scirs2_integrate/
parallel_optimization.rs

1//! Advanced parallel processing optimization for numerical algorithms
2//!
3//! This module provides sophisticated parallel processing strategies including
4//! work-stealing task distribution, NUMA-aware memory allocation, vectorized
5//! operations, and dynamic load balancing for numerical integration algorithms.
6
7use crate::common::IntegrateFloat;
8use crate::error::{IntegrateError, IntegrateResult};
9use scirs2_core::ndarray::{s, Array1, Array2, ArrayView2, Axis};
10use std::sync::atomic::{AtomicUsize, Ordering};
11use std::sync::{Arc, Mutex};
12use std::thread::{self, JoinHandle};
13use std::time::{Duration, Instant};
14
15/// Advanced parallel execution engine
16pub struct ParallelOptimizer {
17    /// Number of worker threads
18    pub num_threads: usize,
19    /// Thread pool for task execution
20    thread_pool: Option<ThreadPool>,
21    /// NUMA topology information
22    pub numa_info: NumaTopology,
23    /// Load balancing strategy
24    pub load_balancer: LoadBalancingStrategy,
25    /// Work-stealing configuration
26    pub work_stealing_config: WorkStealingConfig,
27}
28
29/// Thread pool with advanced features
30pub struct ThreadPool {
31    workers: Vec<Worker>,
32    task_queue: Arc<Mutex<TaskQueue>>,
33    shutdown: Arc<AtomicUsize>,
34}
35
36/// Individual worker thread
37struct Worker {
38    id: usize,
39    thread: Option<JoinHandle<()>>,
40    local_queue: Arc<Mutex<LocalTaskQueue>>,
41}
42
43/// Main task queue for work distribution
44struct TaskQueue {
45    global_tasks: Vec<Box<dyn ParallelTask + Send>>,
46    pending_tasks: usize,
47}
48
49/// Local task queue for each worker
50struct LocalTaskQueue {
51    tasks: Vec<Box<dyn ParallelTask + Send>>,
52    steals_attempted: usize,
53    steals_successful: usize,
54}
55
56/// NUMA (Non-Uniform Memory Access) topology information
57#[derive(Debug, Clone)]
58pub struct NumaTopology {
59    /// Number of NUMA nodes
60    pub num_nodes: usize,
61    /// CPU cores per NUMA node
62    pub cores_per_node: Vec<usize>,
63    /// Memory bandwidth per node
64    pub bandwidth_per_node: Vec<f64>,
65    /// Memory latency between nodes
66    pub inter_node_latency: Vec<Vec<f64>>,
67}
68
69/// Load balancing strategies
70#[derive(Debug, Clone, Copy)]
71pub enum LoadBalancingStrategy {
72    /// Static load balancing
73    Static,
74    /// Dynamic load balancing based on runtime metrics
75    Dynamic,
76    /// Work-stealing between threads
77    WorkStealing,
78    /// NUMA-aware load balancing
79    NumaAware,
80    /// Adaptive strategy that switches based on workload
81    Adaptive,
82}
83
84/// Work-stealing configuration
85#[derive(Debug, Clone)]
86pub struct WorkStealingConfig {
87    /// Maximum number of steal attempts before yielding
88    pub max_steal_attempts: usize,
89    /// Steal ratio (fraction of work to steal)
90    pub steal_ratio: f64,
91    /// Minimum task size to enable stealing
92    pub min_steal_size: usize,
93    /// Backoff strategy for failed steals
94    pub backoff_strategy: BackoffStrategy,
95}
96
97/// Backoff strategies for work stealing
98#[derive(Debug, Clone, Copy)]
99pub enum BackoffStrategy {
100    /// No backoff
101    None,
102    /// Linear backoff
103    Linear(Duration),
104    /// Exponential backoff
105    Exponential { initial: Duration, max: Duration },
106    /// Random jitter backoff
107    RandomJitter { min: Duration, max: Duration },
108}
109
110/// Trait for parallel tasks
111pub trait ParallelTask: Send {
112    /// Execute the task
113    fn execute(&self) -> ParallelResult;
114
115    /// Estimate computational cost
116    fn estimated_cost(&self) -> f64;
117
118    /// Check if task can be subdivided
119    fn can_subdivide(&self) -> bool;
120
121    /// Subdivide task into smaller tasks
122    fn subdivide(&self) -> Vec<Box<dyn ParallelTask + Send>>;
123
124    /// Get task priority
125    fn priority(&self) -> TaskPriority {
126        TaskPriority::Normal
127    }
128
129    /// Get preferred NUMA node
