
426    }
427
428    /// Create entanglements between related parameters
429    fn create_parameter_entanglements(
430        &mut self,
431        parameters: &HashMap<String, F>,
432    ) -> InterpolateResult<()> {
433        let param_names: Vec<_> = parameters.keys().collect();
434        let mut entangled_pairs = Vec::new();
435
436        // Create entanglements between parameters that might be correlated
437        for (i, &param1) in param_names.iter().enumerate() {
438            for (j, &param2) in param_names.iter().enumerate().skip(i + 1) {
439                // Heuristic: entangle parameters with similar names or related functions
440                if self.should_entangle_parameters(param1, param2) {
441                    entangled_pairs.push((i, j));
442                }
443            }
444        }
445
446        self.quantum_state.entanglement = EntanglementInfo {
447            entangled_pairs,
448            entanglement_strength: 0.5, // Medium entanglement
449            entanglement_matrix: None,
450        };
451
452        Ok(())
453    }
454
455    /// Determine if two parameters should be entangled
456    fn should_entangle_parameters(&self, param1: &str, param2: &str) -> bool {
457        // Heuristic rules for parameter entanglement
458        let related_pairs = [
459            ("tolerance", "max_iterations"),
460            ("degree", "smoothing"),
461            ("kernel_width", "regularization"),
462            ("learning_rate", "momentum"),
463        ];
464
465        related_pairs.iter().any(|(p1, p2)| {
466            (param1.contains(p1) && param2.contains(p2))
467                || (param1.contains(p2) && param2.contains(p1))
468        })
469    }
470
471    /// Initialize quantum operators for optimization
472    fn initialize_quantum_operators(&mut self, param_count: usize) -> InterpolateResult<()> {
473        self.quantum_operators.clear();
474
475        // Add Hadamard operators for superposition
476        for i in 0..param_count {
477            self.quantum_operators
478                .push(QuantumOperator::Hadamard { parameter: i });
479        }
480
481        // Add rotation operators for exploration
482        for i in 0..param_count {
483            self.quantum_operators.push(QuantumOperator::Rotation {
484                parameter: i,
485                angle: F::from(std::f64::consts::PI / 4.0).unwrap(),
486            });
487        }
488
489        // Add CNOT operators for entanglement
490        for &(control, target) in &self.quantum_state.entanglement.entangled_pairs {
491            self.quantum_operators
492                .push(QuantumOperator::CNOT { control, target });
493        }
494
495        Ok(())
496    }
497
498    /// Initialize population of quantum states
499    fn initialize_population(
500        &mut self,
501        parameter_bounds: &HashMap<String, (F, F)>,
502        population_size: usize,
503    ) -> InterpolateResult<()> {
504        self.state_population.clear();
505
506        for _ in 0..population_size {
507            let mut state = QuantumState::new()?;
508
509            // Initialize with random parameter values within bounds
510            for (param_name, &(min_val, max_val)) in parameter_bounds {
511                let random_val = min_val
512                    + (max_val - min_val) * F::from(scirs2_core::random::random::<f64>()).unwrap();
513                state
514                    .parameter_values
515                    .insert(param_name.clone(), random_val);
516            }
517
518            // Initialize quantum amplitudes
519            let param_count = parameter_bounds.len();
520            state.amplitudes = vec![
521                (
522                    F::one() / F::from(param_count as f64).unwrap().sqrt(),
523                    F::zero()
524                );
525                param_count
526            ];
527            state.phases =
528                vec![
529                    F::from(scirs2_core::random::random::<f64>() * 2.0 * std::f64::consts::PI)
530                        .unwrap();
531                    param_count
532                ];
533
534            self.state_population.push(state);
535        }
536
537        Ok(())
538    }
539
540    /// Apply quantum evolution to the state
541    fn apply_quantum_evolution(&mut self) -> InterpolateResult<()> {
542        // Apply a subset of quantum operators
543        let operators_to_apply = std::cmp::min(3, self.quantum_operators.len());
544
545        for i in 0..operators_to_apply {
546            let operator = self.quantum_operators[i].clone();
547            self.apply_quantum_operator(&operator)?;
548        }
549
550        // Add quantum decoherence
551        self.apply_quantum_decoherence(F::from(0.01).unwrap())?;
552
553        Ok(())
554    }
555
556    /// Apply a specific quantum operator
557    fn apply_quantum_operator(&mut self, operator: &QuantumOperator<F>) -> InterpolateResult<()> {
558        match operator {
559            QuantumOperator::Hadamard { parameter } => {
