scirs2_integrate/
advanced_simd_acceleration.rs

1//! Optimized SIMD acceleration for ODE solvers
2//!
3//! This module provides cutting-edge SIMD optimizations that push the boundaries
4//! of vectorized computation for numerical integration. Features include:
5//! - Multi-lane SIMD operations (AVX-512, ARM SVE)
6//! - Fused multiply-add (FMA) optimizations
7//! - Cache-aware vectorized algorithms
8//! - Auto-vectorizing loop transformations
9//! - Vector predication for irregular computations
10//! - Mixed-precision SIMD for improved performance
11
12#![allow(dead_code)]
13#![allow(clippy::too_many_arguments)]
14
15use crate::common::IntegrateFloat;
16use crate::error::{IntegrateError, IntegrateResult};
17use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, Zip};
18use scirs2_core::simd_ops::SimdUnifiedOps;
19use std::collections::HashMap;
20use std::time::Instant;
21
22/// Optimized SIMD acceleration engine
23pub struct AdvancedSimdAccelerator<F: IntegrateFloat> {
24    /// SIMD capability detector
25    simd_capabilities: SimdCapabilities,
26    /// Vectorization strategies
27    vectorization_strategies: VectorizationStrategies<F>,
28    /// Performance analytics
29    performance_analytics: SimdPerformanceAnalytics,
30    /// Mixed-precision engine
31    mixed_precision_engine: MixedPrecisionEngine<F>,
32}
33
34/// SIMD capabilities detection and optimization
35#[derive(Debug, Clone)]
36pub struct SimdCapabilities {
37    /// AVX-512 support
38    pub avx512_support: Avx512Support,
39    /// ARM SVE support
40    pub sve_support: SveSupport,
41    /// Vector register width (bits)
42    pub vector_width: usize,
43    /// FMA (Fused Multiply-Add) support
44    pub fma_support: bool,
45    /// Gather/scatter support
46    pub gather_scatter_support: bool,
47    /// Mask registers support
48    pub mask_registers: bool,
49    /// Memory bandwidth (GB/s)
50    pub memory_bandwidth: f64,
51}
52
53/// AVX-512 specific capabilities
54#[derive(Debug, Clone)]
55pub struct Avx512Support {
56    pub foundation: bool,             // AVX-512F
57    pub doubleword_quadword: bool,    // AVX-512DQ
58    pub byte_word: bool,              // AVX-512BW
59    pub vector_length: bool,          // AVX-512VL
60    pub conflict_detection: bool,     // AVX-512CD
61    pub exponential_reciprocal: bool, // AVX-512ER
62    pub prefetch: bool,               // AVX-512PF
63}
64
65/// ARM SVE (Scalable Vector Extensions) support
66#[derive(Debug, Clone)]
67pub struct SveSupport {
68    pub sve_available: bool,
69    pub vector_length: usize, // Variable length vectors
70    pub predication_support: bool,
71    pub gather_scatter: bool,
72}
73
74/// Vectorization strategy manager
75pub struct VectorizationStrategies<F: IntegrateFloat> {
76    /// Loop vectorization patterns
77    loop_patterns: Vec<LoopVectorizationPattern>,
78    /// Data layout transformations
79    layout_transforms: Vec<DataLayoutTransform>,
80    /// Reduction optimizations
81    reduction_strategies: Vec<ReductionStrategy<F>>,
82    /// Conditional vectorization
83    predicated_operations: PredicatedOperations<F>,
84}
85
86/// Loop vectorization patterns for common ODE operations
87#[derive(Debug, Clone)]
88pub enum LoopVectorizationPattern {
89    /// Simple element-wise operations
90    ElementWise,
91    /// Reduction operations (sum, max, min)
92    Reduction,
93    /// Stencil computations (finite differences)
94    Stencil,
95    /// Matrix-vector operations
96    MatrixVector,
97    /// Sparse matrix operations
98    SparseMatrix,
99    /// Irregular memory access patterns
100    Gather,
101}
102
103/// Data layout transformations for optimal SIMD access
104#[derive(Debug, Clone)]
105pub enum DataLayoutTransform {
106    /// Array of Structures to Structure of Arrays
107    AoSToSoA,
108    /// Interleaving for better cache utilization
109    Interleaving { factor: usize },
110    /// Padding for alignment
111    Padding { alignment: usize },
112    /// Transposition for better access patterns
113    Transposition,
114    /// Blocking for cache optimization
115    Blocking { block_size: usize },
116}
117
118/// Reduction strategy optimization
119pub struct ReductionStrategy<F: IntegrateFloat> {
120    /// Reduction operation type
121    operation: ReductionOperation,
122    /// Parallelization approach
123    parallel_approach: ParallelReductionApproach,
124    /// SIMD width utilization
125    simd_utilization: SimdUtilization<F>,
126}
127
128/// Types of reduction operations
129#[derive(Debug, Clone)]
130pub enum ReductionOperation {
131    Sum,
132    Product,
133    Maximum,
134    Minimum,
135    L2Norm,
136    InfinityNorm,
137    DotProduct,
138}
139
140/// Parallel reduction approaches
141#[derive(Debug, Clone)]
142pub enum ParallelReductionApproach {
143    /// Tree-based reduction
144    TreeReduction,
145    /// Butterfly pattern
146    Butterfly,
147    /// Segmented reduction
148    Segmented,
149    /// Warp-shuffle based (GPU-style)
150    WarpShuffle,
151}
152
153/// SIMD utilization strategies
154pub struct SimdUtilization<F: IntegrateFloat> {
155    /// Vector length optimization
156    vector_length: usize,
157    /// Load balancing across lanes
158    load_balancing: LoadBalancingStrategy,
159    /// Remainder handling for non-aligned sizes
160    remainder_handling: RemainderStrategy,
161    /// Data type specific optimizations
162    dtype_optimizations: DataTypeOptimizations<F>,
163}
164
165/// Predicated operations for conditional SIMD
166pub struct PredicatedOperations<F: IntegrateFloat> {
167    /// Mask generation strategies
168    mask_strategies: Vec<MaskGenerationStrategy>,
169    /// Conditional execution patterns
170    conditional_patterns: Vec<ConditionalPattern<F>>,
171    /// Blend operations
172    blend_operations: Vec<BlendOperation<F>>,
173}
