scirs2_interpolate/advanced_coordinator_modules/
accuracy_optimization.rs

1//! Accuracy optimization engine for interpolation methods
2//!
3//! This module provides sophisticated accuracy optimization capabilities,
4//! including error prediction, adaptive parameter tuning, and performance-accuracy
5//! trade-off management.
6
7use super::types::*;
8use crate::error::InterpolateResult;
9use scirs2_core::numeric::Float;
10use std::collections::{HashMap, VecDeque};
11use std::fmt::Debug;
12use std::time::Instant;
13
14/// Accuracy optimization engine
15#[derive(Debug)]
16pub struct AccuracyOptimizationEngine<F: Float + Debug> {
17    /// Current optimization strategy
18    strategy: AccuracyOptimizationStrategy,
19    /// Accuracy targets
20    targets: AccuracyTargets<F>,
21    /// Error prediction model
22    error_predictor: ErrorPredictionModel<F>,
23    /// Optimization history
24    optimization_history: VecDeque<AccuracyOptimizationResult>,
25}
26
27/// Accuracy optimization strategy
28#[derive(Debug, Clone)]
29pub enum AccuracyOptimizationStrategy {
30    /// Maximize accuracy regardless of cost
31    MaximizeAccuracy,
32    /// Balance accuracy and performance
33    BalancedAccuracy,
34    /// Meet minimum accuracy with best performance
35    MinimumAccuracy,
36    /// Adaptive based on data characteristics
37    Adaptive,
38    /// Custom weighted strategy
39    Custom {
40        accuracy_weight: f64,
41        performance_weight: f64,
42    },
43}
44
45/// Accuracy targets for optimization
46#[derive(Debug, Clone)]
47pub struct AccuracyTargets<F: Float> {
48    /// Target absolute error
49    pub target_absolute_error: Option<F>,
50    /// Target relative error
51    pub target_relative_error: Option<F>,
52    /// Maximum acceptable error
53    pub max_acceptable_error: F,
54    /// Confidence level for error bounds
55    pub confidence_level: F,
56}
57
58/// Error prediction model
59#[derive(Debug)]
60pub struct ErrorPredictionModel<F: Float> {
61    /// Prediction parameters
62    prediction_params: HashMap<String, F>,
63    /// Historical error data
64    error_history: VecDeque<ErrorRecord<F>>,
65    /// Model accuracy
66    model_accuracy: F,
67}
68
69/// Error record for prediction training
70#[derive(Debug, Clone)]
71pub struct ErrorRecord<F: Float> {
72    /// Predicted error
73    pub predicted_error: F,
74    /// Actual error
75    pub actual_error: F,
76    /// Data characteristics
77    pub data_characteristics: String,
78    /// Method used
79    pub method: InterpolationMethodType,
80    /// Timestamp
81    pub timestamp: Instant,
82}
83
84/// Result of accuracy optimization
85#[derive(Debug, Clone)]
86pub struct AccuracyOptimizationResult {
87    /// Method that was optimized
88    pub method: InterpolationMethodType,
89    /// Parameters that were adjusted
90    pub adjusted_parameters: HashMap<String, f64>,
91    /// Accuracy improvement achieved
92    pub accuracy_improvement: f64,
93    /// Performance impact
94    pub performance_impact: f64,
95    /// Success/failure status
96    pub success: bool,
97    /// Timestamp
98    pub timestamp: Instant,
99}
100
101impl<F: Float + Debug + std::ops::AddAssign> AccuracyOptimizationEngine<F> {
102    /// Create a new accuracy optimization engine
103    pub fn new() -> InterpolateResult<Self> {
104        Ok(Self {
105            strategy: AccuracyOptimizationStrategy::BalancedAccuracy,
106            targets: AccuracyTargets::default(),
107            error_predictor: ErrorPredictionModel::new()?,
108            optimization_history: VecDeque::new(),
109        })
110    }
111
112    /// Set optimization strategy
113    pub fn set_strategy(&mut self, strategy: AccuracyOptimizationStrategy) {
114        self.strategy = strategy;
115    }
116
117    /// Set accuracy targets
118    pub fn set_targets(&mut self, targets: AccuracyTargets<F>) {
119        self.targets = targets;
120    }
121
122    /// Optimize interpolation accuracy for given method and data
123    pub fn optimize_accuracy(
124        &mut self,
125        method: InterpolationMethodType,
126        data_profile: &DataProfile<F>,
127        current_parameters: &HashMap<String, f64>,
