1use super::types::*;
8use crate::error::InterpolateResult;
9use scirs2_core::numeric::Float;
10use std::collections::{HashMap, VecDeque};
11use std::fmt::Debug;
12use std::time::Instant;
13
14#[derive(Debug)]
16pub struct PerformanceTuningSystem<F: Float + Debug> {
17 strategy: PerformanceTuningStrategy,
19 targets: PerformanceTargets,
21 adaptive_params: AdaptiveParameters<F>,
23 tuning_history: VecDeque<TuningResult>,
25 resource_monitor: ResourceMonitor,
27 performance_baselines: HashMap<InterpolationMethodType, PerformanceBaseline>,
29}
30
31#[derive(Debug, Clone)]
33pub enum PerformanceTuningStrategy {
34 MinimizeTime,
36 MinimizeMemory,
38 Balanced,
40 Adaptive,
42 Custom {
44 time_weight: f64,
45 memory_weight: f64,
46 accuracy_weight: f64,
47 },
48 ResourceAware {
50 cpu_threshold: f64,
51 memory_threshold: f64,
52 },
53}
54
55#[derive(Debug, Clone)]
57pub struct PerformanceTargets {
58 pub max_execution_time: Option<f64>,
60 pub max_memory_usage: Option<usize>,
62 pub min_throughput: Option<f64>,
64 pub max_latency: Option<f64>,
66 pub target_cpu_utilization: Option<f64>,
68 pub memory_efficiency_target: Option<f64>,
70}
71
72#[derive(Debug)]
74pub struct ResourceMonitor {
75 cpu_usage: f64,
77 memory_usage: usize,
79 available_memory: usize,
81 load_average: f64,
83 monitoring_interval: u64,
85}
86
87#[derive(Debug, Clone)]
89pub struct PerformanceBaseline {
90 pub baseline_time: f64,
92 pub baseline_memory: usize,
94 pub baseline_accuracy: f64,
96 pub sample_size: usize,
98 pub last_update: Instant,
100}
101
102#[derive(Debug, Clone)]
104pub struct PerformanceOptimizationResult {
105 pub original_metrics: PerformanceMetrics,
107 pub optimized_metrics: PerformanceMetrics,
109 pub strategy_used: PerformanceTuningStrategy,
111 pub parameter_adjustments: HashMap<String, ParameterAdjustment>,
113 pub improvement_score: f64,
115 pub success: bool,
117 pub optimization_time: f64,
119}
120
121#[derive(Debug, Clone)]
123pub struct PerformanceMetrics {
124 pub execution_time: f64,
126 pub memory_usage: usize,
128 pub accuracy: f64,
130 pub throughput: f64,
132 pub cpu_utilization: f64,
134 pub cache_hit_ratio: f64,
136}
137
138#[derive(Debug, Clone)]
140pub struct ParameterAdjustment {
141 pub original_value: f64,
143 pub new_value: f64,
145 pub adjustment_type: AdjustmentType,
147 pub performance_impact: f64,
149}
150
151#[derive(Debug, Clone)]
153pub enum AdjustmentType {
154 Increase,
156 Decrease,
158 Optimize,
160 Reset,
162}
163
164impl<F: Float + Debug> PerformanceTuningSystem<F> {
165 pub fn new() -> InterpolateResult<Self> {
167 Ok(Self {
168 strategy: PerformanceTuningStrategy::Balanced,
169 targets: PerformanceTargets::default(),
170 adaptive_params: AdaptiveParameters::default(),
171 tuning_history: VecDeque::new(),
172 resource_monitor: ResourceMonitor::new()?,
173 performance_baselines: HashMap::new(),
174 })
175 }
176
177 pub fn set_strategy(&mut self, strategy: PerformanceTuningStrategy) {
179 self.strategy = strategy;
180 }
181
182 pub fn set_targets(&mut self, targets: PerformanceTargets) {
184 self.targets = targets;
185 }
186
187 pub fn optimize_performance(
189 &mut self,
190 method: InterpolationMethodType,
191 data_profile: &DataProfile<F>,
192 current_parameters: &HashMap<String, f64>,
193 current_metrics: &PerformanceMetrics,
194 ) -> InterpolateResult<PerformanceOptimizationResult> {
195 let start_time = Instant::now();
196
197 self.resource_monitor.update_metrics()?;
199
200 if self.meets_performance_targets(current_metrics) {
202 return Ok(PerformanceOptimizationResult {
203 original_metrics: current_metrics.clone(),
204 optimized_metrics: current_metrics.clone(),
205 strategy_used: self.strategy.clone(),
206 parameter_adjustments: HashMap::new(),
207 improvement_score: 0.0,
208 success: true,
209 optimization_time: start_time.elapsed().as_millis() as f64,
210 });
211 }
212
213 let optimized_params = match &self.strategy {
215 PerformanceTuningStrategy::MinimizeTime => {
216 self.optimize_for_speed(method, data_profile, current_parameters)?