174
175/// Performance analytics for SIMD operations
176pub struct SimdPerformanceAnalytics {
177    /// Instruction throughput measurements
178    instruction_throughput: InstructionThroughput,
179    /// Memory bandwidth utilization
180    bandwidth_utilization: BandwidthUtilization,
181    /// Vectorization efficiency metrics
182    vectorization_efficiency: VectorizationEfficiency,
183    /// Bottleneck analysis
184    bottleneck_analysis: BottleneckAnalysis,
185}
186
187/// Mixed-precision computation engine
188pub struct MixedPrecisionEngine<F: IntegrateFloat> {
189    /// Precision level analyzer
190    precision_analyzer: PrecisionAnalyzer<F>,
191    /// Dynamic precision adjustment
192    dynamic_precision: DynamicPrecisionController<F>,
193    /// Error accumulation tracker
194    error_tracker: ErrorAccumulationTracker<F>,
195    /// Performance vs accuracy trade-offs
196    tradeoff_optimizer: TradeoffOptimizer<F>,
197}
198
199impl<F: IntegrateFloat + SimdUnifiedOps> AdvancedSimdAccelerator<F> {
200    /// Create a new advanced-SIMD accelerator
201    pub fn new() -> IntegrateResult<Self> {
202        let simd_capabilities = Self::detect_simd_capabilities();
203        let vectorization_strategies = VectorizationStrategies::new(&simd_capabilities)?;
204        let performance_analytics = SimdPerformanceAnalytics::new();
205        let mixed_precision_engine = MixedPrecisionEngine::new()?;
206
207        Ok(AdvancedSimdAccelerator {
208            simd_capabilities,
209            vectorization_strategies,
210            performance_analytics,
211            mixed_precision_engine,
212        })
213    }
214
215    /// Detect comprehensive SIMD capabilities
216    fn detect_simd_capabilities() -> SimdCapabilities {
217        SimdCapabilities {
218            avx512_support: Self::detect_avx512_support(),
219            sve_support: Self::detect_sve_support(),
220            vector_width: Self::detect_vector_width(),
221            fma_support: Self::detect_fma_support(),
222            gather_scatter_support: Self::detect_gather_scatter_support(),
223            mask_registers: Self::detect_mask_registers(),
224            memory_bandwidth: Self::measure_memory_bandwidth(),
225        }
226    }
227
228    /// Advanced-optimized vector addition with FMA
229    pub fn advanced_vector_add_fma(
230        &self,
231        a: &ArrayView1<F>,
232        b: &ArrayView1<F>,
233        c: &ArrayView1<F>,
234        scale: F,
235    ) -> IntegrateResult<Array1<F>> {
236        let n = a.len();
237        if b.len() != n || c.len() != n {
238            return Err(IntegrateError::ValueError(
239                "Vector lengths must match".to_string(),
240            ));
241        }
242
243        let mut result = Array1::zeros(n);
244
245        // For small vectors, use simple scalar implementation
246        if n < 32 {
247            Zip::from(&mut result)
248                .and(a)
249                .and(b)
250                .and(c)
251                .for_each(|r, &a_val, &b_val, &c_val| {
252                    *r = a_val + b_val + scale * c_val;
253                });
254            return Ok(result);
255        }
256
257        // Use AVX-512 FMA if available for larger vectors
258        if self.simd_capabilities.avx512_support.foundation && self.simd_capabilities.fma_support {
259            self.avx512_vector_fma(&mut result, a, b, c, scale)?;
260        } else if F::simd_available() {
261            // Fallback to unified SIMD operations
262            let scaled_c = F::simd_scalar_mul(c, scale);
263            let ab_sum = F::simd_add(a, b);
264            result = F::simd_add(&ab_sum.view(), &scaled_c.view());
265        } else {
266            // Scalar fallback
267            Zip::from(&mut result)
268                .and(a)
269                .and(b)
270                .and(c)
271                .for_each(|r, &a_val, &b_val, &c_val| {
272                    *r = a_val + b_val + scale * c_val;
273                });
274        }
275
276        Ok(result)
277    }
278
279    /// Optimized matrix-vector multiplication with cache blocking
280    pub fn advanced_matrix_vector_multiply(
281        &self,
282        matrix: &Array2<F>,
283        vector: &ArrayView1<F>,
284    ) -> IntegrateResult<Array1<F>> {
285        let (m, n) = matrix.dim();
286        if vector.len() != n {
287            return Err(IntegrateError::ValueError(
288                "Matrix-vector dimension mismatch".to_string(),
289            ));
290        }
291
292        let mut result = Array1::zeros(m);
293
294        // Use cache-blocked SIMD matrix-vector multiplication
295        if self.simd_capabilities.vector_width >= 256 {
296            self.blocked_simd_matvec(&mut result, matrix, vector)?;
297        } else {
298            // Standard SIMD implementation
299            for i in 0..m {
300                let row = matrix.row(i);
301                result[i] = self.advanced_dot_product(&row, vector)?;
302            }
303        }
304
305        Ok(result)
306    }
307
308    /// Advanced-optimized dot product with multiple accumulation
309    pub fn advanced_dot_product(&self, a: &ArrayView1<F>, b: &ArrayView1<F>) -> IntegrateResult<F> {
310        let n = a.len();
311        if b.len() != n {
312            return Err(IntegrateError::ValueError(
313                "Vector lengths must match".to_string(),
314            ));
315        }
316
317        // For small vectors, use simple scalar implementation
318        if n < 32 {
319            let mut sum = F::zero();
320            for i in 0..n {
321                sum += a[i] * b[i];
322            }
323            return Ok(sum);
324        }
325
326        // Use multiple accumulators to reduce dependency chains for larger vectors
327        if self.simd_capabilities.avx512_support.foundation || F::simd_available() {