128    ) -> InterpolateResult<AccuracyOptimizationResult> {
129        let start_time = Instant::now();
130
131        // Predict current accuracy
132        let predicted_accuracy = self.predict_accuracy(method, data_profile, current_parameters)?;
133
134        // Check if optimization is needed
135        if self.meets_accuracy_targets(&predicted_accuracy)? {
136            return Ok(AccuracyOptimizationResult {
137                method,
138                adjusted_parameters: current_parameters.clone(),
139                accuracy_improvement: 0.0,
140                performance_impact: 0.0,
141                success: true,
142                timestamp: start_time,
143            });
144        }
145
146        // Apply optimization strategy
147        let optimized_params = match &self.strategy {
148            AccuracyOptimizationStrategy::MaximizeAccuracy => {
149                self.maximize_accuracy_optimization(method, data_profile, current_parameters)?
150            }
151            AccuracyOptimizationStrategy::BalancedAccuracy => {
152                self.balanced_optimization(method, data_profile, current_parameters)?
153            }
154            AccuracyOptimizationStrategy::MinimumAccuracy => {
155                self.minimum_accuracy_optimization(method, data_profile, current_parameters)?
156            }
157            AccuracyOptimizationStrategy::Adaptive => {
158                self.adaptive_optimization(method, data_profile, current_parameters)?
159            }
160            AccuracyOptimizationStrategy::Custom {
161                accuracy_weight,
162                performance_weight,
163            } => self.custom_weighted_optimization(
164                method,
165                data_profile,
166                current_parameters,
167                *accuracy_weight,
168                *performance_weight,
169            )?,
170        };
171
172        // Calculate improvement and performance impact
173        let optimized_accuracy = self.predict_accuracy(method, data_profile, &optimized_params)?;
174        let accuracy_improvement = optimized_accuracy
175            .predicted_accuracy
176            .to_f64()
177            .unwrap_or(0.0)
178            - predicted_accuracy
179                .predicted_accuracy
180                .to_f64()
181                .unwrap_or(0.0);
182
183        let performance_impact =
184            self.estimate_performance_impact(&optimized_params, current_parameters);
185
186        let result = AccuracyOptimizationResult {
187            method,
188            adjusted_parameters: optimized_params,
189            accuracy_improvement,
190            performance_impact,
191            success: accuracy_improvement > 0.0,
192            timestamp: start_time,
193        };
194
195        // Store optimization result
196        self.optimization_history.push_back(result.clone());
197        if self.optimization_history.len() > 100 {
198            self.optimization_history.pop_front();
199        }
200
201        Ok(result)
202    }
203
204    /// Predict accuracy for given method and parameters
205    pub fn predict_accuracy(
206        &self,
207        method: InterpolationMethodType,
208        data_profile: &DataProfile<F>,
209        parameters: &HashMap<String, f64>,
210    ) -> InterpolateResult<AccuracyPrediction<F>> {
211        self.error_predictor
212            .predict_accuracy(method, data_profile, parameters)
213    }
214
215    /// Update error prediction model with actual results
216    pub fn update_error_model(
217        &mut self,
218        method: InterpolationMethodType,
219        data_profile: &DataProfile<F>,
220        predicted_error: F,
221        actual_error: F,
222    ) -> InterpolateResult<()> {
223        let error_record = ErrorRecord {
224            predicted_error,
225            actual_error,
226            data_characteristics: format!(
227                "size:{},dim:{}",
228                data_profile.size, data_profile.dimensionality
229            ),
230            method,
231            timestamp: Instant::now(),
232        };
233
234        self.error_predictor.add_error_record(error_record)?;
235        self.error_predictor.update_model()?;
