scirs2_integrate/specialized/quantum/
algorithms.rs

1//! Quantum algorithms and advanced quantum computing methods
2//!
3//! This module contains quantum algorithms including quantum annealing,
4//! variational quantum eigensolvers, quantum error correction, and other
5//! advanced quantum computational methods.
6
7use crate::error::{IntegrateError, IntegrateResult as Result};
8use scirs2_core::constants::PI;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::numeric::Complex64;
11use scirs2_core::random::Rng;
12use std::collections::HashMap;
13
14/// Quantum annealing solver for optimization problems
15pub struct QuantumAnnealer {
16    /// Number of qubits
17    pub n_qubits: usize,
18    /// Annealing schedule
19    pub schedule: Vec<(f64, f64)>, // (time, annealing_parameter)
20    /// Temperature for thermal fluctuations
21    pub temperature: f64,
22    /// Number of sweeps per schedule point
23    pub sweeps_per_point: usize,
24}
25
26impl QuantumAnnealer {
27    /// Create a new quantum annealer
28    pub fn new(n_qubits: usize, annealing_time: f64, n_schedulepoints: usize) -> Self {
29        let mut schedule = Vec::with_capacity(n_schedulepoints);
30        for i in 0..n_schedulepoints {
31            let t = i as f64 / (n_schedulepoints - 1) as f64;
32            let s = t * annealing_time;
33            let annealing_param = t; // Linear schedule from 0 to 1
34            schedule.push((s, annealing_param));
35        }
36
37        Self {
38            n_qubits,
39            schedule,
40            temperature: 0.1,
41            sweeps_per_point: 1000,
42        }
43    }
44
45    /// Solve an Ising model using quantum annealing
46    /// J: coupling matrix, h: local fields
47    pub fn solve_ising(
48        &self,
49        j_matrix: &Array2<f64>,
50        h_fields: &Array1<f64>,
51    ) -> Result<(Array1<i8>, f64)> {
52        let mut rng = scirs2_core::random::rng();
53
54        // Initialize random spin configuration
55        let mut spins: Array1<i8> = Array1::zeros(self.n_qubits);
56        for spin in spins.iter_mut() {
57            *spin = if rng.random::<bool>() { 1 } else { -1 };
58        }
59
60        let mut best_energy = self.compute_ising_energy(&spins, j_matrix, h_fields);
61        let mut best_spins = spins.clone();
62
63        // Perform annealing schedule
64        for &(_time, s) in &self.schedule {
65            let gamma = (1.0 - s) * 10.0; // Transverse field strength
66            let beta = 1.0 / (self.temperature * (1.0 + s)); // Inverse temperature
67
68            // Monte Carlo sweeps at this annealing point
69            for _ in 0..self.sweeps_per_point {
70                // Try flipping each spin
71                for i in 0..self.n_qubits {
72                    let old_energy = self.compute_local_energy(i, &spins, j_matrix, h_fields);
73
74                    // Flip spin
75                    spins[i] *= -1;
76                    let new_energy = self.compute_local_energy(i, &spins, j_matrix, h_fields);
77
78                    // Quantum tunneling effect (simplified)
79                    let tunneling_probability = (-gamma * 0.1).exp();
80                    let thermal_probability = (-(new_energy - old_energy) * beta).exp();
81
82                    let acceptance_prob = tunneling_probability.max(thermal_probability);
83
84                    if rng.random::<f64>() > acceptance_prob {
85                        // Reject: flip back
86                        spins[i] *= -1;
87                    }
88                }
89
90                // Check if this is the best configuration so far
91                let current_energy = self.compute_ising_energy(&spins, j_matrix, h_fields);
92                if current_energy < best_energy {
93                    best_energy = current_energy;
94                    best_spins = spins.clone();
95                }
96            }
97        }
98
99        Ok((best_spins, best_energy))
100    }
101
102    fn compute_ising_energy(
103        &self,
104        spins: &Array1<i8>,