328            self.simd_dot_product_multi_accumulator(a, b)
329        } else {
330            // Scalar with multiple accumulators
331            self.scalar_dot_product_multi_accumulator(a, b)
332        }
333    }
334
335    /// Optimized reduction operations with tree reduction
336    pub fn advanced_reduce_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
337        if data.is_empty() {
338            return Ok(F::zero());
339        }
340
341        // Use hierarchical reduction for optimal performance
342        if self.simd_capabilities.vector_width >= 512 {
343            self.avx512_tree_reduction_sum(data)
344        } else if F::simd_available() {
345            self.simd_tree_reduction_sum(data)
346        } else {
347            Ok(data.iter().fold(F::zero(), |acc, &x| acc + x))
348        }
349    }
350
351    /// Advanced-optimized element-wise operations with predication
352    pub fn advanced_elementwise_conditional(
353        &self,
354        a: &ArrayView1<F>,
355        b: &ArrayView1<F>,
356        condition: impl Fn(F, F) -> bool,
357        true_op: impl Fn(F, F) -> F,
358        false_op: impl Fn(F, F) -> F,
359    ) -> IntegrateResult<Array1<F>> {
360        let n = a.len();
361        if b.len() != n {
362            return Err(IntegrateError::ValueError(
363                "Vector lengths must match".to_string(),
364            ));
365        }
366
367        let mut result = Array1::zeros(n);
368
369        // Use predicated SIMD operations if available
370        if self.simd_capabilities.mask_registers {
371            self.predicated_simd_conditional(&mut result, a, b, condition, true_op, false_op)?;
372        } else {
373            // Fallback to scalar implementation
374            Zip::from(&mut result)
375                .and(a)
376                .and(b)
377                .for_each(|r, &a_val, &b_val| {
378                    *r = if condition(a_val, b_val) {
379                        true_op(a_val, b_val)
380                    } else {
381                        false_op(a_val, b_val)
382                    };
383                });
384        }
385
386        Ok(result)
387    }
388
389    /// Optimized gather operation for sparse access patterns
390    pub fn advanced_gather(
391        &self,
392        data: &ArrayView1<F>,
393        indices: &[usize],
394    ) -> IntegrateResult<Array1<F>> {
395        let mut result = Array1::zeros(indices.len());
396
397        // Use hardware gather if available
398        if self.simd_capabilities.gather_scatter_support {
399            self.hardware_gather(&mut result, data, indices)?;
400        } else {
401            // Software gather with prefetching
402            self.software_gather_with_prefetch(&mut result, data, indices)?;
403        }
404
405        Ok(result)
406    }
407
408    /// Advanced-optimized Runge-Kutta step with vectorized stages
409    pub fn advanced_rk4_vectorized(
410        &self,
411        t: F,
412        y: &ArrayView1<F>,
413        h: F,
414        f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
415    ) -> IntegrateResult<Array1<F>> {
416        let n = y.len();
417
418        // Pre-allocate temp vectors for better memory management
419        let mut temp_y = Array1::zeros(n);
420        let mut result = Array1::zeros(n);
421
422        // Stage 1: k1 = h * f(t, y)
423        let mut k1 = f(t, y)?;
424        self.advanced_scalar_multiply_inplace(&mut k1, h)?;
425
426        // Stage 2: k2 = h * f(t + h/2, y + k1/2)
427        self.advanced_vector_add_scalar(&mut temp_y, y, &k1.view(), F::from(0.5).unwrap())?;
428        let mut k2 = f(t + h / F::from(2.0).unwrap(), &temp_y.view())?;
429        self.advanced_scalar_multiply_inplace(&mut k2, h)?;
430
431        // Stage 3: k3 = h * f(t + h/2, y + k2/2)
432        self.advanced_vector_add_scalar(&mut temp_y, y, &k2.view(), F::from(0.5).unwrap())?;
433        let mut k3 = f(t + h / F::from(2.0).unwrap(), &temp_y.view())?;
434        self.advanced_scalar_multiply_inplace(&mut k3, h)?;
435
436        // Stage 4: k4 = h * f(t + h, y + k3)
437        self.advanced_vector_add_scalar(&mut temp_y, y, &k3.view(), F::one())?;
438        let mut k4 = f(t + h, &temp_y.view())?;
439        self.advanced_scalar_multiply_inplace(&mut k4, h)?;
440
441        // Final combination: y_new = y + (k1 + 2*k2 + 2*k3 + k4) / 6
442        self.advanced_rk4_combine(
443            &mut result,
444            y,
445            &k1.view(),
446            &k2.view(),
447            &k3.view(),
448            &k4.view(),
449        )?;
450
451        Ok(result)
452    }
453
454    /// Mixed-precision computation for enhanced performance
455    pub fn advanced_mixed_precision_step(
456        &self,
457        high_precisiondata: &ArrayView1<F>,
458        operation: MixedPrecisionOperation,
459    ) -> IntegrateResult<Array1<F>> {
460        // Analyze precision requirements
461        let precision_requirements = self
462            .mixed_precision_engine
463            .analyze_precision_needs(high_precisiondata)?;
464
465        // Perform computation with optimal precision
466        match precision_requirements.recommended_precision {
467            PrecisionLevel::Half => self.half_precision_computation(high_precisiondata, operation),
468            PrecisionLevel::Single => {
469                self.single_precision_computation(high_precisiondata, operation)
470            }
471            PrecisionLevel::Double => {
472                self.double_precision_computation(high_precisiondata, operation)
473            }
474            PrecisionLevel::Mixed => {
475                self.adaptive_mixed_precision_computation(high_precisiondata, operation)
476            }
477        }
478    }
479
480    // Advanced SIMD implementation methods
481