236
237        Ok(())
238    }
239
240    /// Get optimization history
241    pub fn get_optimization_history(&self) -> &VecDeque<AccuracyOptimizationResult> {
242        &self.optimization_history
243    }
244
245    /// Get current accuracy targets
246    pub fn get_targets(&self) -> &AccuracyTargets<F> {
247        &self.targets
248    }
249
250    /// Check if predicted accuracy meets targets
251    fn meets_accuracy_targets(
252        &self,
253        prediction: &AccuracyPrediction<F>,
254    ) -> InterpolateResult<bool> {
255        let predicted_error = prediction.predicted_accuracy;
256
257        // Check maximum acceptable error
258        if predicted_error > self.targets.max_acceptable_error {
259            return Ok(false);
260        }
261
262        // Check target absolute error if specified
263        if let Some(target_abs) = self.targets.target_absolute_error {
264            if predicted_error > target_abs {
265                return Ok(false);
266            }
267        }
268
269        // Check target relative error if specified
270        if let Some(target_rel) = self.targets.target_relative_error {
271            // This would require knowledge of the expected value range
272            // Simplified check for now
273            if predicted_error > target_rel {
274                return Ok(false);
275            }
276        }
277
278        Ok(true)
279    }
280
281    /// Maximize accuracy optimization strategy
282    fn maximize_accuracy_optimization(
283        &self,
284        method: InterpolationMethodType,
285        data_profile: &DataProfile<F>,
286        current_parameters: &HashMap<String, f64>,
287    ) -> InterpolateResult<HashMap<String, f64>> {
288        let mut optimized = current_parameters.clone();
289
290        match method {
291            InterpolationMethodType::CubicSpline => {
292                // Reduce smoothing factor for higher accuracy
293                if let Some(smoothing) = optimized.get_mut("smoothing") {
294                    *smoothing *= 0.1;
295                }
296            }
297            InterpolationMethodType::BSpline => {
298                // Increase degree for higher accuracy (within limits)
299                if let Some(degree) = optimized.get_mut("degree") {
300                    *degree = (*degree + 1.0).min(5.0);
301                }
302            }
303            InterpolationMethodType::RadialBasisFunction => {
304                // Optimize shape parameter
305                if let Some(shape) = optimized.get_mut("shape_parameter") {
306                    *shape = self.optimize_rbf_shape_parameter(data_profile);
307                }
308            }
309            _ => {
310                // Generic optimization: reduce tolerance, increase precision
311                optimized.insert("tolerance".to_string(), 1e-12);
312                optimized.insert("max_iterations".to_string(), 1000.0);
313            }
314        }
315
316        Ok(optimized)
317    }
318
319    /// Balanced accuracy optimization strategy
320    fn balanced_optimization(
321        &self,
322        method: InterpolationMethodType,
323        data_profile: &DataProfile<F>,
324        current_parameters: &HashMap<String, f64>,
325    ) -> InterpolateResult<HashMap<String, f64>> {
326        let mut optimized = current_parameters.clone();
327
328        // Apply moderate optimizations based on data characteristics
329        let noise_level = data_profile.noise_level.to_f64().unwrap_or(0.1);
330        let smoothness = data_profile.smoothness.to_f64().unwrap_or(0.5);
331
332        match method {
333            InterpolationMethodType::CubicSpline => {
334                // Balance smoothing based on noise level
335                let smoothing_factor = if noise_level > 0.1 {
336                    noise_level * 0.5
337                } else {
338                    0.01
339                };
340                optimized.insert("smoothing".to_string(), smoothing_factor);
341            }
342            InterpolationMethodType::BSpline => {
343                // Choose degree based on smoothness
344                let degree = if smoothness > 0.8 { 3.0 } else { 2.0 };