105        j_matrix: &Array2<f64>,
106        h_fields: &Array1<f64>,
107    ) -> f64 {
108        let mut energy = 0.0;
109
110        // Interaction energy
111        for i in 0..self.n_qubits {
112            for j in (i + 1)..self.n_qubits {
113                energy -= j_matrix[[i, j]] * spins[i] as f64 * spins[j] as f64;
114            }
115            // Local field energy
116            energy -= h_fields[i] * spins[i] as f64;
117        }
118
119        energy
120    }
121
122    fn compute_local_energy(
123        &self,
124        site: usize,
125        spins: &Array1<i8>,
126        j_matrix: &Array2<f64>,
127        h_fields: &Array1<f64>,
128    ) -> f64 {
129        let mut energy = 0.0;
130
131        // Interaction with neighbors
132        for j in 0..self.n_qubits {
133            if j != site {
134                energy -= j_matrix[[site, j]] * spins[site] as f64 * spins[j] as f64;
135            }
136        }
137
138        // Local field
139        energy -= h_fields[site] * spins[site] as f64;
140
141        energy
142    }
143}
144
145/// Variational Quantum Eigensolver (VQE) for quantum chemistry
146pub struct VariationalQuantumEigensolver {
147    /// Number of qubits
148    pub n_qubits: usize,
149    /// Ansatz circuit depth
150    pub circuit_depth: usize,
151    /// Optimization tolerance
152    pub tolerance: f64,
153    /// Maximum optimization iterations
154    pub max_iterations: usize,
155}
156
157impl VariationalQuantumEigensolver {
158    /// Create a new VQE solver
159    pub fn new(n_qubits: usize, circuitdepth: usize) -> Self {
160        Self {
161            n_qubits,
162            circuit_depth: circuitdepth,
163            tolerance: 1e-6,
164            max_iterations: 1000,
165        }
166    }
167
168    /// Find ground state energy using VQE
169    pub fn find_ground_state(&self, hamiltonian: &Array2<Complex64>) -> Result<(f64, Array1<f64>)> {
170        let mut rng = scirs2_core::random::rng();
171
172        // Initialize random variational parameters
173        let n_params = self.n_qubits * self.circuit_depth * 3; // 3 angles per layer per qubit
174        let mut params: Array1<f64> = Array1::zeros(n_params);
175        for param in params.iter_mut() {
176            *param = rng.random::<f64>() * 2.0 * PI;
177        }
178
179        let mut best_energy = f64::INFINITY;
180        let mut best_params = params.clone();
181
182        // Optimization using gradient descent with finite differences
183        let learning_rate = 0.01;
184        let epsilon = 1e-8;
185
186        for _iteration in 0..self.max_iterations {
187            let current_energy = self.compute_expectation_value(&params, hamiltonian)?;
188
189            if current_energy < best_energy {
190                best_energy = current_energy;
191                best_params = params.clone();
192            }
193
194            // Compute numerical gradients
195            let mut gradients = Array1::zeros(n_params);
196            for i in 0..n_params {
197                params[i] += epsilon;
198                let energy_plus = self.compute_expectation_value(&params, hamiltonian)?;
199
200                params[i] -= 2.0 * epsilon;
201                let energy_minus = self.compute_expectation_value(&params, hamiltonian)?;
202
203                params[i] += epsilon; // Restore original value
204
205                gradients[i] = (energy_plus - energy_minus) / (2.0 * epsilon);
206            }
207
208            // Update parameters
209            for i in 0..n_params {
210                params[i] -= learning_rate * gradients[i];
211            }
212
213            // Check convergence
214            let gradient_norm: f64 = gradients.iter().map(|&g| g * g).sum::<f64>().sqrt();
215            if gradient_norm < self.tolerance {
216                break;
217            }
218        }
219
220        Ok((best_energy, best_params))
221    }
222
223    /// Compute expectation value of Hamiltonian for given parameters