482    /// AVX-512 vector FMA implementation
483    fn avx512_vector_fma(
484        &self,
485        result: &mut Array1<F>,
486        a: &ArrayView1<F>,
487        b: &ArrayView1<F>,
488        c: &ArrayView1<F>,
489        scale: F,
490    ) -> IntegrateResult<()> {
491        // This would contain actual AVX-512 intrinsics in a real implementation
492        // For now, we'll use the unified SIMD operations
493        if F::simd_available() {
494            let scaled_c = F::simd_scalar_mul(c, scale);
495            let ab_sum = F::simd_add(a, b);
496            *result = F::simd_add(&ab_sum.view(), &scaled_c.view());
497        }
498        Ok(())
499    }
500
501    /// Cache-blocked SIMD matrix-vector multiplication
502    fn blocked_simd_matvec(
503        &self,
504        result: &mut Array1<F>,
505        matrix: &Array2<F>,
506        vector: &ArrayView1<F>,
507    ) -> IntegrateResult<()> {
508        let (m, n) = matrix.dim();
509        let block_size = 64; // Optimized for L1 cache
510
511        for i_block in (0..m).step_by(block_size) {
512            let i_end = (i_block + block_size).min(m);
513
514            for j_block in (0..n).step_by(block_size) {
515                let j_end = (j_block + block_size).min(n);
516
517                // Process block with SIMD
518                for i in i_block..i_end {
519                    let mut sum = F::zero();
520                    for j in (j_block..j_end).step_by(8) {
521                        let j_end_simd = (j + 8).min(j_end);
522                        if j_end_simd - j >= 4 && F::simd_available() {
523                            // Use SIMD for inner loop
524                            let matrix_slice = matrix.slice(s![i, j..j_end_simd]);
525                            let vector_slice = vector.slice(s![j..j_end_simd]);
526                            sum += F::simd_dot(&matrix_slice, &vector_slice);
527                        } else {
528                            // Scalar fallback
529                            for k in j..j_end_simd {
530                                sum += matrix[(i, k)] * vector[k];
531                            }
532                        }
533                    }
534                    result[i] += sum;
535                }
536            }
537        }
538        Ok(())
539    }
540
541    /// Multi-accumulator dot product for reduced dependency chains
542    fn simd_dot_product_multi_accumulator(
543        &self,
544        a: &ArrayView1<F>,
545        b: &ArrayView1<F>,
546    ) -> IntegrateResult<F> {
547        let n = a.len();
548        let simd_width = 8; // Assume 8-wide SIMD for demonstration
549        let num_accumulators = 4;
550
551        if n < simd_width * num_accumulators {
552            // Too small for multi-accumulator, use simple dot product
553            return Ok(F::simd_dot(a, b));
554        }
555
556        let mut accumulators = vec![F::zero(); num_accumulators];
557        let step = simd_width * num_accumulators;
558
559        // Process in chunks with multiple accumulators
560        for chunk_start in (0..n).step_by(step) {
561            for acc_idx in 0..num_accumulators {
562                let start = chunk_start + acc_idx * simd_width;
563                let end = (start + simd_width).min(n);
564
565                if end > start && end - start >= 4 {
566                    let a_slice = a.slice(s![start..end]);
567                    let b_slice = b.slice(s![start..end]);
568                    accumulators[acc_idx] += F::simd_dot(&a_slice, &b_slice);
569                }
570            }
571        }
572
573        // Handle remainder
574        let remainder_start = (n / step) * step;
575        if remainder_start < n {
576            for i in remainder_start..n {
577                accumulators[0] += a[i] * b[i];
578            }
579        }
580
581        // Sum accumulators
582        Ok(accumulators.iter().fold(F::zero(), |acc, &x| acc + x))
583    }
584
585    /// Scalar dot product with multiple accumulators
586    fn scalar_dot_product_multi_accumulator(
587        &self,
588        a: &ArrayView1<F>,
589        b: &ArrayView1<F>,
590    ) -> IntegrateResult<F> {
591        let n = a.len();
592        let num_accumulators = 4;
593        let mut accumulators = vec![F::zero(); num_accumulators];
594
595        // Unroll loop with multiple accumulators
596        let unroll_factor = num_accumulators;
597        let unrolled_end = (n / unroll_factor) * unroll_factor;
598
599        for i in (0..unrolled_end).step_by(unroll_factor) {
600            for j in 0..unroll_factor {
601                accumulators[j] += a[i + j] * b[i + j];
602            }
603        }
604
605        // Handle remainder
606        for i in unrolled_end..n {
607            accumulators[0] += a[i] * b[i];
608        }
609
610        // Sum accumulators
611        Ok(accumulators.iter().fold(F::zero(), |acc, &x| acc + x))
612    }
613
614    /// Tree reduction for optimal SIMD utilization
615    fn simd_tree_reduction_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
616        let n = data.len();
617        if n == 0 {
618            return Ok(F::zero());
619        }
620
621        let simd_width = 8; // Assume 8-wide SIMD
622        if n < simd_width {
623            return Ok(data.iter().fold(F::zero(), |acc, &x| acc + x));
624        }
625
626        // First level: SIMD reduction within vectors
627        let mut partial_sums = Vec::new();
628        for chunk in data.exact_chunks(simd_width) {
629            let sum = F::simd_sum(&chunk);
630            partial_sums.push(sum);
631        }
632
633        // Handle remainder
634        let remainder_start = (n / simd_width) * simd_width;
635        if remainder_start < n {
636            let remainder_sum = data
637                .slice(s![remainder_start..])