217 }
218 PerformanceTuningStrategy::MinimizeMemory => {
219 self.optimize_for_memory(method, data_profile, current_parameters)?
220 }
221 PerformanceTuningStrategy::Balanced => {
222 self.optimize_balanced(method, data_profile, current_parameters)?
223 }
224 PerformanceTuningStrategy::Adaptive => {
225 self.optimize_adaptive(method, data_profile, current_parameters)?
226 }
227 PerformanceTuningStrategy::Custom {
228 time_weight,
229 memory_weight,
230 accuracy_weight,
231 } => self.optimize_custom(
232 method,
233 data_profile,
234 current_parameters,
235 *time_weight,
236 *memory_weight,
237 *accuracy_weight,
238 )?,
239 PerformanceTuningStrategy::ResourceAware {
240 cpu_threshold,
241 memory_threshold,
242 } => self.optimize_resource_aware(
243 method,
244 data_profile,
245 current_parameters,
246 *cpu_threshold,
247 *memory_threshold,
248 )?,
249 };
250
251 let parameter_adjustments =
253 self.calculate_parameter_adjustments(current_parameters, &optimized_params);
254
255 let optimized_metrics = self.predict_optimized_metrics(
257 method,
258 data_profile,
259 &optimized_params,
260 current_metrics,
261 )?;
262
263 let improvement_score =
265 self.calculate_improvement_score(current_metrics, &optimized_metrics);
266
267 let result = PerformanceOptimizationResult {
268 original_metrics: current_metrics.clone(),
269 optimized_metrics,
270 strategy_used: self.strategy.clone(),
271 parameter_adjustments,
272 improvement_score,
273 success: improvement_score > 0.0,
274 optimization_time: start_time.elapsed().as_millis() as f64,
275 };
276
277 self.tuning_history.push_back(TuningResult {
279 improvement: improvement_score,
280 iterations: 1, final_parameters: optimized_params.values().cloned().collect(),
282 converged: result.success,
283 time_taken: start_time.elapsed().as_millis() as f64,
284 });
285
286 if self.tuning_history.len() > 100 {
288 self.tuning_history.pop_front();
289 }
290
291 if result.success {
293 self.update_performance_baseline(method, &result.optimized_metrics)?;
294 }
295
296 Ok(result)
297 }
298
299 fn optimize_for_speed(
301 &self,
302 method: InterpolationMethodType,
303 data_profile: &DataProfile<F>,
304 current_parameters: &HashMap<String, f64>,
305 ) -> InterpolateResult<HashMap<String, f64>> {
306 let mut optimized = current_parameters.clone();
307
308 match method {
309 InterpolationMethodType::CubicSpline => {
310 optimized.insert("tolerance".to_string(), 1e-4);
312 optimized.insert("max_iterations".to_string(), 50.0);
313 optimized.insert("use_fast_algorithm".to_string(), 1.0);
314 }
315 InterpolationMethodType::BSpline => {
316 if let Some(degree) = optimized.get_mut("degree") {
318 *degree = (*degree - 1.0).max(1.0);
319 }
320 optimized.insert("fast_evaluation".to_string(), 1.0);
321 }
322 InterpolationMethodType::RadialBasisFunction => {
323 if data_profile.size > 1000 {
325 optimized.insert("approximation_method".to_string(), 1.0);
326 optimized.insert("subset_size".to_string(), 1000.0);
327 }
328 }
329 InterpolationMethodType::Kriging => {
330 optimized.insert("variogram_model".to_string(), 0.0); optimized.insert("nugget_optimization".to_string(), 0.0);
333 }
334 _ => {
335 optimized.insert("parallel_execution".to_string(), 1.0);
