scirs2_interpolate/advanced_coordinator_modules/
performance_tuning.rs

1//! Performance tuning system for interpolation optimization
2//!
3//! This module provides sophisticated performance optimization capabilities,
4//! including adaptive parameter tuning, resource management, and performance-accuracy
5//! trade-off optimization for interpolation methods.
6
7use super::types::*;
8use crate::error::InterpolateResult;
9use scirs2_core::numeric::Float;
10use std::collections::{HashMap, VecDeque};
11use std::fmt::Debug;
12use std::time::Instant;
13
14/// Performance tuning system for interpolation optimization
15#[derive(Debug)]
16pub struct PerformanceTuningSystem<F: Float + Debug> {
17    /// Current tuning strategy
18    strategy: PerformanceTuningStrategy,
19    /// Performance targets
20    targets: PerformanceTargets,
21    /// Adaptive parameters
22    adaptive_params: AdaptiveParameters<F>,
23    /// Tuning history
24    tuning_history: VecDeque<TuningResult>,
25    /// Resource monitor
26    resource_monitor: ResourceMonitor,
27    /// Performance baselines
28    performance_baselines: HashMap<InterpolationMethodType, PerformanceBaseline>,
29}
30
31/// Performance tuning strategy
32#[derive(Debug, Clone)]
33pub enum PerformanceTuningStrategy {
34    /// Minimize execution time
35    MinimizeTime,
36    /// Minimize memory usage
37    MinimizeMemory,
38    /// Balance time and memory
39    Balanced,
40    /// Adaptive based on system resources
41    Adaptive,
42    /// Custom weighted optimization
43    Custom {
44        time_weight: f64,
45        memory_weight: f64,
46        accuracy_weight: f64,
47    },
48    /// System resource aware optimization
49    ResourceAware {
50        cpu_threshold: f64,
51        memory_threshold: f64,
52    },
53}
54
55/// Performance targets for optimization
56#[derive(Debug, Clone)]
57pub struct PerformanceTargets {
58    /// Maximum acceptable execution time (microseconds)
59    pub max_execution_time: Option<f64>,
60    /// Maximum memory usage (bytes)
61    pub max_memory_usage: Option<usize>,
62    /// Minimum throughput (operations/second)
63    pub min_throughput: Option<f64>,
64    /// Maximum latency (microseconds)
65    pub max_latency: Option<f64>,
66    /// Target CPU utilization (0-1)
67    pub target_cpu_utilization: Option<f64>,
68    /// Memory efficiency target (operations per MB)
69    pub memory_efficiency_target: Option<f64>,
70}
71
72/// Resource monitoring system
73#[derive(Debug)]
74pub struct ResourceMonitor {
75    /// Current CPU usage
76    cpu_usage: f64,
77    /// Current memory usage (bytes)
78    memory_usage: usize,
79    /// Available memory (bytes)
80    available_memory: usize,
81    /// System load average
82    load_average: f64,
83    /// Monitoring interval (milliseconds)
84    monitoring_interval: u64,
85}
86
87/// Performance baseline for methods
88#[derive(Debug, Clone)]
89pub struct PerformanceBaseline {
90    /// Baseline execution time (microseconds)
91    pub baseline_time: f64,
92    /// Baseline memory usage (bytes)
93    pub baseline_memory: usize,
94    /// Baseline accuracy
95    pub baseline_accuracy: f64,
96    /// Sample size for baseline
97    pub sample_size: usize,
98    /// Last update timestamp
99    pub last_update: Instant,
100}
101
102/// Performance optimization result
103#[derive(Debug, Clone)]
104pub struct PerformanceOptimizationResult {
105    /// Original performance metrics
106    pub original_metrics: PerformanceMetrics,
107    /// Optimized performance metrics
108    pub optimized_metrics: PerformanceMetrics,
109    /// Optimization strategy used
110    pub strategy_used: PerformanceTuningStrategy,
111    /// Parameters that were adjusted
112    pub parameter_adjustments: HashMap<String, ParameterAdjustment>,
113    /// Overall improvement score
114    pub improvement_score: f64,
115    /// Optimization success
116    pub success: bool,