560                if *parameter < self.quantum_state.amplitudes.len() {
561                    // Apply Hadamard transformation (creates superposition)
562                    let (real, imag) = self.quantum_state.amplitudes[*parameter];
563                    let sqrt2_inv = F::one() / F::from(2.0_f64.sqrt()).unwrap();
564                    self.quantum_state.amplitudes[*parameter] =
565                        ((real + imag) * sqrt2_inv, (real - imag) * sqrt2_inv);
566                }
567            }
568            QuantumOperator::Rotation { parameter, angle } => {
569                if *parameter < self.quantum_state.phases.len() {
570                    self.quantum_state.phases[*parameter] += *angle;
571                }
572            }
573            QuantumOperator::CNOT { control, target } => {
574                // Simplified CNOT operation on amplitudes
575                if *control < self.quantum_state.amplitudes.len()
576                    && *target < self.quantum_state.amplitudes.len()
577                {
578                    let control_amp = self.quantum_state.amplitudes[*control];
579                    let target_amp = self.quantum_state.amplitudes[*target];
580
581                    // CNOT logic: if control is |1⟩, flip target
582                    if control_amp.0.abs() > F::from(0.5).unwrap() {
583                        self.quantum_state.amplitudes[*target] = (target_amp.1, target_amp.0);
584                    }
585                }
586            }
587            _ => {
588                // Other operators can be implemented similarly
589            }
590        }
591
592        Ok(())
593    }
594
595    /// Apply quantum decoherence
596    fn apply_quantum_decoherence(&mut self, decoherence_rate: F) -> InterpolateResult<()> {
597        for (real, imag) in &mut self.quantum_state.amplitudes {
598            *real *= F::one() - decoherence_rate;
599            *imag *= F::one() - decoherence_rate;
600        }
601
602        for phase in &mut self.quantum_state.phases {
603            *phase *= F::one() - decoherence_rate;
604        }
605
606        Ok(())
607    }
608
609    /// Measure quantum state to extract classical parameter values
610    fn measure_parameters(&self) -> InterpolateResult<HashMap<String, F>> {
611        let mut measured_params = HashMap::new();
612
613        for (param_name, &current_value) in &self.quantum_state.parameter_values {
614            // Quantum measurement introduces uncertainty
615            let measurement_uncertainty = F::from(0.01).unwrap(); // 1% uncertainty
616            let random_factor = F::from(scirs2_core::random::random::<f64>() - 0.5).unwrap()
617                * measurement_uncertainty;
618            let measured_value = current_value * (F::one() + random_factor);
619
620            measured_params.insert(param_name.clone(), measured_value);
621        }
622
623        Ok(measured_params)
624    }
625
626    /// Update quantum state energy
627    fn update_quantum_state_energy(&mut self, energy: F) -> InterpolateResult<()> {
628        self.quantum_state.energy = energy;
629
630        // Normalize amplitudes based on energy (lower energy = higher amplitude)
631        let energy_factor = (-energy / F::from(10.0).unwrap()).exp();
632        for (real, imag) in &mut self.quantum_state.amplitudes {
633            *real *= energy_factor;
634            *imag *= energy_factor;
635        }
636
637        Ok(())
638    }
639
640    /// Calculate acceptance probability for simulated annealing
641    fn calculate_acceptance_probability(&self, energy: F, temperature: F) -> F {
642        if energy < self.quantum_state.energy {
643            F::one() // Always accept better solutions
644        } else {
645            let delta_energy = energy - self.quantum_state.energy;
646            (-delta_energy / temperature).exp()
647        }
648    }
649
650    /// Determine if state should be accepted
651    fn should_accept_state(&self, acceptance_probability: F) -> InterpolateResult<bool> {
652        let random_value = F::from(scirs2_core::random::random::<f64>()).unwrap();
653        Ok(random_value < acceptance_probability)
654    }
655
656    /// Apply quantum tunneling for escaping local minima
657    fn apply_quantum_tunneling(&mut self) -> InterpolateResult<()> {
658        let tunneling_strength = self.annealing_params.tunneling_strength;
659
660        // Add quantum fluctuations to parameter values
661        for value in self.quantum_state.parameter_values.values_mut() {
662            let tunneling_offset =
663                F::from(scirs2_core::random::random::<f64>() - 0.5).unwrap() * tunneling_strength;
664            *value += tunneling_offset;
665        }
666
667        Ok(())
668    }
669
670    /// Calculate energy variance for convergence checking
671    fn calculate_energy_variance(&self, energies: &[F]) -> F {
672        if energies.len() < 2 {
673            return F::infinity();
674        }
675
676        let mean = energies.iter().fold(F::zero(), |acc, &x| acc + x)
677            / F::from(energies.len() as f64).unwrap();