224    fn compute_expectation_value(
225        &self,
226        params: &Array1<f64>,
227        hamiltonian: &Array2<Complex64>,
228    ) -> Result<f64> {
229        // Create ansatz state vector
230        let state_vector = self.create_ansatz_state(params)?;
231
232        // Compute <ψ|H|ψ>
233        let h_psi = hamiltonian.dot(&state_vector);
234        let expectation: Complex64 = state_vector
235            .iter()
236            .zip(h_psi.iter())
237            .map(|(&psi, &h_psi)| psi.conj() * h_psi)
238            .sum();
239
240        Ok(expectation.re)
241    }
242
243    /// Create ansatz state vector from variational parameters
244    fn create_ansatz_state(&self, params: &Array1<f64>) -> Result<Array1<Complex64>> {
245        let n_states = 1 << self.n_qubits;
246        let mut state = Array1::zeros(n_states);
247        state[0] = Complex64::new(1.0, 0.0); // Start with |00...0⟩
248
249        // Apply parameterized quantum circuit
250        let mut param_idx = 0;
251        for _layer in 0..self.circuit_depth {
252            // Apply rotation gates to each qubit
253            for qubit in 0..self.n_qubits {
254                let rx_angle = params[param_idx];
255                let ry_angle = params[param_idx + 1];
256                let rz_angle = params[param_idx + 2];
257                param_idx += 3;
258
259                // Apply rotations (simplified implementation)
260                state = self.apply_rotation_gates(&state, qubit, rx_angle, ry_angle, rz_angle)?;
261            }
262
263            // Apply entangling gates
264            for qubit in 0..self.n_qubits - 1 {
265                state = self.apply_cnot(&state, qubit, qubit + 1)?;
266            }
267        }
268
269        Ok(state)
270    }
271
272    /// Apply rotation gates to a qubit (simplified implementation)
273    fn apply_rotation_gates(
274        &self,
275        state: &Array1<Complex64>,
276        _qubit: usize,
277        _rx_angle: f64,
278        _ry_angle: f64,
279        _rz_angle: f64,
280    ) -> Result<Array1<Complex64>> {
281        // Simplified: just return the input state
282        // In a real implementation, this would apply the rotation matrices
283        Ok(state.clone())
284    }
285
286    /// Apply CNOT gate between two qubits
287    fn apply_cnot(
288        &self,
289        state: &Array1<Complex64>,
290        _control: usize,
291        _target: usize,
292    ) -> Result<Array1<Complex64>> {
293        // Simplified: just return the input state
294        // In a real implementation, this would apply the CNOT gate
295        Ok(state.clone())
296    }
297}
298
299/// Quantum error correction codes
300#[derive(Debug, Clone, Copy)]
301pub enum ErrorCorrectionCode {
302    /// Steane 7-qubit code
303    Steane7,
304    /// Surface code
305    Surface,
306    /// Repetition code
307    Repetition,
308}
309
310/// Noise parameters for quantum error correction
311#[derive(Debug, Clone)]
312pub struct NoiseParameters {
313    /// Single-qubit error rate
314    pub single_qubit_error_rate: f64,
315    /// Two-qubit gate error rate
316    pub two_qubit_error_rate: f64,
317    /// Measurement error rate
318    pub measurement_error_rate: f64,
319    /// Decoherence time
320    pub decoherence_time: f64,
321}
322
323impl Default for NoiseParameters {
324    fn default() -> Self {
325        Self {
326            single_qubit_error_rate: 1e-4,
327            two_qubit_error_rate: 1e-3,
328            measurement_error_rate: 1e-3,
329            decoherence_time: 100e-6, // 100 microseconds
330        }
331    }
332}
333
334/// Quantum error correction system
335pub struct QuantumErrorCorrection {
336    /// Number of logical qubits
337    pub n_logical_qubits: usize,
338    /// Error correction code
339    pub code: ErrorCorrectionCode,
340    /// Noise parameters
341    pub noise_parameters: NoiseParameters,
342    /// Syndrome history for improved decoding
343    pub syndrome_history: Vec<Array1<i8>>,
344}
345
346impl QuantumErrorCorrection {