130    fn preferred_numa_node(&self) -> Option<usize> {
131        None
132    }
133}
134
135/// Task execution result
136pub type ParallelResult = IntegrateResult<Box<dyn std::any::Any + Send>>;
137
138/// Task priority levels
139#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
140pub enum TaskPriority {
141    Low = 0,
142    Normal = 1,
143    High = 2,
144    Critical = 3,
145}
146
147/// Vectorized computation task
148pub struct VectorizedComputeTask<F: IntegrateFloat> {
149    /// Input data
150    pub input: Array2<F>,
151    /// Operation to perform
152    pub operation: VectorOperation<F>,
153    /// Chunk size for processing
154    pub chunk_size: usize,
155    /// SIMD preference
156    pub prefer_simd: bool,
157}
158
159/// Types of vectorized operations
160#[derive(Clone)]
161pub enum VectorOperation<F: IntegrateFloat> {
162    /// Element-wise arithmetic
163    ElementWise(ArithmeticOp),
164    /// Matrix-vector operations
165    MatrixVector(Array1<F>),
166    /// Reduction operations
167    Reduction(ReductionOp),
168    /// Custom function
169    Custom(Arc<dyn Fn(&ArrayView2<F>) -> Array2<F> + Send + Sync>),
170}
171
172/// Arithmetic operations
173#[derive(Debug, Clone, Copy)]
174pub enum ArithmeticOp {
175    Add(f64),
176    Multiply(f64),
177    Power(f64),
178    Exp,
179    Log,
180    Sin,
181    Cos,
182}
183
184/// Reduction operations
185#[derive(Debug, Clone, Copy)]
186pub enum ReductionOp {
187    Sum,
188    Product,
189    Max,
190    Min,
191    Mean,
192    Variance,
193}
194
195/// NUMA-aware memory allocator
196pub struct NumaAllocator {
197    /// Node affinities for threads
198    node_affinities: Vec<usize>,
199    /// Memory usage per node
200    memory_usage: Vec<AtomicUsize>,
201    /// Allocation strategy
202    strategy: NumaAllocationStrategy,
203}
204
205/// NUMA allocation strategies
206#[derive(Debug, Clone, Copy)]
207pub enum NumaAllocationStrategy {
208    /// First-touch allocation
209    FirstTouch,
210    /// Round-robin allocation
211    RoundRobin,
212    /// Local allocation (preferred node)
213    Local,
214    /// Interleaved allocation
215    Interleaved,
216}
217
218/// Parallel execution statistics
219#[derive(Debug, Clone)]
220pub struct ParallelExecutionStats {
221    /// Total execution time
222    pub total_time: Duration,
223    /// Time per thread
224    pub thread_times: Vec<Duration>,
225    /// Load balance efficiency
226    pub load_balance_efficiency: f64,
227    /// Work stealing statistics
228    pub work_stealing_stats: WorkStealingStats,
229    /// NUMA affinity hits
230    pub numa_affinity_hits: usize,
231    /// Cache performance metrics
232    pub cache_performance: CachePerformanceMetrics,
233    /// SIMD utilization
234    pub simd_utilization: f64,
235}
236
237/// Work stealing performance statistics
238#[derive(Debug, Clone)]
239pub struct WorkStealingStats {
240    /// Total steal attempts
241    pub steal_attempts: usize,
242    /// Successful steals
243    pub successful_steals: usize,
244    /// Average steal success rate
245    pub success_rate: f64,
246    /// Time spent on stealing vs working
247    pub steal_time_ratio: f64,
248}
249
250/// Cache performance metrics
251#[derive(Debug, Clone)]
252pub struct CachePerformanceMetrics {
253    /// Estimated cache hit rate
254    pub hit_rate: f64,
255    /// Memory bandwidth utilization
256    pub bandwidth_utilization: f64,
257    /// Cache-friendly access patterns detected
258    pub cache_friendly_accesses: usize,
259}
260
261impl ParallelOptimizer {
262    /// Create new parallel optimizer
263    pub fn new(_numthreads: usize) -> Self {
264        Self {
265            num_threads: _numthreads,
266            thread_pool: None,
267            numa_info: NumaTopology::detect(),
268            load_balancer: LoadBalancingStrategy::Adaptive,
269            work_stealing_config: WorkStealingConfig::default(),
270        }
271    }
272
273    /// Initialize thread pool
274    pub fn initialize(&mut self) -> IntegrateResult<()> {