678        let variance = energies
679            .iter()
680            .map(|&x| (x - mean) * (x - mean))
681            .fold(F::zero(), |acc, x| acc + x)
682            / F::from(energies.len() as f64).unwrap();
683
684        variance
685    }
686
687    /// Perform final quantum measurement
688    fn perform_final_measurement(&self) -> InterpolateResult<MeasurementResult<F>> {
689        let final_energy = self.quantum_state.energy;
690        let uncertainty = F::from(0.001).unwrap(); // Final measurement has low uncertainty
691
692        Ok(MeasurementResult {
693            value: final_energy,
694            uncertainty,
695            basis: "energy".to_string(),
696            timestamp: Instant::now(),
697            probability: F::one(), // Definite measurement
698        })
699    }
700
701    /// Calculate measurement statistics
702    fn calculate_measurement_statistics(&self, energy_history: &[F]) -> MeasurementStatistics<F> {
703        if energy_history.is_empty() {
704            return MeasurementStatistics {
705                mean: F::zero(),
706                variance: F::zero(),
707                std_dev: F::zero(),
708                sample_count: 0,
709                confidence_interval: (F::zero(), F::zero()),
710            };
711        }
712
713        let mean = energy_history.iter().fold(F::zero(), |acc, &x| acc + x)
714            / F::from(energy_history.len() as f64).unwrap();
715        let variance = energy_history
716            .iter()
717            .map(|&x| (x - mean) * (x - mean))
718            .fold(F::zero(), |acc, x| acc + x)
719            / F::from(energy_history.len() as f64).unwrap();
720        let std_dev = variance.sqrt();
721
722        // 95% confidence interval
723        let confidence_margin =
724            std_dev * F::from(1.96).unwrap() / F::from(energy_history.len() as f64).unwrap().sqrt();
725
726        MeasurementStatistics {
727            mean,
728            variance,
729            std_dev,
730            sample_count: energy_history.len(),
731            confidence_interval: (mean - confidence_margin, mean + confidence_margin),
732        }
733    }
734
735    /// Check convergence of final measurement
736    fn check_convergence(&self, _measurement: &MeasurementResult<F>) -> InterpolateResult<bool> {
737        // Simple convergence check based on energy stability
738        if self.optimization_history.len() < 3 {
739            return Ok(false);
740        }
741
742        let recent_energies: Vec<F> = self
743            .optimization_history
744            .iter()
745            .rev()
746            .take(3)
747            .map(|result| result.final_state.energy)
748            .collect();
749
750        let energy_variance = self.calculate_energy_variance(&recent_energies);
751        Ok(energy_variance < F::from(1e-6).unwrap())
752    }
753
754    /// Prepare ansatz state for VQE
755    fn prepare_ansatz_state(&mut self) -> InterpolateResult<()> {
756        // Apply parameterized quantum circuit
757        for i in 0..self.quantum_state.amplitudes.len() {
758            self.apply_quantum_operator(&QuantumOperator::Rotation {
759                parameter: i,
760                angle: self.quantum_state.phases[i],
761            })?;
762        }
763
764        Ok(())
765    }
766
767    /// Apply variational updates for VQE
768    fn apply_variational_updates(&mut self, energy: F) -> InterpolateResult<()> {
769        let learning_rate = F::from(0.01).unwrap();
770
771        // Simple gradient-based update (simplified)
772        for phase in &mut self.quantum_state.phases {
773            let gradient = if energy > self.quantum_state.energy {
774                -learning_rate
775            } else {
776                learning_rate
777            };
778            *phase += gradient;
779        }
780
781        Ok(())
782    }
783
784    /// Check VQE convergence
785    fn check_vqe_convergence(&self, recent_energies: &[F]) -> bool {
786        if recent_energies.len() < 5 {
787            return false;
788        }
789
790        let variance = self.calculate_energy_variance(recent_energies);
791        variance < F::from(1e-8).unwrap()
792    }
793
794    /// Get optimization history
795    pub fn get_optimization_history(&self) -> &VecDeque<QuantumOptimizationResult<F>> {
796        &self.optimization_history
797    }
798
799    /// Get current quantum state
800    pub fn get_quantum_state(&self) -> &QuantumState<F> {
801        &self.quantum_state
802    }
803}
804
805impl<F: Float + std::ops::SubAssign> QuantumState<F> {
806    /// Create a new quantum state
807    pub fn new() -> InterpolateResult<Self> {
808        Ok(Self {
809            amplitudes: Vec::new(),
810            phases: Vec::new(),
811            entanglement: EntanglementInfo::default(),
812            parameter_values: HashMap::new(),
813            energy: F::zero(),
814        })
815    }
816
817    /// Get the probability of measuring a specific parameter value
818    pub fn get_measurement_probability(&self, parameter_index: usize) -> F {