345                optimized.insert("degree".to_string(), degree);
346            }
347            _ => {
348                // Moderate tolerance and iterations
349                optimized.insert("tolerance".to_string(), 1e-8);
350                optimized.insert("max_iterations".to_string(), 100.0);
351            }
352        }
353
354        Ok(optimized)
355    }
356
357    /// Minimum accuracy optimization strategy
358    fn minimum_accuracy_optimization(
359        &self,
360        _method: InterpolationMethodType,
361        _data_profile: &DataProfile<F>,
362        current_parameters: &HashMap<String, f64>,
363    ) -> InterpolateResult<HashMap<String, f64>> {
364        let mut optimized = current_parameters.clone();
365
366        // Use relaxed tolerances for faster computation
367        optimized.insert("tolerance".to_string(), 1e-4);
368        optimized.insert("max_iterations".to_string(), 50.0);
369
370        Ok(optimized)
371    }
372
373    /// Adaptive optimization based on data characteristics
374    fn adaptive_optimization(
375        &self,
376        method: InterpolationMethodType,
377        data_profile: &DataProfile<F>,
378        current_parameters: &HashMap<String, f64>,
379    ) -> InterpolateResult<HashMap<String, f64>> {
380        let noise_level = data_profile.noise_level.to_f64().unwrap_or(0.1);
381        let data_size = data_profile.size;
382
383        // Choose strategy based on data characteristics
384        if noise_level > 0.2 {
385            // High noise: prioritize robustness
386            self.balanced_optimization(method, data_profile, current_parameters)
387        } else if data_size > 10000 {
388            // Large data: prioritize performance
389            self.minimum_accuracy_optimization(method, data_profile, current_parameters)
390        } else {
391            // Small, clean data: prioritize accuracy
392            self.maximize_accuracy_optimization(method, data_profile, current_parameters)
393        }
394    }
395
396    /// Custom weighted optimization strategy
397    fn custom_weighted_optimization(
398        &self,
399        method: InterpolationMethodType,
400        data_profile: &DataProfile<F>,
401        current_parameters: &HashMap<String, f64>,
402        accuracy_weight: f64,
403        performance_weight: f64,
404    ) -> InterpolateResult<HashMap<String, f64>> {
405        // Blend between accuracy and performance optimization
406        let accuracy_params =
407            self.maximize_accuracy_optimization(method, data_profile, current_parameters)?;
408        let performance_params =
409            self.minimum_accuracy_optimization(method, data_profile, current_parameters)?;
410
411        let mut optimized = HashMap::new();
412
413        // Weighted average of parameters
414        for (key, &acc_val) in &accuracy_params {
415            let perf_val = performance_params.get(key).copied().unwrap_or(acc_val);
416            let weighted_val = accuracy_weight * acc_val + performance_weight * perf_val;
417            optimized.insert(key.clone(), weighted_val);
418        }
419
420        Ok(optimized)
421    }
422
423    /// Optimize RBF shape parameter based on data characteristics
424    fn optimize_rbf_shape_parameter(&self, data_profile: &DataProfile<F>) -> f64 {
425        let typical_distance = (data_profile.value_range.1 - data_profile.value_range.0)
426            .to_f64()
427            .unwrap_or(1.0)
428            / (data_profile.size as f64).sqrt();
429
430        // Shape parameter should be inversely related to typical distance
431        1.0 / typical_distance
432    }
433
434    /// Estimate performance impact of parameter changes
435    fn estimate_performance_impact(
436        &self,
437        optimized_params: &HashMap<String, f64>,
438        current_params: &HashMap<String, f64>,
439    ) -> f64 {
440        let mut impact = 0.0;
441
442        // Tolerance changes affect performance significantly
443        if let (Some(&opt_tol), Some(&cur_tol)) = (
444            optimized_params.get("tolerance"),
445            current_params.get("tolerance"),
446        ) {
447            if opt_tol < cur_tol {