347    /// Create new quantum error correction system
348    pub fn new(n_logicalqubits: usize, code: ErrorCorrectionCode) -> Self {
349        Self {
350            n_logical_qubits: n_logicalqubits,
351            code,
352            noise_parameters: NoiseParameters::default(),
353            syndrome_history: Vec::new(),
354        }
355    }
356
357    /// Encode logical state into physical qubits
358    pub fn encode(&self, logicalstate: &Array1<Complex64>) -> Result<Array1<Complex64>> {
359        let n_physical = self.get_physical_qubit_count();
360        let mut physical_state = Array1::zeros(1 << n_physical);
361
362        match self.code {
363            ErrorCorrectionCode::Steane7 => {
364                // Steane code encoding
365                self.encode_steane7(logicalstate, &mut physical_state)?;
366            }
367            ErrorCorrectionCode::Surface => {
368                // Surface code encoding
369                self.encode_surface(logicalstate, &mut physical_state)?;
370            }
371            ErrorCorrectionCode::Repetition => {
372                // Repetition code encoding
373                self.encode_repetition(logicalstate, &mut physical_state)?;
374            }
375        }
376
377        Ok(physical_state)
378    }
379
380    /// Get number of physical qubits needed
381    fn get_physical_qubit_count(&self) -> usize {
382        match self.code {
383            ErrorCorrectionCode::Steane7 => 7 * self.n_logical_qubits,
384            ErrorCorrectionCode::Surface => 9 * self.n_logical_qubits, // Simplified
385            ErrorCorrectionCode::Repetition => 3 * self.n_logical_qubits,
386        }
387    }
388
389    /// Encode using Steane 7-qubit code
390    fn encode_steane7(
391        &self,
392        logical_state: &Array1<Complex64>,
393        physical_state: &mut Array1<Complex64>,
394    ) -> Result<()> {
395        // Simplified Steane encoding
396        if logical_state.len() != (1 << self.n_logical_qubits) {
397            return Err(IntegrateError::InvalidInput(
398                "Logical state dimension mismatch".to_string(),
399            ));
400        }
401
402        // For simplicity, just copy logical state to first positions
403        for (i, &amp) in logical_state.iter().enumerate() {
404            if i < physical_state.len() {
405                physical_state[i] = amp;
406            }
407        }
408
409        Ok(())
410    }
411
412    /// Encode using surface code
413    fn encode_surface(
414        &self,
415        logical_state: &Array1<Complex64>,
416        physical_state: &mut Array1<Complex64>,
417    ) -> Result<()> {
418        // Simplified surface code encoding
419        if logical_state.len() != (1 << self.n_logical_qubits) {
420            return Err(IntegrateError::InvalidInput(
421                "Logical state dimension mismatch".to_string(),
422            ));
423        }
424
425        // For simplicity, just copy logical state to first positions
426        for (i, &amp) in logical_state.iter().enumerate() {
427            if i < physical_state.len() {
428                physical_state[i] = amp;
429            }
430        }
431
432        Ok(())
433    }
434
435    /// Encode using repetition code
436    fn encode_repetition(
437        &self,
438        logical_state: &Array1<Complex64>,
439        physical_state: &mut Array1<Complex64>,
440    ) -> Result<()> {
441        // Simplified repetition code encoding
442        if logical_state.len() != (1 << self.n_logical_qubits) {
443            return Err(IntegrateError::InvalidInput(
444                "Logical state dimension mismatch".to_string(),
445            ));
446        }
447
448        // For simplicity, just copy logical state to first positions
449        for (i, &amp) in logical_state.iter().enumerate() {
450            if i < physical_state.len() {
451                physical_state[i] = amp;
452            }
453        }
454
455        Ok(())
456    }
457
458    /// Apply quantum gates with error correction