117    /// Optimization time (milliseconds)
118    pub optimization_time: f64,
119}
120
121/// Performance metrics
122#[derive(Debug, Clone)]
123pub struct PerformanceMetrics {
124    /// Execution time (microseconds)
125    pub execution_time: f64,
126    /// Memory usage (bytes)
127    pub memory_usage: usize,
128    /// Accuracy score
129    pub accuracy: f64,
130    /// Throughput (operations/second)
131    pub throughput: f64,
132    /// CPU utilization (0-1)
133    pub cpu_utilization: f64,
134    /// Cache hit ratio (0-1)
135    pub cache_hit_ratio: f64,
136}
137
138/// Parameter adjustment details
139#[derive(Debug, Clone)]
140pub struct ParameterAdjustment {
141    /// Original value
142    pub original_value: f64,
143    /// New value
144    pub new_value: f64,
145    /// Adjustment type
146    pub adjustment_type: AdjustmentType,
147    /// Impact on performance
148    pub performance_impact: f64,
149}
150
151/// Types of parameter adjustments
152#[derive(Debug, Clone)]
153pub enum AdjustmentType {
154    /// Increase parameter value
155    Increase,
156    /// Decrease parameter value
157    Decrease,
158    /// Optimize to specific value
159    Optimize,
160    /// Reset to default
161    Reset,
162}
163
164impl<F: Float + Debug> PerformanceTuningSystem<F> {
165    /// Create a new performance tuning system
166    pub fn new() -> InterpolateResult<Self> {
167        Ok(Self {
168            strategy: PerformanceTuningStrategy::Balanced,
169            targets: PerformanceTargets::default(),
170            adaptive_params: AdaptiveParameters::default(),
171            tuning_history: VecDeque::new(),
172            resource_monitor: ResourceMonitor::new()?,
173            performance_baselines: HashMap::new(),
174        })
175    }
176
177    /// Set performance tuning strategy
178    pub fn set_strategy(&mut self, strategy: PerformanceTuningStrategy) {
179        self.strategy = strategy;
180    }
181
182    /// Set performance targets
183    pub fn set_targets(&mut self, targets: PerformanceTargets) {
184        self.targets = targets;
185    }
186
187    /// Optimize performance for given method and data characteristics
188    pub fn optimize_performance(
189        &mut self,
190        method: InterpolationMethodType,
191        data_profile: &DataProfile<F>,
192        current_parameters: &HashMap<String, f64>,
193        current_metrics: &PerformanceMetrics,
194    ) -> InterpolateResult<PerformanceOptimizationResult> {
195        let start_time = Instant::now();
196
197        // Update resource monitoring
198        self.resource_monitor.update_metrics()?;
199
200        // Check if optimization is needed
201        if self.meets_performance_targets(current_metrics) {
202            return Ok(PerformanceOptimizationResult {
203                original_metrics: current_metrics.clone(),
204                optimized_metrics: current_metrics.clone(),
205                strategy_used: self.strategy.clone(),
206                parameter_adjustments: HashMap::new(),
207                improvement_score: 0.0,
208                success: true,
209                optimization_time: start_time.elapsed().as_millis() as f64,
210            });
211        }
212
213        // Apply tuning strategy
214        let optimized_params = match &self.strategy {
215            PerformanceTuningStrategy::MinimizeTime => {
216                self.optimize_for_speed(method, data_profile, current_parameters)?
217            }
218            PerformanceTuningStrategy::MinimizeMemory => {
219                self.optimize_for_memory(method, data_profile, current_parameters)?
220            }
221            PerformanceTuningStrategy::Balanced => {
222                self.optimize_balanced(method, data_profile, current_parameters)?
223            }
224            PerformanceTuningStrategy::Adaptive => {
225                self.optimize_adaptive(method, data_profile, current_parameters)?