448                impact += (cur_tol / opt_tol).log10() * 0.1; // Tighter tolerance = more computation
449            }
450        }
451
452        // Iteration limit changes
453        if let (Some(&opt_iter), Some(&cur_iter)) = (
454            optimized_params.get("max_iterations"),
455            current_params.get("max_iterations"),
456        ) {
457            impact += (opt_iter / cur_iter - 1.0) * 0.05; // More iterations = more time
458        }
459
460        // Degree changes for splines
461        if let (Some(&opt_deg), Some(&cur_deg)) =
462            (optimized_params.get("degree"), current_params.get("degree"))
463        {
464            impact += (opt_deg - cur_deg) * 0.15; // Higher degree = more computation
465        }
466
467        impact.max(-0.5).min(2.0) // Cap impact between -50% and +200%
468    }
469}
470
471impl<F: Float> Default for AccuracyTargets<F> {
472    fn default() -> Self {
473        Self {
474            target_absolute_error: None,
475            target_relative_error: None,
476            max_acceptable_error: F::from(1e-6).unwrap(),
477            confidence_level: F::from(0.95).unwrap(),
478        }
479    }
480}
481
482impl<F: Float + std::ops::AddAssign> ErrorPredictionModel<F> {
483    /// Create a new error prediction model
484    pub fn new() -> InterpolateResult<Self> {
485        Ok(Self {
486            prediction_params: HashMap::new(),
487            error_history: VecDeque::new(),
488            model_accuracy: F::from(0.8).unwrap(),
489        })
490    }
491
492    /// Predict accuracy for given method and parameters
493    pub fn predict_accuracy(
494        &self,
495        method: InterpolationMethodType,
496        data_profile: &DataProfile<F>,
497        _parameters: &HashMap<String, f64>,
498    ) -> InterpolateResult<AccuracyPrediction<F>> {
499        // Simplified accuracy prediction based on method and data characteristics
500        let base_accuracy = self.get_base_accuracy(method);
501        let noise_penalty = data_profile.noise_level.to_f64().unwrap_or(0.1) * 0.5;
502        let size_bonus = if data_profile.size > 1000 { 0.05 } else { 0.0 };
503
504        let predicted_error = F::from(1.0 - base_accuracy + noise_penalty - size_bonus).unwrap();
505        let confidence = self.model_accuracy;
506
507        Ok(AccuracyPrediction {
508            predicted_accuracy: predicted_error.max(F::from(1e-12).unwrap()),
509            confidence_interval: (
510                predicted_error * F::from(0.8).unwrap(),
511                predicted_error * F::from(1.2).unwrap(),
512            ),
513            prediction_confidence: confidence,
514            accuracy_factors: vec![
515                AccuracyFactor {
516                    name: "Method capability".to_string(),
517                    impact: F::from(base_accuracy - 0.5).unwrap(),
518                    confidence: F::from(0.9).unwrap(),
519                    mitigations: vec!["Consider higher-order methods".to_string()],
520                },
521                AccuracyFactor {
522                    name: "Data noise level".to_string(),
523                    impact: F::from(-noise_penalty).unwrap(),
524                    confidence: F::from(0.8).unwrap(),
525                    mitigations: vec![
526                        "Apply data smoothing".to_string(),
527                        "Use robust methods".to_string(),
528                    ],
529                },
530            ],
531        })
532    }
533
534    /// Add error record for model training
535    pub fn add_error_record(&mut self, record: ErrorRecord<F>) -> InterpolateResult<()> {
536        self.error_history.push_back(record);
537
538        // Limit history size
539        if self.error_history.len() > 1000 {
540            self.error_history.pop_front();
541        }
542
543        Ok(())
544    }
545
546    /// Update prediction model based on historical data
547    pub fn update_model(&mut self) -> InterpolateResult<()> {
548        if self.error_history.len() < 10 {
549            return Ok(()); // Need sufficient data for training
550        }
551
552        // Calculate model accuracy based on recent predictions