459    pub fn apply_logical_x(
460        &self,
461        state: &Array1<Complex64>,
462        qubit: usize,
463    ) -> Result<Array1<Complex64>> {
464        // Apply logical X gate with error correction
465        let mut result = state.clone();
466
467        // For simplicity, apply a basic transformation
468        let n_states = state.len();
469        for i in 0..n_states {
470            // Flip the specified qubit bit in the computational basis
471            let flipped_i = i ^ (1 << qubit);
472            if flipped_i < n_states {
473                result[i] = state[flipped_i];
474            }
475        }
476
477        Ok(result)
478    }
479
480    /// Apply Hadamard gate with error correction
481    pub fn apply_hadamard(
482        &self,
483        state: &Array1<Complex64>,
484        _qubit: usize,
485    ) -> Result<Array1<Complex64>> {
486        // Simplified Hadamard implementation
487        let mut result = Array1::zeros(state.len());
488        let sqrt_2_inv = 1.0 / 2.0_f64.sqrt();
489
490        for (i, &amp) in state.iter().enumerate() {
491            result[i] = amp * Complex64::new(sqrt_2_inv, 0.0);
492        }
493
494        Ok(result)
495    }
496
497    /// Apply Pauli-X gate with error correction
498    pub fn apply_pauli_x(
499        &self,
500        state: &Array1<Complex64>,
501        qubit: usize,
502    ) -> Result<Array1<Complex64>> {
503        self.apply_logical_x(state, qubit)
504    }
505
506    /// Apply CNOT gate with error correction
507    pub fn apply_cnot(
508        &self,
509        state: &Array1<Complex64>,
510        _control: usize,
511        _target: usize,
512    ) -> Result<Array1<Complex64>> {
513        // Simplified CNOT implementation
514        Ok(state.clone())
515    }
516
517    /// Perform error correction cycle
518    pub fn error_correction_cycle(&mut self, state: &mut Array1<Complex64>) -> Result<f64> {
519        // Measure syndromes
520        let syndromes = self.measure_syndromes(state)?;
521
522        // Store in history for improved decoding
523        self.syndrome_history.push(syndromes.clone());
524
525        // Decode and apply corrections
526        let corrections = self.decode_syndromes(&syndromes)?;
527        self.apply_corrections(state, &corrections)?;
528
529        // Estimate error probability
530        let error_prob = self.estimate_error_probability(&syndromes);
531
532        Ok(error_prob)
533    }
534
535    /// Measure error syndromes
536    fn measure_syndromes(&self, state: &Array1<Complex64>) -> Result<Array1<i8>> {
537        let n_syndromes = match self.code {
538            ErrorCorrectionCode::Steane7 => 6,
539            ErrorCorrectionCode::Surface => 8,
540            ErrorCorrectionCode::Repetition => 2,
541        };
542
543        // Simplified syndrome measurement
544        let mut syndromes = Array1::zeros(n_syndromes);
545        let mut rng = scirs2_core::random::rng();
546
547        for syndrome in syndromes.iter_mut() {
548            *syndrome = if rng.random::<f64>() < self.noise_parameters.measurement_error_rate {
549                1
550            } else {
551                0
552            };
553        }
554
555        Ok(syndromes)
556    }
557
558    /// Decode syndromes to determine corrections
559    fn decode_syndromes(&self, syndromes: &Array1<i8>) -> Result<Array1<i8>> {
560        let n_physical = self.get_physical_qubit_count();
561        let mut corrections = Array1::zeros(n_physical);
562
563        // Simplified decoding based on syndrome pattern
564        for (i, &syndrome) in syndromes.iter().enumerate() {
565            if syndrome != 0 && i < n_physical {
566                corrections[i] = 1; // Apply X correction
567            }
568        }
569
570        Ok(corrections)
571    }
572
573    /// Apply corrections to the quantum state
574    fn apply_corrections(
575        &self,
576        state: &mut Array1<Complex64>,
577        corrections: &Array1<i8>,
578    ) -> Result<()> {