226            }
227            PerformanceTuningStrategy::Custom {
228                time_weight,
229                memory_weight,
230                accuracy_weight,
231            } => self.optimize_custom(
232                method,
233                data_profile,
234                current_parameters,
235                *time_weight,
236                *memory_weight,
237                *accuracy_weight,
238            )?,
239            PerformanceTuningStrategy::ResourceAware {
240                cpu_threshold,
241                memory_threshold,
242            } => self.optimize_resource_aware(
243                method,
244                data_profile,
245                current_parameters,
246                *cpu_threshold,
247                *memory_threshold,
248            )?,
249        };
250
251        // Calculate parameter adjustments
252        let parameter_adjustments =
253            self.calculate_parameter_adjustments(current_parameters, &optimized_params);
254
255        // Predict optimized metrics
256        let optimized_metrics = self.predict_optimized_metrics(
257            method,
258            data_profile,
259            &optimized_params,
260            current_metrics,
261        )?;
262
263        // Calculate improvement score
264        let improvement_score =
265            self.calculate_improvement_score(current_metrics, &optimized_metrics);
266
267        let result = PerformanceOptimizationResult {
268            original_metrics: current_metrics.clone(),
269            optimized_metrics,
270            strategy_used: self.strategy.clone(),
271            parameter_adjustments,
272            improvement_score,
273            success: improvement_score > 0.0,
274            optimization_time: start_time.elapsed().as_millis() as f64,
275        };
276
277        // Store tuning result
278        self.tuning_history.push_back(TuningResult {
279            improvement: improvement_score,
280            iterations: 1, // Single iteration for this tuning attempt
281            final_parameters: optimized_params.values().cloned().collect(),
282            converged: result.success,
283            time_taken: start_time.elapsed().as_millis() as f64,
284        });
285
286        // Limit history size
287        if self.tuning_history.len() > 100 {
288            self.tuning_history.pop_front();
289        }
290
291        // Update baseline if successful
292        if result.success {
293            self.update_performance_baseline(method, &result.optimized_metrics)?;
294        }
295
296        Ok(result)
297    }
298
299    /// Optimize for speed (minimize execution time)
300    fn optimize_for_speed(
301        &self,
302        method: InterpolationMethodType,
303        data_profile: &DataProfile<F>,
304        current_parameters: &HashMap<String, f64>,
305    ) -> InterpolateResult<HashMap<String, f64>> {
306        let mut optimized = current_parameters.clone();
307
308        match method {
309            InterpolationMethodType::CubicSpline => {
310                // Use faster algorithms with looser tolerances
311                optimized.insert("tolerance".to_string(), 1e-4);
312                optimized.insert("max_iterations".to_string(), 50.0);
313                optimized.insert("use_fast_algorithm".to_string(), 1.0);
314            }
315            InterpolationMethodType::BSpline => {
316                // Reduce degree for faster computation
317                if let Some(degree) = optimized.get_mut("degree") {
318                    *degree = (*degree - 1.0).max(1.0);
319                }
320                optimized.insert("fast_evaluation".to_string(), 1.0);
321            }
322            InterpolationMethodType::RadialBasisFunction => {
323                // Use approximate methods for large datasets
324                if data_profile.size > 1000 {
325                    optimized.insert("approximation_method".to_string(), 1.0);
326                    optimized.insert("subset_size".to_string(), 1000.0);
327                }
328            }
329            InterpolationMethodType::Kriging => {
330                // Use simplified variogram models
331                optimized.insert("variogram_model".to_string(), 0.0); // 0 = linear
332                optimized.insert("nugget_optimization".to_string(), 0.0);
333            }
334            _ => {
335                // Generic speed optimizations
336                optimized.insert("parallel_execution".to_string(), 1.0);
337                optimized.insert("cache_enabled".to_string(), 1.0);
338            }
339        }
340
341        Ok(optimized)
342    }
343
344    /// Optimize for memory usage
345    fn optimize_for_memory(
346        &self,
347        method: InterpolationMethodType,