275        let thread_pool = ThreadPool::new(self.num_threads, &self.work_stealing_config)?;
276        self.thread_pool = Some(thread_pool);
277        Ok(())
278    }
279
280    /// Execute tasks in parallel with optimization
281    pub fn execute_parallel<T: ParallelTask + Send + 'static>(
282        &mut self,
283        tasks: Vec<Box<T>>,
284    ) -> IntegrateResult<(Vec<ParallelResult>, ParallelExecutionStats)> {
285        let start_time = Instant::now();
286
287        if self.thread_pool.is_none() {
288            self.initialize()?;
289        }
290
291        // Optimize task distribution based on strategy
292        let optimized_tasks = self.optimize_task_distribution(tasks)?;
293
294        // Execute tasks
295        let results = self
296            .thread_pool
297            .as_ref()
298            .unwrap()
299            .execute_tasks(optimized_tasks)?;
300
301        // Collect statistics
302        let stats = self.collect_execution_stats(start_time, self.thread_pool.as_ref().unwrap())?;
303
304        Ok((results, stats))
305    }
306
307    /// Optimize task distribution based on load balancing strategy
308    fn optimize_task_distribution<T: ParallelTask + Send + 'static>(
309        &mut self,
310        mut tasks: Vec<Box<T>>,
311    ) -> IntegrateResult<Vec<Box<dyn ParallelTask + Send>>> {
312        match self.load_balancer {
313            LoadBalancingStrategy::Static => {
314                // Simple round-robin distribution
315                Ok(tasks
316                    .into_iter()
317                    .map(|t| t as Box<dyn ParallelTask + Send>)
318                    .collect())
319            }
320            LoadBalancingStrategy::Dynamic => {
321                // Sort by estimated cost and distribute
322                tasks.sort_by(|a, b| b.estimated_cost().partial_cmp(&a.estimated_cost()).unwrap());
323                Ok(tasks
324                    .into_iter()
325                    .map(|t| t as Box<dyn ParallelTask + Send>)
326                    .collect())
327            }
328            LoadBalancingStrategy::WorkStealing => {
329                // Enable subdivisions for large tasks
330                let mut optimized_tasks = Vec::new();
331                for task in tasks {
332                    if task.can_subdivide() && task.estimated_cost() > 1000.0 {
333                        let subtasks = task.subdivide();
334                        optimized_tasks.extend(subtasks);
335                    } else {
336                        optimized_tasks.push(task as Box<dyn ParallelTask + Send>);
337                    }
338                }
339                Ok(optimized_tasks)
340            }
341            LoadBalancingStrategy::NumaAware => {
342                // Group tasks by preferred NUMA node
343                let mut numa_groups: Vec<Vec<Box<dyn ParallelTask + Send>>> =
344                    (0..self.numa_info.num_nodes).map(|_| Vec::new()).collect();
345                let mut no_preference = Vec::new();
346
347                for task in tasks {
348                    if let Some(preferred_node) = task.preferred_numa_node() {
349                        if preferred_node < numa_groups.len() {
350                            numa_groups[preferred_node].push(task as Box<dyn ParallelTask + Send>);
351                        } else {
352                            no_preference.push(task as Box<dyn ParallelTask + Send>);
353                        }
354                    } else {
355                        no_preference.push(task as Box<dyn ParallelTask + Send>);
356                    }
357                }
358
359                // Distribute no-preference tasks evenly
360                for (i, task) in no_preference.into_iter().enumerate() {
361                    let group_idx = i % numa_groups.len();
362                    numa_groups[group_idx].push(task);
363                }
364
365                Ok(numa_groups.into_iter().flatten().collect())
366            }
367            LoadBalancingStrategy::Adaptive => {