337 optimized.insert("cache_enabled".to_string(), 1.0);
338 }
339 }
340
341 Ok(optimized)
342 }
343
344 fn optimize_for_memory(
346 &self,
347 method: InterpolationMethodType,
348 data_profile: &DataProfile<F>,
349 current_parameters: &HashMap<String, f64>,
350 ) -> InterpolateResult<HashMap<String, f64>> {
351 let mut optimized = current_parameters.clone();
352
353 match method {
354 InterpolationMethodType::RadialBasisFunction => {
355 optimized.insert("iterative_solver".to_string(), 1.0);
357 optimized.insert("block_size".to_string(), 1000.0);
358 }
359 InterpolationMethodType::BSpline => {
360 optimized.insert("sparse_representation".to_string(), 1.0);
362 optimized.insert("compression_enabled".to_string(), 1.0);
363 }
364 InterpolationMethodType::Kriging => {
365 optimized.insert("reduced_precision".to_string(), 1.0);
367 optimized.insert("matrix_approximation".to_string(), 1.0);
368 }
369 _ => {
370 optimized.insert("memory_pool_enabled".to_string(), 1.0);
372 optimized.insert("streaming_mode".to_string(), 1.0);
373
374 if data_profile.size > 10000 {
376 optimized.insert("chunk_size".to_string(), 1000.0);
377 }
378 }
379 }
380
381 Ok(optimized)
382 }
383
384 fn optimize_balanced(
386 &self,
387 method: InterpolationMethodType,
388 data_profile: &DataProfile<F>,
389 current_parameters: &HashMap<String, f64>,
390 ) -> InterpolateResult<HashMap<String, f64>> {
391 let speed_params = self.optimize_for_speed(method, data_profile, current_parameters)?;
393 let memory_params = self.optimize_for_memory(method, data_profile, current_parameters)?;
394
395 let mut balanced = current_parameters.clone();
396
397 for (key, &speed_val) in &speed_params {
399 if let Some(&memory_val) = memory_params.get(key) {
400 let balanced_val = (speed_val + memory_val) / 2.0;
401 balanced.insert(key.clone(), balanced_val);
402 } else {
403 balanced.insert(key.clone(), speed_val * 0.5); }
405 }
406
407 for (key, &memory_val) in &memory_params {
408 if !speed_params.contains_key(key) {
409 balanced.insert(key.clone(), memory_val * 0.5); }
411 }
412
413 Ok(balanced)
414 }
415
416 fn optimize_adaptive(
418 &self,
419 method: InterpolationMethodType,
420 data_profile: &DataProfile<F>,
421 current_parameters: &HashMap<String, f64>,
422 ) -> InterpolateResult<HashMap<String, f64>> {
423 if self.resource_monitor.memory_usage as f64 / self.resource_monitor.available_memory as f64
425 > 0.8
426 {
427 self.optimize_for_memory(method, data_profile, current_parameters)
429 } else if self.resource_monitor.cpu_usage > 0.9 {
430 self.optimize_for_speed(method, data_profile, current_parameters)
432 } else {
433 self.optimize_balanced(method, data_profile, current_parameters)
435 }
436 }
437
438 fn optimize_custom(
440 &self,
441 method: InterpolationMethodType,
442 data_profile: &DataProfile<F>,
443 current_parameters: &HashMap<String, f64>,
444 time_weight: f64,
445 memory_weight: f64,
446 accuracy_weight: f64,
447 ) -> InterpolateResult<HashMap<String, f64>> {
448 let speed_params = self.optimize_for_speed(method, data_profile, current_parameters)?;
449 let memory_params = self.optimize_for_memory(method, data_profile, current_parameters)?;
450 let accuracy_params = current_parameters.clone(); let mut custom = HashMap::new();