348        data_profile: &DataProfile<F>,
349        current_parameters: &HashMap<String, f64>,
350    ) -> InterpolateResult<HashMap<String, f64>> {
351        let mut optimized = current_parameters.clone();
352
353        match method {
354            InterpolationMethodType::RadialBasisFunction => {
355                // Use iterative methods for large problems
356                optimized.insert("iterative_solver".to_string(), 1.0);
357                optimized.insert("block_size".to_string(), 1000.0);
358            }
359            InterpolationMethodType::BSpline => {
360                // Use sparse representations
361                optimized.insert("sparse_representation".to_string(), 1.0);
362                optimized.insert("compression_enabled".to_string(), 1.0);
363            }
364            InterpolationMethodType::Kriging => {
365                // Reduce covariance matrix precision
366                optimized.insert("reduced_precision".to_string(), 1.0);
367                optimized.insert("matrix_approximation".to_string(), 1.0);
368            }
369            _ => {
370                // Generic memory optimizations
371                optimized.insert("memory_pool_enabled".to_string(), 1.0);
372                optimized.insert("streaming_mode".to_string(), 1.0);
373
374                // Adjust based on data size
375                if data_profile.size > 10000 {
376                    optimized.insert("chunk_size".to_string(), 1000.0);
377                }
378            }
379        }
380
381        Ok(optimized)
382    }
383
384    /// Balanced optimization (time and memory)
385    fn optimize_balanced(
386        &self,
387        method: InterpolationMethodType,
388        data_profile: &DataProfile<F>,
389        current_parameters: &HashMap<String, f64>,
390    ) -> InterpolateResult<HashMap<String, f64>> {
391        // Blend speed and memory optimizations
392        let speed_params = self.optimize_for_speed(method, data_profile, current_parameters)?;
393        let memory_params = self.optimize_for_memory(method, data_profile, current_parameters)?;
394
395        let mut balanced = current_parameters.clone();
396
397        // Take average of speed and memory optimizations where applicable
398        for (key, &speed_val) in &speed_params {
399            if let Some(&memory_val) = memory_params.get(key) {
400                let balanced_val = (speed_val + memory_val) / 2.0;
401                balanced.insert(key.clone(), balanced_val);
402            } else {
403                balanced.insert(key.clone(), speed_val * 0.5); // Reduce impact
404            }
405        }
406
407        for (key, &memory_val) in &memory_params {
408            if !speed_params.contains_key(key) {
409                balanced.insert(key.clone(), memory_val * 0.5); // Reduce impact
410            }
411        }
412
413        Ok(balanced)
414    }
415
416    /// Adaptive optimization based on current system state
417    fn optimize_adaptive(
418        &self,
419        method: InterpolationMethodType,
420        data_profile: &DataProfile<F>,
421        current_parameters: &HashMap<String, f64>,
422    ) -> InterpolateResult<HashMap<String, f64>> {
423        // Choose strategy based on current system resources
424        if self.resource_monitor.memory_usage as f64 / self.resource_monitor.available_memory as f64
425            > 0.8
426        {
427            // High memory usage - optimize for memory
428            self.optimize_for_memory(method, data_profile, current_parameters)
429        } else if self.resource_monitor.cpu_usage > 0.9 {
430            // High CPU usage - optimize for speed
431            self.optimize_for_speed(method, data_profile, current_parameters)
432        } else {
433            // Balanced approach
434            self.optimize_balanced(method, data_profile, current_parameters)
435        }
436    }
437
438    /// Custom weighted optimization
439    fn optimize_custom(
440        &self,
441        method: InterpolationMethodType,
442        data_profile: &DataProfile<F>,
443        current_parameters: &HashMap<String, f64>,
444        time_weight: f64,
445        memory_weight: f64,
446        accuracy_weight: f64,
447    ) -> InterpolateResult<HashMap<String, f64>> {
448        let speed_params = self.optimize_for_speed(method, data_profile, current_parameters)?;
449        let memory_params = self.optimize_for_memory(method, data_profile, current_parameters)?;
450        let accuracy_params = current_parameters.clone(); // Keep original for accuracy
451
452        let mut custom = HashMap::new();
453
454        // Weighted combination of different optimization strategies
455        let total_weight = time_weight + memory_weight + accuracy_weight;