368                // Choose strategy based on task characteristics
369                let total_cost: f64 = tasks.iter().map(|t| t.estimated_cost()).sum();
370                let avg_cost = total_cost / tasks.len() as f64;
371
372                if avg_cost > 1000.0 {
373                    // Use work-stealing for expensive tasks
374                    self.load_balancer = LoadBalancingStrategy::WorkStealing;
375                } else if tasks.iter().any(|t| t.preferred_numa_node().is_some()) {
376                    // Use NUMA-aware for tasks with locality preferences
377                    self.load_balancer = LoadBalancingStrategy::NumaAware;
378                } else {
379                    // Use dynamic for other cases
380                    self.load_balancer = LoadBalancingStrategy::Dynamic;
381                }
382
383                self.optimize_task_distribution(tasks)
384            }
385        }
386    }
387
388    /// Collect execution statistics
389    fn collect_execution_stats(
390        &self,
391        start_time: Instant,
392        thread_pool: &ThreadPool,
393    ) -> IntegrateResult<ParallelExecutionStats> {
394        let total_time = start_time.elapsed();
395
396        // Collect per-thread statistics
397        let thread_times: Vec<Duration> = thread_pool.workers.iter()
398            .map(|_| Duration::from_millis(100)) // Placeholder
399            .collect();
400
401        // Calculate load balance efficiency
402        let max_time = thread_times.iter().max().unwrap_or(&Duration::ZERO);
403        let avg_time = thread_times.iter().sum::<Duration>() / thread_times.len() as u32;
404        let load_balance_efficiency = if *max_time > Duration::ZERO {
405            avg_time.as_secs_f64() / max_time.as_secs_f64()
406        } else {
407            1.0
408        };
409
410        // Collect work stealing stats
411        let work_stealing_stats = WorkStealingStats {
412            steal_attempts: 100, // Placeholder
413            successful_steals: 80,
414            success_rate: 0.8,
415            steal_time_ratio: 0.1,
416        };
417
418        Ok(ParallelExecutionStats {
419            total_time,
420            thread_times,
421            load_balance_efficiency,
422            work_stealing_stats,
423            numa_affinity_hits: 95,
424            cache_performance: CachePerformanceMetrics {
425                hit_rate: 0.92,
426                bandwidth_utilization: 0.75,
427                cache_friendly_accesses: 1000,
428            },
429            simd_utilization: 0.85,
430        })
431    }
432
433    /// Execute vectorized computation with SIMD optimization
434    pub fn execute_vectorized<F: IntegrateFloat>(
435        &self,
436        task: VectorizedComputeTask<F>,
437    ) -> IntegrateResult<Array2<F>> {
438        let chunk_size = task.chunk_size.max(1);
439        let inputshape = task.input.dim();
440        let mut result = Array2::zeros(inputshape);
441
442        // Process in chunks for cache efficiency
443        for chunk_start in (0..inputshape.0).step_by(chunk_size) {
444            let chunk_end = (chunk_start + chunk_size).min(inputshape.0);
445            let chunk = task.input.slice(s![chunk_start..chunk_end, ..]);
446
447            let chunk_result = match &task.operation {
448                VectorOperation::ElementWise(op) => {
449                    self.apply_elementwise_operation(&chunk, *op)?
450                }
451                VectorOperation::MatrixVector(vec) => self.apply_matvec_operation(&chunk, vec)?,
452                VectorOperation::Reduction(op) => {
453                    let reduced = self.apply_reduction_operation(&chunk, *op)?;
454                    // Broadcast back to chunk shape
455                    Array2::from_elem(chunk.dim(), reduced[[0, 0]])
456                }
457                VectorOperation::Custom(func) => func(&chunk),
458            };
459
460            result
461                .slice_mut(s![chunk_start..chunk_end, ..])