819        if parameter_index < self.amplitudes.len() {
820            let (real, imag) = self.amplitudes[parameter_index];
821            real * real + imag * imag
822        } else {
823            F::zero()
824        }
825    }
826
827    /// Calculate quantum entropy
828    pub fn calculate_entropy(&self) -> F {
829        let mut entropy = F::zero();
830
831        for (real, imag) in &self.amplitudes {
832            let probability = *real * *real + *imag * *imag;
833            if probability > F::zero() {
834                entropy -= probability * probability.ln();
835            }
836        }
837
838        entropy
839    }
840}
841
842impl Default for EntanglementInfo {
843    fn default() -> Self {
844        Self {
845            entangled_pairs: Vec::new(),
846            entanglement_strength: 0.0,
847            entanglement_matrix: None,
848        }
849    }
850}
851
852impl<F: Float> Default for AnnealingParameters<F> {
853    fn default() -> Self {
854        Self {
855            initial_temperature: F::from(1.0).unwrap(),
856            final_temperature: F::from(0.01).unwrap(),
857            annealing_schedule: AnnealingSchedule::Linear,
858            num_steps: 1000,
859            tunneling_strength: F::from(0.1).unwrap(),
860            transverse_field: F::from(0.5).unwrap(),
861        }
862    }
863}
864
865impl<F: Float> QuantumMeasurement<F> {
866    /// Create a new quantum measurement system
867    pub fn new() -> InterpolateResult<Self> {
868        Ok(Self {
869            measurement_operators: Vec::new(),
870            measurement_history: VecDeque::new(),
871            measurement_bases: Vec::new(),
872        })
873    }
874
875    /// Add a measurement operator
876    pub fn add_measurement_operator(&mut self, operator: MeasurementOperator<F>) {
877        self.measurement_operators.push(operator);
878    }
879
880    /// Perform measurement with specific operator
881    pub fn measure_with_operator(
882        &mut self,
883        state: &QuantumState<F>,
884        operator_name: &str,
885    ) -> InterpolateResult<MeasurementResult<F>> {
886        // Find the measurement operator
887        let operator = self
888            .measurement_operators
889            .iter()
890            .find(|op| op.name == operator_name)
891            .ok_or_else(|| {
892                crate::error::InterpolateError::invalid_input(format!(
893                    "Measurement operator '{}' not found",
894                    operator_name
895                ))
896            })?;
897
898        // Simplified measurement (in practice would involve matrix operations)
899        let measurement_value = state.energy; // Simplified
900        let uncertainty = operator.precision;
901
902        let result = MeasurementResult {
903            value: measurement_value,
904            uncertainty,
905            basis: operator_name.to_string(),
906            timestamp: Instant::now(),
907            probability: F::one(),
908        };
909
910        self.measurement_history.push_back(result.clone());
911        if self.measurement_history.len() > 100 {
912            self.measurement_history.pop_front();
913        }
914
915        Ok(result)
916    }
917
918    /// Get measurement history
919    pub fn get_measurement_history(&self) -> &VecDeque<MeasurementResult<F>> {
920        &self.measurement_history
921    }
922}
923
924#[cfg(test)]
925mod tests {
926    use super::*;
927
928    #[test]
929    fn test_quantum_optimizer_creation() {
930        let optimizer: QuantumParameterOptimizer<f64> = QuantumParameterOptimizer::new().unwrap();
931        assert!(optimizer.quantum_operators.is_empty());
932        assert!(optimizer.optimization_history.is_empty());
933    }
934
935    #[test]
936    fn test_quantum_state_creation() {
937        let state: QuantumState<f64> = QuantumState::new().unwrap();
938        assert!(state.amplitudes.is_empty());
939        assert!(state.parameter_values.is_empty());
940        assert_eq!(state.energy, 0.0);
941    }
942
943    #[test]
944    fn test_annealing_parameters_default() {
945        let params: AnnealingParameters<f64> = AnnealingParameters::default();
946        assert_eq!(params.initial_temperature, 1.0);
947        assert_eq!(params.final_temperature, 0.01);
948        assert_eq!(params.num_steps, 1000);
949    }
950
951    #[test]
952    fn test_measurement_probability() {
953        let mut state: QuantumState<f64> = QuantumState::new().unwrap();
954        state.amplitudes = vec![(0.8, 0.6)]; // |amplitude|² = 0.64 + 0.36 = 1.0
955
956        let prob = state.get_measurement_probability(0);
957        assert!((prob - 1.0).abs() < 1e-10);
958    }
959
960    #[test]
961    fn test_quantum_entropy_calculation() {
962        let mut state: QuantumState<f64> = QuantumState::new().unwrap();
963        state.amplitudes = vec![(0.707, 0.0), (0.707, 0.0)]; // Equal superposition
964
965        let entropy = state.calculate_entropy();
966        assert!(entropy > 0.0); // Should have positive entropy for superposition
967    }
968}