553        let recent_records: Vec<_> = self.error_history.iter().rev().take(50).collect();
554        let mut total_error = F::zero();
555        let mut count = 0;
556
557        for record in recent_records {
558            let relative_error =
559                (record.predicted_error - record.actual_error).abs() / record.actual_error;
560            total_error += relative_error;
561            count += 1;
562        }
563
564        if count > 0 {
565            let avg_relative_error = total_error / F::from(count).unwrap();
566            self.model_accuracy = (F::one() - avg_relative_error).max(F::from(0.1).unwrap());
567        }
568
569        Ok(())
570    }
571
572    /// Get base accuracy for different methods
573    fn get_base_accuracy(&self, method: InterpolationMethodType) -> f64 {
574        match method {
575            InterpolationMethodType::Linear => 0.7,
576            InterpolationMethodType::CubicSpline => 0.9,
577            InterpolationMethodType::BSpline => 0.92,
578            InterpolationMethodType::RadialBasisFunction => 0.95,
579            InterpolationMethodType::Kriging => 0.98,
580            InterpolationMethodType::Polynomial => 0.85,
581            InterpolationMethodType::PchipInterpolation => 0.88,
582            InterpolationMethodType::AkimaSpline => 0.87,
583            InterpolationMethodType::ThinPlateSpline => 0.93,
584            InterpolationMethodType::NaturalNeighbor => 0.86,
585            InterpolationMethodType::ShepardsMethod => 0.75,
586            InterpolationMethodType::QuantumInspired => 0.99,
587        }
588    }
589
590    /// Get model accuracy
591    pub fn get_model_accuracy(&self) -> F {
592        self.model_accuracy
593    }
594
595    /// Get prediction history statistics
596    pub fn get_prediction_statistics(&self) -> HashMap<String, f64> {
597        let mut stats = HashMap::new();
598
599        if !self.error_history.is_empty() {
600            let mut total_abs_error = F::zero();
601            let mut total_rel_error = F::zero();
602            let count = self.error_history.len();
603
604            for record in &self.error_history {
605                let abs_error = (record.predicted_error - record.actual_error).abs();
606                let rel_error = abs_error / record.actual_error;
607
608                total_abs_error += abs_error;
609                total_rel_error += rel_error;
610            }
611
612            stats.insert(
613                "mean_absolute_error".to_string(),
614                (total_abs_error / F::from(count).unwrap())
615                    .to_f64()
616                    .unwrap_or(0.0),
617            );
618            stats.insert(
619                "mean_relative_error".to_string(),
620                (total_rel_error / F::from(count).unwrap())
621                    .to_f64()
622                    .unwrap_or(0.0),
623            );
624            stats.insert(
625                "model_accuracy".to_string(),
626                self.model_accuracy.to_f64().unwrap_or(0.0),
627            );
628            stats.insert("sample_count".to_string(), count as f64);
629        }
630
631        stats
632    }
633}
634
635#[cfg(test)]
636mod tests {
637    use super::*;
638
639    #[test]
640    fn test_accuracy_targets_default() {
641        let targets: AccuracyTargets<f64> = AccuracyTargets::default();
642        assert_eq!(targets.max_acceptable_error, 1e-6);
643        assert_eq!(targets.confidence_level, 0.95);
644        assert!(targets.target_absolute_error.is_none());
645    }
646
647    #[test]
648    fn test_error_prediction_model_creation() {
649        let model: ErrorPredictionModel<f64> = ErrorPredictionModel::new().unwrap();
650        assert_eq!(model.model_accuracy, 0.8);
651        assert!(model.error_history.is_empty());
652    }
653
654    #[test]
655    fn test_accuracy_optimization_engine_creation() {
656        let engine: AccuracyOptimizationEngine<f64> = AccuracyOptimizationEngine::new().unwrap();
657        assert!(matches!(
658            engine.strategy,
659            AccuracyOptimizationStrategy::BalancedAccuracy
660        ));
661        assert!(engine.optimization_history.is_empty());
662    }
663}