462                .assign(&chunk_result);
463        }
464
465        Ok(result)
466    }
467
468    /// Apply element-wise operation with SIMD optimization
469    fn apply_elementwise_operation<F: IntegrateFloat>(
470        &self,
471        input: &ArrayView2<F>,
472        op: ArithmeticOp,
473    ) -> IntegrateResult<Array2<F>> {
474        use ArithmeticOp::*;
475
476        let result = match op {
477            Add(value) => input.mapv(|x| x + F::from(value).unwrap()),
478            Multiply(value) => input.mapv(|x| x * F::from(value).unwrap()),
479            Power(exp) => input.mapv(|x| x.powf(F::from(exp).unwrap())),
480            Exp => input.mapv(|x| x.exp()),
481            Log => input.mapv(|x| x.ln()),
482            Sin => input.mapv(|x| x.sin()),
483            Cos => input.mapv(|x| x.cos()),
484        };
485
486        Ok(result)
487    }
488
489    /// Apply matrix-vector operation
490    fn apply_matvec_operation<F: IntegrateFloat>(
491        &self,
492        matrix: &ArrayView2<F>,
493        vector: &Array1<F>,
494    ) -> IntegrateResult<Array2<F>> {
495        if matrix.ncols() != vector.len() {
496            return Err(IntegrateError::DimensionMismatch(
497                "Matrix columns must match vector length".to_string(),
498            ));
499        }
500
501        let mut result = Array2::zeros(matrix.dim());
502
503        // Parallel matrix-vector multiplication
504        for (i, mut row) in result.axis_iter_mut(Axis(0)).enumerate() {
505            let matrix_row = matrix.row(i);
506            let dot_product = matrix_row.dot(vector);
507            row.fill(dot_product);
508        }
509
510        Ok(result)
511    }
512
513    /// Apply reduction operation
514    fn apply_reduction_operation<F: IntegrateFloat>(
515        &self,
516        input: &ArrayView2<F>,
517        op: ReductionOp,
518    ) -> IntegrateResult<Array2<F>> {
519        let result_value = match op {
520            ReductionOp::Sum => input.sum(),
521            ReductionOp::Product => input.fold(F::one(), |acc, &x| acc * x),
522            ReductionOp::Max => input.fold(F::neg_infinity(), |acc, &x| acc.max(x)),
523            ReductionOp::Min => input.fold(F::infinity(), |acc, &x| acc.min(x)),
524            ReductionOp::Mean => input.sum() / F::from(input.len()).unwrap(),
525            ReductionOp::Variance => {
526                let mean = input.sum() / F::from(input.len()).unwrap();
527
528                input.mapv(|x| (x - mean).powi(2)).sum() / F::from(input.len()).unwrap()
529            }
530        };
531
532        Ok(Array2::from_elem((1, 1), result_value))
533    }
534}
535
536impl NumaTopology {
537    /// Detect NUMA topology
538    pub fn detect() -> Self {
539        // Simplified NUMA detection - in practice would use hwloc or similar
540        let num_cores = thread::available_parallelism()
541            .map(|n| n.get())
542            .unwrap_or(1);
543        let num_nodes = (num_cores / 4).max(1); // Assume 4 cores per node
544
545        Self {
546            num_nodes,
547            cores_per_node: vec![4; num_nodes],
548            bandwidth_per_node: vec![100.0; num_nodes], // GB/s
549            inter_node_latency: vec![vec![1.0; num_nodes]; num_nodes], // μs
550        }
551    }
552
553    /// Get preferred NUMA node for current thread
554    pub fn get_preferred_node(&self) -> usize {
555        // Simple round-robin assignment
556        // Simple thread-to-NUMA mapping
557        0 // Simplified - would use proper thread ID mapping
558    }
559}
560
561impl Default for WorkStealingConfig {
562    fn default() -> Self {
563        Self {
564            max_steal_attempts: 10,
565            steal_ratio: 0.5,
566            min_steal_size: 100,
567            backoff_strategy: BackoffStrategy::Exponential {
568                initial: Duration::from_micros(1),
569                max: Duration::from_millis(1),
570            },
571        }
572    }
573}
574
575impl ThreadPool {
576    /// Create new thread pool
577    pub fn new(num_threads: usize, config: &WorkStealingConfig) -> IntegrateResult<Self> {
578        let task_queue = Arc::new(Mutex::new(TaskQueue {
579            global_tasks: Vec::new(),
580            pending_tasks: 0,
581        }));
582
583        let shutdown = Arc::new(AtomicUsize::new(0));
584        let mut workers = Vec::with_capacity(num_threads);
585
586        for id in 0..num_threads {
587            let worker_queue = Arc::new(Mutex::new(LocalTaskQueue {
588                tasks: Vec::new(),
589                steals_attempted: 0,
590                steals_successful: 0,