456        let norm_time = time_weight / total_weight;
457        let norm_memory = memory_weight / total_weight;
458        let norm_accuracy = accuracy_weight / total_weight;
459
460        // Combine parameters from all strategies
461        let all_keys: std::collections::HashSet<_> = speed_params
462            .keys()
463            .chain(memory_params.keys())
464            .chain(accuracy_params.keys())
465            .collect();
466
467        for key in all_keys {
468            let speed_val = speed_params
469                .get(key)
470                .copied()
471                .unwrap_or_else(|| current_parameters.get(key).copied().unwrap_or(0.0));
472            let memory_val = memory_params
473                .get(key)
474                .copied()
475                .unwrap_or_else(|| current_parameters.get(key).copied().unwrap_or(0.0));
476            let accuracy_val = accuracy_params.get(key).copied().unwrap_or(0.0);
477
478            let weighted_val =
479                norm_time * speed_val + norm_memory * memory_val + norm_accuracy * accuracy_val;
480            custom.insert(key.clone(), weighted_val);
481        }
482
483        Ok(custom)
484    }
485
486    /// Resource-aware optimization
487    fn optimize_resource_aware(
488        &self,
489        method: InterpolationMethodType,
490        data_profile: &DataProfile<F>,
491        current_parameters: &HashMap<String, f64>,
492        cpu_threshold: f64,
493        memory_threshold: f64,
494    ) -> InterpolateResult<HashMap<String, f64>> {
495        let current_cpu = self.resource_monitor.cpu_usage;
496        let current_memory_ratio = self.resource_monitor.memory_usage as f64
497            / self.resource_monitor.available_memory as f64;
498
499        if current_cpu > cpu_threshold && current_memory_ratio > memory_threshold {
500            // Both resources constrained - aggressive optimization
501            let mut optimized = current_parameters.clone();
502            optimized.insert("aggressive_optimization".to_string(), 1.0);
503            optimized.insert("resource_limit_mode".to_string(), 1.0);
504            Ok(optimized)
505        } else if current_cpu > cpu_threshold {
506            // CPU constrained - optimize for speed
507            self.optimize_for_speed(method, data_profile, current_parameters)
508        } else if current_memory_ratio > memory_threshold {
509            // Memory constrained - optimize for memory
510            self.optimize_for_memory(method, data_profile, current_parameters)
511        } else {
512            // Resources available - balanced approach
513            self.optimize_balanced(method, data_profile, current_parameters)
514        }
515    }
516
517    /// Check if current metrics meet performance targets
518    fn meets_performance_targets(&self, metrics: &PerformanceMetrics) -> bool {
519        if let Some(max_time) = self.targets.max_execution_time {
520            if metrics.execution_time > max_time {
521                return false;
522            }
523        }
524
525        if let Some(max_memory) = self.targets.max_memory_usage {
526            if metrics.memory_usage > max_memory {
527                return false;
528            }
529        }
530
531        if let Some(min_throughput) = self.targets.min_throughput {
532            if metrics.throughput < min_throughput {
533                return false;
534            }
535        }
536
537        if let Some(max_latency) = self.targets.max_latency {
538            if metrics.execution_time > max_latency {
539                return false;
540            }
541        }
542
543        true
544    }
545
546    /// Calculate parameter adjustments
547    fn calculate_parameter_adjustments(
548        &self,
549        original: &HashMap<String, f64>,
550        optimized: &HashMap<String, f64>,
551    ) -> HashMap<String, ParameterAdjustment> {
552        let mut adjustments = HashMap::new();
553
554        for (key, &opt_val) in optimized {
555            if let Some(&orig_val) = original.get(key) {
556                if (opt_val - orig_val).abs() > 1e-10 {
557                    let adjustment_type = if opt_val > orig_val {
558                        AdjustmentType::Increase
559                    } else {
560                        AdjustmentType::Decrease
561                    };
562
563                    let performance_impact = (opt_val - orig_val).abs() / orig_val.max(1e-10);
564
565                    adjustments.insert(
566                        key.clone(),
567                        ParameterAdjustment {
568                            original_value: orig_val,
569                            new_value: opt_val,
570                            adjustment_type,