453
454 let total_weight = time_weight + memory_weight + accuracy_weight;
456 let norm_time = time_weight / total_weight;
457 let norm_memory = memory_weight / total_weight;
458 let norm_accuracy = accuracy_weight / total_weight;
459
460 let all_keys: std::collections::HashSet<_> = speed_params
462 .keys()
463 .chain(memory_params.keys())
464 .chain(accuracy_params.keys())
465 .collect();
466
467 for key in all_keys {
468 let speed_val = speed_params
469 .get(key)
470 .copied()
471 .unwrap_or_else(|| current_parameters.get(key).copied().unwrap_or(0.0));
472 let memory_val = memory_params
473 .get(key)
474 .copied()
475 .unwrap_or_else(|| current_parameters.get(key).copied().unwrap_or(0.0));
476 let accuracy_val = accuracy_params.get(key).copied().unwrap_or(0.0);
477
478 let weighted_val =
479 norm_time * speed_val + norm_memory * memory_val + norm_accuracy * accuracy_val;
480 custom.insert(key.clone(), weighted_val);
481 }
482
483 Ok(custom)
484 }
485
486 fn optimize_resource_aware(
488 &self,
489 method: InterpolationMethodType,
490 data_profile: &DataProfile<F>,
491 current_parameters: &HashMap<String, f64>,
492 cpu_threshold: f64,
493 memory_threshold: f64,
494 ) -> InterpolateResult<HashMap<String, f64>> {
495 let current_cpu = self.resource_monitor.cpu_usage;
496 let current_memory_ratio = self.resource_monitor.memory_usage as f64
497 / self.resource_monitor.available_memory as f64;
498
499 if current_cpu > cpu_threshold && current_memory_ratio > memory_threshold {
500 let mut optimized = current_parameters.clone();
502 optimized.insert("aggressive_optimization".to_string(), 1.0);
503 optimized.insert("resource_limit_mode".to_string(), 1.0);
504 Ok(optimized)
505 } else if current_cpu > cpu_threshold {
506 self.optimize_for_speed(method, data_profile, current_parameters)
508 } else if current_memory_ratio > memory_threshold {
509 self.optimize_for_memory(method, data_profile, current_parameters)
511 } else {
512 self.optimize_balanced(method, data_profile, current_parameters)
514 }
515 }
516
517 fn meets_performance_targets(&self, metrics: &PerformanceMetrics) -> bool {
519 if let Some(max_time) = self.targets.max_execution_time {
520 if metrics.execution_time > max_time {
521 return false;
522 }
523 }
524
525 if let Some(max_memory) = self.targets.max_memory_usage {
526 if metrics.memory_usage > max_memory {
527 return false;
528 }
529 }
530
531 if let Some(min_throughput) = self.targets.min_throughput {
532 if metrics.throughput < min_throughput {
533 return false;
534 }
535 }
536
537 if let Some(max_latency) = self.targets.max_latency {
538 if metrics.execution_time > max_latency {
539 return false;
540 }
541 }
542
543 true
544 }
545
546 fn calculate_parameter_adjustments(
548 &self,
549 original: &HashMap<String, f64>,
550 optimized: &HashMap<String, f64>,
551 ) -> HashMap<String, ParameterAdjustment> {
552 let mut adjustments = HashMap::new();
553
554 for (key, &opt_val) in optimized {
555 if let Some(&orig_val) = original.get(key) {
556 if (opt_val - orig_val).abs() > 1e-10 {
557 let adjustment_type = if opt_val > orig_val {
558 AdjustmentType::Increase
559 } else {
560 AdjustmentType::Decrease
561 };
562
563 let performance_impact = (opt_val - orig_val).abs() / orig_val.max(1e-10);