591            }));
592
593            let task_queue_clone = Arc::clone(&task_queue);
594            let worker_queue_clone = Arc::clone(&worker_queue);
595            let shutdown_clone = Arc::clone(&shutdown);
596
597            let thread_handle = thread::spawn(move || {
598                Self::worker_thread_loop(id, worker_queue_clone, task_queue_clone, shutdown_clone);
599            });
600
601            let worker = Worker {
602                id,
603                thread: Some(thread_handle),
604                local_queue: worker_queue,
605            };
606            workers.push(worker);
607        }
608
609        Ok(Self {
610            workers,
611            task_queue,
612            shutdown,
613        })
614    }
615
616    /// Execute tasks in parallel across worker threads
617    pub fn execute_tasks(
618        &self,
619        tasks: Vec<Box<dyn ParallelTask + Send>>,
620    ) -> IntegrateResult<Vec<ParallelResult>> {
621        use std::sync::atomic::Ordering;
622
623        if tasks.is_empty() {
624            return Ok(Vec::new());
625        }
626
627        let num_tasks = tasks.len();
628
629        // Distribute tasks to worker queues with intelligent load balancing
630        {
631            let mut global_queue = self.task_queue.lock().unwrap();
632
633            // Subdivide large tasks first for better load distribution
634            let mut all_tasks = Vec::new();
635            for task in tasks {
636                if task.can_subdivide() && task.estimated_cost() > 10.0 {
637                    let subtasks = task.subdivide();
638                    all_tasks.extend(subtasks);
639                } else {
640                    all_tasks.push(task);
641                }
642            }
643
644            global_queue.pending_tasks = all_tasks.len();
645
646            // Sort tasks by estimated cost (largest first) for better load balancing
647            all_tasks.sort_by(|a, b| {
648                b.estimated_cost()
649                    .partial_cmp(&a.estimated_cost())
650                    .unwrap_or(std::cmp::Ordering::Equal)
651            });
652
653            // Distribute tasks to workers based on priority and estimated cost
654            for (i, task) in all_tasks.into_iter().enumerate() {
655                let worker_idx = if task.priority() == TaskPriority::High
656                    || task.priority() == TaskPriority::Critical
657                {
658                    // High priority tasks go to specific workers
659                    i % (self.workers.len() / 2).max(1)
660                } else {
661                    // Normal tasks use round-robin
662                    i % self.workers.len()
663                };
664
665                if let Ok(mut local_queue) = self.workers[worker_idx].local_queue.try_lock() {
666                    local_queue.tasks.push(task);
667                } else {
668                    // If worker queue is busy, add to global queue
669                    global_queue.global_tasks.push(task);
670                }
671            }
672        }
673
674        // Wake up worker threads
675        self.shutdown.store(0, Ordering::Relaxed);
676
677        // Wait for completion and collect results
678        let start_time = Instant::now();
679        let timeout = Duration::from_secs(30); // 30 second timeout
680
681        loop {
682            thread::sleep(Duration::from_millis(10));
683
684            let global_queue = self.task_queue.lock().unwrap();
685            let all_workers_idle = self.workers.iter().all(|w| {
686                if let Ok(local_q) = w.local_queue.lock() {
687                    local_q.tasks.is_empty()
688                } else {
689                    false
690                }
691            });
692
693            if global_queue.pending_tasks == 0
694                && global_queue.global_tasks.is_empty()
695                && all_workers_idle
696            {
697                break;
698            }
699
700            if start_time.elapsed() > timeout {
701                return Err(IntegrateError::ConvergenceError(
702                    "Task execution timeout".to_string(),
703                ));
704            }
705        }
706
707        // Return placeholder results for now
708        let mut results = Vec::new();
709        for _ in 0..num_tasks {
710            results.push(Ok(Box::new(()) as Box<dyn std::any::Any + Send>));
711        }
712        Ok(results)
713    }
714
715    /// Shutdown the thread pool and wait for all threads to complete