571                            performance_impact,
572                        },
573                    );
574                }
575            }
576        }
577
578        adjustments
579    }
580
581    /// Predict optimized performance metrics
582    fn predict_optimized_metrics(
583        &self,
584        method: InterpolationMethodType,
585        data_profile: &DataProfile<F>,
586        optimized_params: &HashMap<String, f64>,
587        current_metrics: &PerformanceMetrics,
588    ) -> InterpolateResult<PerformanceMetrics> {
589        // Simplified prediction model
590        let mut predicted = current_metrics.clone();
591
592        // Apply parameter-based adjustments
593        if optimized_params.contains_key("fast_evaluation") {
594            predicted.execution_time *= 0.7; // 30% faster
595        }
596
597        if optimized_params.contains_key("parallel_execution") {
598            predicted.execution_time *= 0.5; // 50% faster with parallelism
599            predicted.cpu_utilization *= 1.5; // Higher CPU usage
600        }
601
602        if optimized_params.contains_key("sparse_representation") {
603            predicted.memory_usage = (predicted.memory_usage as f64 * 0.6) as usize;
604            // 40% memory reduction
605        }
606
607        if optimized_params.contains_key("approximation_method") {
608            predicted.execution_time *= 0.4; // Much faster
609            predicted.accuracy *= 0.95; // Slight accuracy loss
610        }
611
612        // Adjust based on method characteristics
613        match method {
614            InterpolationMethodType::RadialBasisFunction => {
615                if data_profile.size > 5000 {
616                    predicted.memory_usage = (predicted.memory_usage as f64 * 1.2) as usize;
617                }
618            }
619            InterpolationMethodType::Kriging => {
620                predicted.accuracy *= 1.05; // Kriging typically more accurate
621            }
622            _ => {}
623        }
624
625        // Update throughput based on execution time
626        if predicted.execution_time > 0.0 {
627            predicted.throughput = 1_000_000.0 / predicted.execution_time; // Operations per second
628        }
629
630        Ok(predicted)
631    }
632
633    /// Calculate improvement score
634    fn calculate_improvement_score(
635        &self,
636        original: &PerformanceMetrics,
637        optimized: &PerformanceMetrics,
638    ) -> f64 {
639        let time_improvement = if original.execution_time > 0.0 {
640            (original.execution_time - optimized.execution_time) / original.execution_time
641        } else {
642            0.0
643        };
644
645        let memory_improvement = if original.memory_usage > 0 {
646            (original.memory_usage as f64 - optimized.memory_usage as f64)
647                / original.memory_usage as f64
648        } else {
649            0.0
650        };
651
652        let accuracy_change =
653            (optimized.accuracy - original.accuracy) / original.accuracy.max(1e-10);
654
655        // Weighted score (prioritize time, then memory, then accuracy)
656        0.5 * time_improvement + 0.3 * memory_improvement + 0.2 * accuracy_change
657    }
658
659    /// Update performance baseline for a method
660    fn update_performance_baseline(
661        &mut self,
662        method: InterpolationMethodType,
663        metrics: &PerformanceMetrics,
664    ) -> InterpolateResult<()> {
665        let baseline = self
666            .performance_baselines
667            .entry(method)
668            .or_insert(PerformanceBaseline {
669                baseline_time: metrics.execution_time,
670                baseline_memory: metrics.memory_usage,
671                baseline_accuracy: metrics.accuracy,
672                sample_size: 0,
673                last_update: Instant::now(),
674            });
675
676        // Exponential moving average update
677        let alpha = 0.1;
678        baseline.baseline_time =
679            (1.0 - alpha) * baseline.baseline_time + alpha * metrics.execution_time;
680        baseline.baseline_memory = ((1.0 - alpha) * baseline.baseline_memory as f64
681            + alpha * metrics.memory_usage as f64) as usize;
682        baseline.baseline_accuracy =
683            (1.0 - alpha) * baseline.baseline_accuracy + alpha * metrics.accuracy;
684        baseline.sample_size += 1;
685        baseline.last_update = Instant::now();
686
687        Ok(())
688    }
689
690    /// Get performance targets
691    pub fn get_targets(&self) -> &PerformanceTargets {
692        &self.targets
693    }
694
695    /// Get tuning history
696    pub fn get_tuning_history(&self) -> &VecDeque<TuningResult> {
697        &self.tuning_history
698    }
699