638                .iter()
639                .fold(F::zero(), |acc, &x| acc + x);
640            partial_sums.push(remainder_sum);
641        }
642
643        // Second level: Tree reduction of partial sums
644        while partial_sums.len() > 1 {
645            let mut next_level = Vec::new();
646            for chunk in partial_sums.chunks(2) {
647                let sum = if chunk.len() == 2 {
648                    chunk[0] + chunk[1]
649                } else {
650                    chunk[0]
651                };
652                next_level.push(sum);
653            }
654            partial_sums = next_level;
655        }
656
657        Ok(partial_sums[0])
658    }
659
660    /// AVX-512 tree reduction
661    fn avx512_tree_reduction_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
662        // Simplified implementation - would use actual AVX-512 intrinsics
663        self.simd_tree_reduction_sum(data)
664    }
665
666    /// Predicated SIMD conditional operations
667    fn predicated_simd_conditional<CondFn, TrueFn, FalseFn>(
668        &self,
669        result: &mut Array1<F>,
670        a: &ArrayView1<F>,
671        b: &ArrayView1<F>,
672        condition: CondFn,
673        true_op: TrueFn,
674        false_op: FalseFn,
675    ) -> IntegrateResult<()>
676    where
677        CondFn: Fn(F, F) -> bool,
678        TrueFn: Fn(F, F) -> F,
679        FalseFn: Fn(F, F) -> F,
680    {
681        // For platforms without mask registers, fall back to blend operations
682        Zip::from(result)
683            .and(a)
684            .and(b)
685            .for_each(|r, &a_val, &b_val| {
686                *r = if condition(a_val, b_val) {
687                    true_op(a_val, b_val)
688                } else {
689                    false_op(a_val, b_val)
690                };
691            });
692        Ok(())
693    }
694
695    /// Hardware gather implementation
696    fn hardware_gather(
697        &self,
698        result: &mut Array1<F>,
699        data: &ArrayView1<F>,
700        indices: &[usize],
701    ) -> IntegrateResult<()> {
702        // Simplified implementation - would use actual gather instructions
703        for (i, &idx) in indices.iter().enumerate() {
704            if idx < data.len() {
705                result[i] = data[idx];
706            }
707        }
708        Ok(())
709    }
710
711    /// Software gather with prefetching
712    fn software_gather_with_prefetch(
713        &self,
714        result: &mut Array1<F>,
715        data: &ArrayView1<F>,
716        indices: &[usize],
717    ) -> IntegrateResult<()> {
718        const PREFETCH_DISTANCE: usize = 8;
719
720        for (i, &idx) in indices.iter().enumerate() {
721            // Prefetch future indices (using stable alternative)
722            if i + PREFETCH_DISTANCE < indices.len() {
723                let prefetch_idx = indices[i + PREFETCH_DISTANCE];
724                if prefetch_idx < data.len() {
725                    // Software prefetch hint using stable methods
726                    #[cfg(target_arch = "x86_64")]
727                    {
728                        use std::arch::x86_64::_mm_prefetch;
729                        use std::arch::x86_64::_MM_HINT_T0;
730                        unsafe {
731                            let ptr = data.as_ptr().add(prefetch_idx);
732                            _mm_prefetch(ptr as *const i8, _MM_HINT_T0);
733                        }
734                    }
735                    #[cfg(not(target_arch = "x86_64"))]
736                    {
737                        // No-op for other architectures
738                        std::hint::black_box(&data[prefetch_idx]);
739                    }
740                }
741            }
742
743            if idx < data.len() {
744                result[i] = data[idx];
745            }
746        }
747        Ok(())
748    }
749
750    /// Advanced-optimized scalar multiplication in-place
751    fn advanced_scalar_multiply_inplace(
752        &self,
753        vector: &mut Array1<F>,
754        scalar: F,
755    ) -> IntegrateResult<()> {
756        if F::simd_available() {
757            let result = F::simd_scalar_mul(&vector.view(), scalar);
758            vector.assign(&result);
759        } else {
760            vector.mapv_inplace(|x| x * scalar);
761        }
762        Ok(())
763    }
764
765    /// Advanced-optimized vector addition with scalar
766    fn advanced_vector_add_scalar(
767        &self,
768        result: &mut Array1<F>,
769        a: &ArrayView1<F>,
770        b: &ArrayView1<F>,
771        scalar: F,
772    ) -> IntegrateResult<()> {
773        if F::simd_available() {
774            let scaled_b = F::simd_scalar_mul(b, scalar);
775            *result = F::simd_add(a, &scaled_b.view());
776        } else {
777            Zip::from(result)
778                .and(a)
779                .and(b)
780                .for_each(|r, &a_val, &b_val| {
781                    *r = a_val + scalar * b_val;
782                });
783        }
784        Ok(())
785    }
786
787    /// Advanced-optimized RK4 final combination
788    fn advanced_rk4_combine(
789        &self,
790        result: &mut Array1<F>,
791        y: &ArrayView1<F>,
792        k1: &ArrayView1<F>,
793        k2: &ArrayView1<F>,
794        k3: &ArrayView1<F>,
795        k4: &ArrayView1<F>,
796    ) -> IntegrateResult<()> {
797        let one_sixth = F::one() / F::from(6.0).unwrap();
798
799        if F::simd_available() {
800            // Vectorized: y + (k1 + 2*k2 + 2*k3 + k4) / 6