564
565 adjustments.insert(
566 key.clone(),
567 ParameterAdjustment {
568 original_value: orig_val,
569 new_value: opt_val,
570 adjustment_type,
571 performance_impact,
572 },
573 );
574 }
575 }
576 }
577
578 adjustments
579 }
580
581 fn predict_optimized_metrics(
583 &self,
584 method: InterpolationMethodType,
585 data_profile: &DataProfile<F>,
586 optimized_params: &HashMap<String, f64>,
587 current_metrics: &PerformanceMetrics,
588 ) -> InterpolateResult<PerformanceMetrics> {
589 let mut predicted = current_metrics.clone();
591
592 if optimized_params.contains_key("fast_evaluation") {
594 predicted.execution_time *= 0.7; }
596
597 if optimized_params.contains_key("parallel_execution") {
598 predicted.execution_time *= 0.5; predicted.cpu_utilization *= 1.5; }
601
602 if optimized_params.contains_key("sparse_representation") {
603 predicted.memory_usage = (predicted.memory_usage as f64 * 0.6) as usize;
604 }
606
607 if optimized_params.contains_key("approximation_method") {
608 predicted.execution_time *= 0.4; predicted.accuracy *= 0.95; }
611
612 match method {
614 InterpolationMethodType::RadialBasisFunction => {
615 if data_profile.size > 5000 {
616 predicted.memory_usage = (predicted.memory_usage as f64 * 1.2) as usize;
617 }
618 }
619 InterpolationMethodType::Kriging => {
620 predicted.accuracy *= 1.05; }
622 _ => {}
623 }
624
625 if predicted.execution_time > 0.0 {
627 predicted.throughput = 1_000_000.0 / predicted.execution_time; }
629
630 Ok(predicted)
631 }
632
633 fn calculate_improvement_score(
635 &self,
636 original: &PerformanceMetrics,
637 optimized: &PerformanceMetrics,
638 ) -> f64 {
639 let time_improvement = if original.execution_time > 0.0 {
640 (original.execution_time - optimized.execution_time) / original.execution_time
641 } else {
642 0.0
643 };
644
645 let memory_improvement = if original.memory_usage > 0 {
646 (original.memory_usage as f64 - optimized.memory_usage as f64)
647 / original.memory_usage as f64
648 } else {
649 0.0
650 };
651
652 let accuracy_change =
653 (optimized.accuracy - original.accuracy) / original.accuracy.max(1e-10);
654
655 0.5 * time_improvement + 0.3 * memory_improvement + 0.2 * accuracy_change
657 }
658
659 fn update_performance_baseline(
661 &mut self,
662 method: InterpolationMethodType,
663 metrics: &PerformanceMetrics,
664 ) -> InterpolateResult<()> {
665 let baseline = self
666 .performance_baselines
667 .entry(method)
668 .or_insert(PerformanceBaseline {
669 baseline_time: metrics.execution_time,
670 baseline_memory: metrics.memory_usage,
671 baseline_accuracy: metrics.accuracy,
672 sample_size: 0,
673 last_update: Instant::now(),
674 });
675
676 let alpha = 0.1;
678 baseline.baseline_time =
679 (1.0 - alpha) * baseline.baseline_time + alpha * metrics.execution_time;
680 baseline.baseline_memory = ((1.0 - alpha) * baseline.baseline_memory as f64
681 + alpha * metrics.memory_usage as f64) as usize;
682 baseline.baseline_accuracy =
683 (1.0 - alpha) * baseline.baseline_accuracy + alpha * metrics.accuracy;
684 baseline.sample_size += 1;
685 baseline.last_update = Instant::now();
686
687 Ok(())
688 }
689
690 pub fn get_targets(&self) -> &PerformanceTargets {
692 &self.targets
693 }
694