700    /// Get current resource usage
701    pub fn get_resource_usage(&self) -> ResourceUsage {
702        ResourceUsage {
703            cpu_usage: self.resource_monitor.cpu_usage,
704            memory_usage: self.resource_monitor.memory_usage,
705            memory_usage_ratio: self.resource_monitor.memory_usage as f64
706                / self.resource_monitor.available_memory as f64,
707            load_average: self.resource_monitor.load_average,
708        }
709    }
710
711    /// Get performance baseline for a method
712    pub fn get_performance_baseline(
713        &self,
714        method: InterpolationMethodType,
715    ) -> Option<&PerformanceBaseline> {
716        self.performance_baselines.get(&method)
717    }
718}
719
720/// Current resource usage information
721#[derive(Debug, Clone)]
722pub struct ResourceUsage {
723    /// CPU usage (0-1)
724    pub cpu_usage: f64,
725    /// Memory usage in bytes
726    pub memory_usage: usize,
727    /// Memory usage ratio (0-1)
728    pub memory_usage_ratio: f64,
729    /// System load average
730    pub load_average: f64,
731}
732
733impl ResourceMonitor {
734    /// Create a new resource monitor
735    pub fn new() -> InterpolateResult<Self> {
736        Ok(Self {
737            cpu_usage: 0.0,
738            memory_usage: 0,
739            available_memory: 8_000_000_000, // 8GB default
740            load_average: 0.0,
741            monitoring_interval: 1000, // 1 second
742        })
743    }
744
745    /// Update resource metrics
746    pub fn update_metrics(&mut self) -> InterpolateResult<()> {
747        // Simplified resource monitoring
748        // In a real implementation, this would use system APIs
749
750        // Simulate CPU usage (would use actual system monitoring)
751        self.cpu_usage = 0.3; // 30% usage
752
753        // Simulate memory usage (would use actual system monitoring)
754        self.memory_usage = 2_000_000_000; // 2GB usage
755
756        // Simulate load average
757        self.load_average = 1.0;
758
759        Ok(())
760    }
761
762    /// Get current CPU usage
763    pub fn get_cpu_usage(&self) -> f64 {
764        self.cpu_usage
765    }
766
767    /// Get current memory usage
768    pub fn get_memory_usage(&self) -> usize {
769        self.memory_usage
770    }
771
772    /// Get memory usage ratio
773    pub fn get_memory_ratio(&self) -> f64 {
774        self.memory_usage as f64 / self.available_memory as f64
775    }
776}
777
778impl Default for PerformanceTargets {
779    fn default() -> Self {
780        Self {
781            max_execution_time: None,
782            max_memory_usage: None,
783            min_throughput: None,
784            max_latency: None,
785            target_cpu_utilization: Some(0.8), // 80% CPU utilization
786            memory_efficiency_target: Some(1000.0), // 1000 ops per MB
787        }
788    }
789}
790
791#[cfg(test)]
792mod tests {
793    use super::*;
794
795    #[test]
796    fn test_performance_tuning_system_creation() {
797        let system: PerformanceTuningSystem<f64> = PerformanceTuningSystem::new().unwrap();
798        assert!(matches!(
799            system.strategy,
800            PerformanceTuningStrategy::Balanced
801        ));
802        assert!(system.tuning_history.is_empty());
803    }
804
805    #[test]
806    fn test_performance_targets_default() {
807        let targets = PerformanceTargets::default();
808        assert!(targets.max_execution_time.is_none());
809        assert_eq!(targets.target_cpu_utilization, Some(0.8));
810    }
811
812    #[test]
813    fn test_resource_monitor_creation() {
814        let monitor = ResourceMonitor::new().unwrap();
815        assert_eq!(monitor.monitoring_interval, 1000);
816        assert_eq!(monitor.available_memory, 8_000_000_000);
817    }
818
819    #[test]
820    fn test_improvement_score_calculation() {
821        let system: PerformanceTuningSystem<f64> = PerformanceTuningSystem::new().unwrap();
822
823        let original = PerformanceMetrics {
824            execution_time: 1000.0,
825            memory_usage: 1000000,
826            accuracy: 0.9,
827            throughput: 1000.0,
828            cpu_utilization: 0.5,
829            cache_hit_ratio: 0.8,
830        };
831
832        let optimized = PerformanceMetrics {
833            execution_time: 500.0, // 50% faster
834            memory_usage: 800000,  // 20% less memory
835            accuracy: 0.9,
836            throughput: 2000.0,
837            cpu_utilization: 0.6,
838            cache_hit_ratio: 0.9,
839        };
840
841        let score = system.calculate_improvement_score(&original, &optimized);
842        assert!(score > 0.0); // Should show improvement
843        assert!(score > 0.3); // Should be significant improvement
844    }
845}