801            let k2_doubled = F::simd_scalar_mul(k2, F::from(2.0).unwrap());
802            let k3_doubled = F::simd_scalar_mul(k3, F::from(2.0).unwrap());
803
804            let sum1 = F::simd_add(k1, &k2_doubled.view());
805            let sum2 = F::simd_add(&k3_doubled.view(), k4);
806            let total_k = F::simd_add(&sum1.view(), &sum2.view());
807            let scaled_k = F::simd_scalar_mul(&total_k.view(), one_sixth);
808
809            *result = F::simd_add(y, &scaled_k.view());
810        } else {
811            Zip::from(result)
812                .and(y)
813                .and(k1)
814                .and(k2)
815                .and(k3)
816                .and(k4)
817                .for_each(|r, &y_val, &k1_val, &k2_val, &k3_val, &k4_val| {
818                    *r = y_val
819                        + one_sixth
820                            * (k1_val
821                                + F::from(2.0).unwrap() * k2_val
822                                + F::from(2.0).unwrap() * k3_val
823                                + k4_val);
824                });
825        }
826        Ok(())
827    }
828
829    // Mixed precision implementations
830    fn half_precision_computation(
831        &self,
832        data: &ArrayView1<F>,
833        operation: MixedPrecisionOperation,
834    ) -> IntegrateResult<Array1<F>> {
835        // Convert to f16 for computation, then back to F
836        let f16data: Array1<half::f16> = Array1::from_vec(
837            data.iter()
838                .map(|&x| half::f16::from_f64(x.to_f64().unwrap_or(0.0)))
839                .collect(),
840        );
841
842        // Perform SIMD operations in f16 precision
843        let result_f16 = match operation {
844            MixedPrecisionOperation::Addition => self.half_precision_vector_add(&f16data)?,
845            MixedPrecisionOperation::Multiplication => self.half_precision_vector_mul(&f16data)?,
846            MixedPrecisionOperation::DotProduct => {
847                Array1::from_vec(vec![self.half_precision_dot_product(&f16data, &f16data)?])
848            }
849            MixedPrecisionOperation::Reduction => {
850                Array1::from_vec(vec![self.half_precision_reduction(&f16data)?])
851            }
852            MixedPrecisionOperation::MatrixMultiply => {
853                // For now, fallback to element-wise multiplication
854                self.half_precision_vector_mul(&f16data)?
855            }
856        };
857
858        // Convert back to F precision
859        let result: Array1<F> = result_f16
860            .iter()
861            .map(|&x| F::from_f64(x.to_f64()).unwrap_or(F::zero()))
862            .collect();
863
864        Ok(result)
865    }
866
867    fn single_precision_computation(
868        &self,
869        data: &ArrayView1<F>,
870        operation: MixedPrecisionOperation,
871    ) -> IntegrateResult<Array1<F>> {
872        // Convert to f32 for computation, then back to F
873        let f32data: Array1<f32> = Array1::from_vec(
874            data.iter()
875                .map(|&x| x.to_f64().unwrap_or(0.0) as f32)
876                .collect(),
877        );
878
879        // Perform SIMD operations in f32 precision
880        let result_f32 = match operation {
881            MixedPrecisionOperation::Addition => self.single_precision_vector_add(&f32data)?,
882            MixedPrecisionOperation::Multiplication => {
883                self.single_precision_vector_mul(&f32data)?
884            }
885            MixedPrecisionOperation::DotProduct => {
886                Array1::from_vec(vec![self.single_precision_dot_product(&f32data, &f32data)?])
887            }
888            MixedPrecisionOperation::Reduction => {
889                Array1::from_vec(vec![self.single_precision_reduction(&f32data)?])
890            }
891            MixedPrecisionOperation::MatrixMultiply => {
892                // For now, fallback to element-wise multiplication
893                self.single_precision_vector_mul(&f32data)?
894            }
895        };
896
897        // Convert back to F precision
898        let result: Array1<F> = result_f32
899            .iter()
900            .map(|&x| F::from_f64(x as f64).unwrap_or(F::zero()))
901            .collect();
902
903        Ok(result)
904    }
905
906    fn double_precision_computation(
907        &self,
908        data: &ArrayView1<F>,
909        operation: MixedPrecisionOperation,
910    ) -> IntegrateResult<Array1<F>> {
911        // Use native F64 precision for computation
912        let f64data: Array1<f64> =
913            Array1::from_vec(data.iter().map(|&x| x.to_f64().unwrap_or(0.0)).collect());
914
915        // Perform SIMD operations in f64 precision
916        let result_f64 = match operation {
917            MixedPrecisionOperation::Addition => self.double_precision_vector_add(&f64data)?,
918            MixedPrecisionOperation::Multiplication => {
919                self.double_precision_vector_mul(&f64data)?
920            }
921            MixedPrecisionOperation::DotProduct => {
922                Array1::from_vec(vec![self.double_precision_reduction(&f64data)?])
923            }
924            MixedPrecisionOperation::Reduction => {
925                Array1::from_vec(vec![self.double_precision_reduction(&f64data)?])
926            }
927            MixedPrecisionOperation::MatrixMultiply => {
928                // For now, fallback to element-wise multiplication
929                self.double_precision_vector_mul(&f64data)?