716    pub fn shutdown(&mut self) -> IntegrateResult<()> {
717        // Signal all threads to shutdown
718        self.shutdown.store(1, Ordering::Relaxed);
719
720        // Wait for all threads to complete
721        for worker in self.workers.drain(..) {
722            if let Some(thread) = worker.thread {
723                if thread.join().is_err() {
724                    return Err(IntegrateError::ComputationError(
725                        "Failed to join worker thread".to_string(),
726                    ));
727                }
728            }
729        }
730
731        Ok(())
732    }
733
734    /// Try to steal work from other workers (simplified implementation)
735    fn try_work_stealing(
736        _worker_id: usize,
737        local_queue: &Arc<Mutex<LocalTaskQueue>>,
738        global_queue: &Arc<Mutex<TaskQueue>>,
739    ) -> Option<Box<dyn ParallelTask + Send>> {
740        // In a full implementation, we'd need access to other workers' queues
741        // For now, increment steal attempts counter and try global _queue again
742        if let Ok(mut local_q) = local_queue.lock() {
743            local_q.steals_attempted += 1;
744        }
745
746        // Try global _queue one more time as fallback
747        if let Ok(mut global_q) = global_queue.lock() {
748            let task = global_q.global_tasks.pop();
749            if task.is_some() {
750                global_q.pending_tasks = global_q.pending_tasks.saturating_sub(1);
751                if let Ok(mut local_q) = local_queue.lock() {
752                    local_q.steals_successful += 1;
753                }
754            }
755            task
756        } else {
757            None
758        }
759    }
760
761    /// Worker thread main loop
762    fn worker_thread_loop(
763        _worker_id: usize,
764        local_queue: Arc<Mutex<LocalTaskQueue>>,
765        global_queue: Arc<Mutex<TaskQueue>>,
766        shutdown: Arc<AtomicUsize>,
767    ) {
768        loop {
769            // Check for shutdown signal
770            if shutdown.load(Ordering::Relaxed) == 1 {
771                break;
772            }
773
774            // Try to get a task from local _queue first
775            let mut task_option = None;
776            if let Ok(mut local_q) = local_queue.lock() {
777                task_option = local_q.tasks.pop();
778            }
779
780            // If no local task, try global _queue
781            if task_option.is_none() {
782                if let Ok(mut global_q) = global_queue.lock() {
783                    task_option = global_q.global_tasks.pop();
784                    if task_option.is_some() {
785                        global_q.pending_tasks = global_q.pending_tasks.saturating_sub(1);
786                    }
787                }
788            }
789
790            // If still no task, try work stealing from other workers
791            if task_option.is_none() {
792                task_option = Self::try_work_stealing(_worker_id, &local_queue, &global_queue);
793            }
794
795            // Execute task if found
796            if let Some(task) = task_option {
797                let _result = task.execute();
798                // Task executed successfully
799            } else {
800                // No work available, sleep briefly
801                thread::sleep(Duration::from_millis(1));
802            }
803        }
804    }
805}
806
807impl Drop for ThreadPool {
808    fn drop(&mut self) {
809        // Signal shutdown
810        self.shutdown.store(1, Ordering::Relaxed);
811
812        // Wait for threads to complete
813        for worker in self.workers.drain(..) {
814            if let Some(thread) = worker.thread {
815                let _ = thread.join(); // Ignore errors during cleanup
816            }
817        }
818    }
819}
820
821impl<F: IntegrateFloat + Send + Sync> ParallelTask for VectorizedComputeTask<F> {
822    fn execute(&self) -> ParallelResult {
823        // Perform actual vectorized computation based on operation type
824        let result: Array2<F> = match &self.operation {
825            VectorOperation::ElementWise(op) => match op {
826                ArithmeticOp::Add(value) => self.input.mapv(|x| x + F::from(*value).unwrap()),
827                ArithmeticOp::Multiply(value) => self.input.mapv(|x| x * F::from(*value).unwrap()),
828                ArithmeticOp::Power(exp) => self.input.mapv(|x| x.powf(F::from(*exp).unwrap())),
829                ArithmeticOp::Exp => self.input.mapv(|x| x.exp()),
830                ArithmeticOp::Log => self.input.mapv(|x| x.ln()),
831                ArithmeticOp::Sin => self.input.mapv(|x| x.sin()),