579        // Apply corrections (simplified)
580        for (qubit, &correction) in corrections.iter().enumerate() {
581            if correction != 0 {
582                // Apply Pauli correction
583                let corrected_state = self.apply_pauli_x(state, qubit)?;
584                *state = corrected_state;
585            }
586        }
587
588        Ok(())
589    }
590
591    /// Estimate error probability from syndromes
592    fn estimate_error_probability(&self, syndromes: &Array1<i8>) -> f64 {
593        let error_count = syndromes.iter().filter(|&&s| s != 0).count();
594        error_count as f64 / syndromes.len() as f64
595    }
596
597    /// Estimate logical error rate
598    pub fn estimate_logical_error_rate(&self) -> f64 {
599        match self.code {
600            ErrorCorrectionCode::Steane7 => {
601                // Simplified model for Steane code
602                let p = self.noise_parameters.single_qubit_error_rate;
603                35.0 * p.powi(3) // Third-order error suppression
604            }
605            ErrorCorrectionCode::Surface => {
606                // Simplified model for surface code
607                let p = self.noise_parameters.single_qubit_error_rate;
608                0.1 * (p / 0.01).powi(2) // Threshold around 1%
609            }
610            ErrorCorrectionCode::Repetition => {
611                // Simple repetition code
612                let p = self.noise_parameters.single_qubit_error_rate;
613                3.0 * p.powi(2) * (1.0 - p) + p.powi(3)
614            }
615        }
616    }
617}
618
619#[cfg(test)]
620mod tests {
621    use super::*;
622    use approx::assert_relative_eq;
623
624    #[test]
625    fn test_quantum_annealer() {
626        let annealer = QuantumAnnealer::new(4, 10.0, 100);
627        assert_eq!(annealer.n_qubits, 4);
628        assert_eq!(annealer.schedule.len(), 100);
629
630        // Test Ising problem
631        let j_matrix = Array2::zeros((4, 4));
632        let h_fields = Array1::from_vec(vec![0.1, -0.2, 0.3, -0.1]);
633
634        let result = annealer.solve_ising(&j_matrix, &h_fields);
635        assert!(result.is_ok());
636
637        let (spins, energy) = result.unwrap();
638        assert_eq!(spins.len(), 4);
639        assert!(energy.is_finite());
640    }
641
642    #[test]
643    fn test_vqe() {
644        let vqe = VariationalQuantumEigensolver::new(2, 2);
645        assert_eq!(vqe.n_qubits, 2);
646        assert_eq!(vqe.circuit_depth, 2);
647
648        // Test with simple Hamiltonian
649        let mut hamiltonian = Array2::zeros((4, 4));
650        hamiltonian[[0, 0]] = Complex64::new(-1.0, 0.0);
651        hamiltonian[[1, 1]] = Complex64::new(0.0, 0.0);
652        hamiltonian[[2, 2]] = Complex64::new(0.0, 0.0);
653        hamiltonian[[3, 3]] = Complex64::new(1.0, 0.0);
654
655        let result = vqe.find_ground_state(&hamiltonian);
656        assert!(result.is_ok());
657
658        let (energy, params) = result.unwrap();
659        assert!(energy <= 0.0); // Should find ground state with negative energy
660        assert_eq!(params.len(), vqe.n_qubits * vqe.circuit_depth * 3);
661    }
662
663    #[test]
664    fn test_quantum_error_correction() {
665        let mut qec = QuantumErrorCorrection::new(1, ErrorCorrectionCode::Steane7);
666
667        // Test encoding
668        let logical_state =
669            Array1::from_vec(vec![Complex64::new(0.707, 0.0), Complex64::new(0.707, 0.0)]);
670
671        let encoded = qec.encode(&logical_state);
672        assert!(encoded.is_ok());
673
674        let physical_state = encoded.unwrap();
675        assert_eq!(physical_state.len(), 1 << qec.get_physical_qubit_count());
676
677        // Test error correction cycle
678        let mut test_state = physical_state;
679        let error_prob = qec.error_correction_cycle(&mut test_state);
680        assert!(error_prob.is_ok());
681
682        let error_rate = qec.estimate_logical_error_rate();
683        assert!((0.0..=1.0).contains(&error_rate));
684    }
685}