930            }
931        };
932
933        // Convert back to F precision
934        let result: Array1<F> = result_f64
935            .iter()
936            .map(|&x| F::from_f64(x).unwrap_or(F::zero()))
937            .collect();
938
939        Ok(result)
940    }
941
942    fn analyze_error_sensitivity(
943        &self,
944        data: &ArrayView1<F>,
945        operation: &MixedPrecisionOperation,
946    ) -> f64 {
947        // Analyze the sensitivity of the operation to numerical errors
948        let magnitude_range = data
949            .iter()
950            .fold((F::infinity(), -F::infinity()), |(min, max), &x| {
951                (min.min(x.abs()), max.max(x.abs()))
952            });
953
954        let condition_number =
955            magnitude_range.1.to_f64().unwrap_or(1.0) / magnitude_range.0.to_f64().unwrap_or(1.0);
956
957        match operation {
958            MixedPrecisionOperation::DotProduct => condition_number.sqrt(),
959            MixedPrecisionOperation::Reduction => condition_number * 0.5,
960            MixedPrecisionOperation::MatrixMultiply => condition_number,
961            MixedPrecisionOperation::Addition => condition_number * 0.3,
962            MixedPrecisionOperation::Multiplication => condition_number * 0.7,
963        }
964    }
965
966    fn determine_optimal_precision(
967        &self,
968        data_range: (f64, f64),
969        error_sensitivity: f64,
970    ) -> PrecisionLevel {
971        let (min_val, max_val) = data_range;
972        let dynamic_range = max_val / min_val.max(1e-300);
973
974        if error_sensitivity < 10.0 && dynamic_range < 1e3 {
975            PrecisionLevel::Half
976        } else if error_sensitivity < 100.0 && dynamic_range < 1e6 {
977            PrecisionLevel::Single
978        } else if error_sensitivity < 1000.0 {
979            PrecisionLevel::Double
980        } else {
981            PrecisionLevel::Mixed
982        }
983    }
984
985    fn adaptive_mixed_precision_computation(
986        &self,
987        data: &ArrayView1<F>,
988        operation: MixedPrecisionOperation,
989    ) -> IntegrateResult<Array1<F>> {
990        // Analyze data characteristics to determine optimal precision
991        let data_range = self.analyzedata_range(data);
992        let error_sensitivity = self.analyze_error_sensitivity(data, &operation);
993
994        // Choose precision based on analysis
995        let optimal_precision = self.determine_optimal_precision(data_range, error_sensitivity);
996
997        match optimal_precision {
998            PrecisionLevel::Half => {
999                // Use half precision for low-sensitivity operations
1000                self.half_precision_computation(data, operation)
1001            }
1002            PrecisionLevel::Single => {
1003                // Use single precision for moderate-sensitivity operations
1004                self.single_precision_computation(data, operation)
1005            }
1006            PrecisionLevel::Double => {
1007                // Use double precision for high-sensitivity operations
1008                self.double_precision_computation(data, operation)
1009            }
1010            PrecisionLevel::Mixed => {
1011                // Use double precision for mixed precision scenarios to avoid recursion
1012                self.double_precision_computation(data, operation)
1013            }
1014        }
1015    }
1016
1017    // Hardware detection methods (simplified)
1018    fn detect_avx512_support() -> Avx512Support {
1019        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1020        {
1021            Avx512Support {
1022                foundation: is_x86_feature_detected!("avx512f"),
1023                doubleword_quadword: is_x86_feature_detected!("avx512dq"),
1024                byte_word: is_x86_feature_detected!("avx512bw"),
1025                vector_length: is_x86_feature_detected!("avx512vl"),
1026                conflict_detection: is_x86_feature_detected!("avx512cd"),
1027                exponential_reciprocal: false, // is_x86_feature_detected!("avx512er"),
1028                prefetch: false,               // is_x86_feature_detected!("avx512pf"),
1029            }
1030        }
1031        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1032        {
1033            Avx512Support {
1034                foundation: false,
1035                doubleword_quadword: false,
1036                byte_word: false,
1037                vector_length: false,
1038                conflict_detection: false,
1039                exponential_reciprocal: false,
1040                prefetch: false,
1041            }
1042        }
1043    }
1044
1045    fn detect_sve_support() -> SveSupport {
1046        SveSupport {
1047            sve_available: false, // Would check ARM SVE availability
1048            vector_length: 0,
1049            predication_support: false,
1050            gather_scatter: false,
1051        }
1052    }
1053
1054    fn detect_vector_width() -> usize {
1055        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1056        {
1057            if is_x86_feature_detected!("avx512f") {
1058                512
1059            } else if is_x86_feature_detected!("avx2") {
1060                256
1061            } else if is_x86_feature_detected!("sse2") {
1062                128
1063            } else {
1064                64 // Default scalar width
1065            }
1066        }
1067        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1068        {
1069            // For non-x86 architectures, return a default width
1070            // Could check for ARM NEON or other SIMD here
1071            128
1072        }
1073    }
1074
1075    fn detect_fma_support() -> bool {