695 pub fn get_tuning_history(&self) -> &VecDeque<TuningResult> {
697 &self.tuning_history
698 }
699
700 pub fn get_resource_usage(&self) -> ResourceUsage {
702 ResourceUsage {
703 cpu_usage: self.resource_monitor.cpu_usage,
704 memory_usage: self.resource_monitor.memory_usage,
705 memory_usage_ratio: self.resource_monitor.memory_usage as f64
706 / self.resource_monitor.available_memory as f64,
707 load_average: self.resource_monitor.load_average,
708 }
709 }
710
711 pub fn get_performance_baseline(
713 &self,
714 method: InterpolationMethodType,
715 ) -> Option<&PerformanceBaseline> {
716 self.performance_baselines.get(&method)
717 }
718}
719
720#[derive(Debug, Clone)]
722pub struct ResourceUsage {
723 pub cpu_usage: f64,
725 pub memory_usage: usize,
727 pub memory_usage_ratio: f64,
729 pub load_average: f64,
731}
732
733impl ResourceMonitor {
734 pub fn new() -> InterpolateResult<Self> {
736 Ok(Self {
737 cpu_usage: 0.0,
738 memory_usage: 0,
739 available_memory: 8_000_000_000, load_average: 0.0,
741 monitoring_interval: 1000, })
743 }
744
745 pub fn update_metrics(&mut self) -> InterpolateResult<()> {
747 self.cpu_usage = 0.3; self.memory_usage = 2_000_000_000; self.load_average = 1.0;
758
759 Ok(())
760 }
761
762 pub fn get_cpu_usage(&self) -> f64 {
764 self.cpu_usage
765 }
766
767 pub fn get_memory_usage(&self) -> usize {
769 self.memory_usage
770 }
771
772 pub fn get_memory_ratio(&self) -> f64 {
774 self.memory_usage as f64 / self.available_memory as f64
775 }
776}
777
778impl Default for PerformanceTargets {
779 fn default() -> Self {
780 Self {
781 max_execution_time: None,
782 max_memory_usage: None,
783 min_throughput: None,
784 max_latency: None,
785 target_cpu_utilization: Some(0.8), memory_efficiency_target: Some(1000.0), }
788 }
789}
790
791#[cfg(test)]
792mod tests {
793 use super::*;
794
795 #[test]
796 fn test_performance_tuning_system_creation() {
797 let system: PerformanceTuningSystem<f64> = PerformanceTuningSystem::new().unwrap();
798 assert!(matches!(
799 system.strategy,
800 PerformanceTuningStrategy::Balanced
801 ));
802 assert!(system.tuning_history.is_empty());
803 }
804
805 #[test]
806 fn test_performance_targets_default() {
807 let targets = PerformanceTargets::default();
808 assert!(targets.max_execution_time.is_none());
809 assert_eq!(targets.target_cpu_utilization, Some(0.8));
810 }
811
812 #[test]
813 fn test_resource_monitor_creation() {
814 let monitor = ResourceMonitor::new().unwrap();
815 assert_eq!(monitor.monitoring_interval, 1000);
816 assert_eq!(monitor.available_memory, 8_000_000_000);
817 }
818
819 #[test]
820 fn test_improvement_score_calculation() {
821 let system: PerformanceTuningSystem<f64> = PerformanceTuningSystem::new().unwrap();
822
823 let original = PerformanceMetrics {
824 execution_time: 1000.0,
825 memory_usage: 1000000,
826 accuracy: 0.9,
827 throughput: 1000.0,
828 cpu_utilization: 0.5,
829 cache_hit_ratio: 0.8,
830 };
831
832 let optimized = PerformanceMetrics {
833 execution_time: 500.0, memory_usage: 800000, accuracy: 0.9,
836 throughput: 2000.0,
837 cpu_utilization: 0.6,
838 cache_hit_ratio: 0.9,
839 };
840
841 let score = system.calculate_improvement_score(&original, &optimized);
842 assert!(score > 0.0); assert!(score > 0.3); }
845}