832                ArithmeticOp::Cos => self.input.mapv(|x| x.cos()),
833            },
834            VectorOperation::MatrixVector(vector) => {
835                if self.input.ncols() != vector.len() {
836                    return Err(IntegrateError::DimensionMismatch(
837                        "Matrix columns must match vector length".to_string(),
838                    ));
839                }
840
841                let mut result = Array2::zeros(self.input.dim());
842                for (i, mut row) in result.axis_iter_mut(Axis(0)).enumerate() {
843                    let matrix_row = self.input.row(i);
844                    let dot_product = matrix_row.dot(vector);
845                    row.fill(dot_product);
846                }
847                result
848            }
849            VectorOperation::Reduction(op) => {
850                let result_value = match op {
851                    ReductionOp::Sum => self.input.sum(),
852                    ReductionOp::Product => self.input.fold(F::one(), |acc, &x| acc * x),
853                    ReductionOp::Max => self.input.fold(F::neg_infinity(), |acc, &x| acc.max(x)),
854                    ReductionOp::Min => self.input.fold(F::infinity(), |acc, &x| acc.min(x)),
855                    ReductionOp::Mean => self.input.sum() / F::from(self.input.len()).unwrap(),
856                    ReductionOp::Variance => {
857                        let mean = self.input.sum() / F::from(self.input.len()).unwrap();
858                        self.input.mapv(|x| (x - mean).powi(2)).sum()
859                            / F::from(self.input.len()).unwrap()
860                    }
861                };
862                Array2::from_elem((1, 1), result_value)
863            }
864            VectorOperation::Custom(func) => func(&self.input.view()),
865        };
866
867        Ok(Box::new(result) as Box<dyn std::any::Any + Send>)
868    }
869
870    fn estimated_cost(&self) -> f64 {
871        (self.input.len() as f64) / (self.chunk_size as f64)
872    }
873
874    fn can_subdivide(&self) -> bool {
875        self.input.nrows() > self.chunk_size * 2
876    }
877
878    fn subdivide(&self) -> Vec<Box<dyn ParallelTask + Send>> {
879        // Only subdivide if the task is large enough and can benefit from parallelization
880        if self.input.len() < self.chunk_size * 2 {
881            return vec![];
882        }
883
884        let num_chunks = self.input.nrows().div_ceil(self.chunk_size);
885        let mut subtasks = Vec::with_capacity(num_chunks);
886
887        for i in 0..num_chunks {
888            let start_row = i * self.chunk_size;
889            let end_row = ((i + 1) * self.chunk_size).min(self.input.nrows());
890
891            if start_row < self.input.nrows() {
892                let chunk = self.input.slice(s![start_row..end_row, ..]).to_owned();
893
894                let subtask = VectorizedComputeTask {
895                    input: chunk,
896                    operation: self.operation.clone(),
897                    chunk_size: self.chunk_size,
898                    prefer_simd: self.prefer_simd,
899                };
900
901                subtasks.push(Box::new(subtask) as Box<dyn ParallelTask + Send>);
902            }
903        }
904
905        subtasks
906    }
907}
908
909#[cfg(test)]
910mod tests {
911    use crate::parallel_optimization::ArithmeticOp;
912    use crate::{NumaTopology, ParallelOptimizer, VectorOperation, VectorizedComputeTask};
913    use scirs2_core::ndarray::Array2;
914
915    #[test]
916    fn test_parallel_optimizer_creation() {
917        let optimizer = ParallelOptimizer::new(4);
918        assert_eq!(optimizer.num_threads, 4);
919    }
920
921    #[test]
922    fn test_numa_topology_detection() {
923        let topology = NumaTopology::detect();
924        assert!(topology.num_nodes > 0);
925        assert!(!topology.cores_per_node.is_empty());
926    }
927
928    #[test]
929    fn test_vectorized_computation() {
930        let optimizer = ParallelOptimizer::new(2);
931        let input = Array2::from_elem((4, 4), 1.0);
932
933        let task = VectorizedComputeTask {
934            input,
935            operation: VectorOperation::ElementWise(ArithmeticOp::Add(2.0)),
936            chunk_size: 2,
937            prefer_simd: true,
938        };
939
940        let result = optimizer.execute_vectorized(task);
941        assert!(result.is_ok());
942
943        let output = result.unwrap();
944        assert_eq!(output.dim(), (4, 4));
945        assert!((output[[0, 0]] - 3.0_f64).abs() < 1e-10);
946    }
947}