1076        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1077        {
1078            is_x86_feature_detected!("fma")
1079        }
1080        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1081        {
1082            false
1083        }
1084    }
1085
1086    fn detect_gather_scatter_support() -> bool {
1087        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1088        {
1089            is_x86_feature_detected!("avx2") // AVX2 has gather, AVX-512 has gather/scatter
1090        }
1091        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1092        {
1093            false
1094        }
1095    }
1096
1097    fn detect_mask_registers() -> bool {
1098        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1099        {
1100            is_x86_feature_detected!("avx512f") // AVX-512 has mask registers
1101        }
1102        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1103        {
1104            false
1105        }
1106    }
1107
1108    fn measure_memory_bandwidth() -> f64 {
1109        // Simplified - would perform actual bandwidth measurement
1110        100.0 // GB/s placeholder
1111    }
1112}
1113
1114// Supporting types and implementations
1115
1116#[derive(Debug, Clone)]
1117pub enum MixedPrecisionOperation {
1118    Addition,
1119    Multiplication,
1120    DotProduct,
1121    MatrixMultiply,
1122    Reduction,
1123}
1124
1125#[derive(Debug, Clone)]
1126pub enum PrecisionLevel {
1127    Half,   // f16
1128    Single, // f32
1129    Double, // f64
1130    Mixed,  // Adaptive precision
1131}
1132
1133pub struct PrecisionRequirements {
1134    pub recommended_precision: PrecisionLevel,
1135    pub error_tolerance: f64,
1136    pub performance_gain: f64,
1137}
1138
1139// Placeholder implementations for complex supporting types
1140impl<F: IntegrateFloat> VectorizationStrategies<F> {
1141    fn new(capabilities: &SimdCapabilities) -> IntegrateResult<Self> {
1142        Ok(VectorizationStrategies {
1143            loop_patterns: Vec::new(),
1144            layout_transforms: Vec::new(),
1145            reduction_strategies: Vec::new(),
1146            predicated_operations: PredicatedOperations {
1147                mask_strategies: Vec::new(),
1148                conditional_patterns: Vec::new(),
1149                blend_operations: Vec::new(),
1150            },
1151        })
1152    }
1153}
1154
1155impl SimdPerformanceAnalytics {
1156    fn new() -> Self {
1157        SimdPerformanceAnalytics {
1158            instruction_throughput: InstructionThroughput::default(),
1159            bandwidth_utilization: BandwidthUtilization::default(),
1160            vectorization_efficiency: VectorizationEfficiency::default(),
1161            bottleneck_analysis: BottleneckAnalysis::default(),
1162        }
1163    }
1164}
1165
1166impl<F: IntegrateFloat> MixedPrecisionEngine<F> {
1167    fn new() -> IntegrateResult<Self> {
1168        Ok(MixedPrecisionEngine {
1169            precision_analyzer: PrecisionAnalyzer::new(),
1170            dynamic_precision: DynamicPrecisionController::new(),
1171            error_tracker: ErrorAccumulationTracker::new(),
1172            tradeoff_optimizer: TradeoffOptimizer::new(),
1173        })
1174    }
1175
1176    fn analyze_precision_needs(
1177        &self,
1178        data: &ArrayView1<F>,
1179    ) -> IntegrateResult<PrecisionRequirements> {
1180        Ok(PrecisionRequirements {
1181            recommended_precision: PrecisionLevel::Double,
1182            error_tolerance: 1e-15,
1183            performance_gain: 1.0,
1184        })
1185    }
1186}
1187
1188// Supporting type implementations
1189
1190/// Instruction throughput measurement
1191#[derive(Debug, Clone, Default)]
1192pub struct InstructionThroughput {
1193    pub instructions_per_cycle: f64,
1194    pub peak_throughput: f64,
1195    pub current_utilization: f64,
1196}
1197
1198/// Memory bandwidth utilization metrics
1199#[derive(Debug, Clone, Default)]
1200pub struct BandwidthUtilization {
1201    pub theoretical_peak: f64,
1202    pub achieved_bandwidth: f64,
1203    pub utilization_ratio: f64,
1204}
1205
1206/// Vectorization efficiency metrics
1207#[derive(Debug, Clone, Default)]
1208pub struct VectorizationEfficiency {
1209    pub vector_utilization: f64,
1210    pub scalar_fallback_ratio: f64,
1211    pub simd_speedup: f64,
1212}
1213
1214/// Performance bottleneck analysis
1215#[derive(Debug, Clone, Default)]
1216pub struct BottleneckAnalysis {
1217    pub bottleneck_type: String,
1218    pub severity: f64,
1219    pub improvement_potential: f64,
1220}
1221
1222/// Precision requirement analyzer
1223#[derive(Debug, Clone)]
1224pub struct PrecisionAnalyzer<F: IntegrateFloat> {
1225    pub error_thresholds: Vec<F>,
1226    pub precision_requirements: HashMap<String, PrecisionLevel>,
1227    pub phantom: std::marker::PhantomData<F>,
1228}
1229
1230impl<F: IntegrateFloat> Default for PrecisionAnalyzer<F> {
1231    fn default() -> Self {
1232        Self {
1233            error_thresholds: Vec::new(),
1234            precision_requirements: HashMap::new(),
1235            phantom: std::marker::PhantomData,
1236        }
1237    }
1238}
1239
1240impl<F: IntegrateFloat> PrecisionAnalyzer<F> {
1241    pub fn new() -> Self {
1242        Default::default()
1243    }
1244}
1245
1246/// Dynamic precision controller
1247#[derive(Debug, Clone)]
1248pub struct DynamicPrecisionController<F: IntegrateFloat> {
1249    pub current_precision: PrecisionLevel,
1250    pub adaptation_history: Vec<(Instant, PrecisionLevel)>,
1251    pub phantom: std::marker::PhantomData<F>,
1252}
1253
1254impl<F: IntegrateFloat> Default for DynamicPrecisionController<F> {
1255    fn default() -> Self {
1256        Self {
1257            current_precision: PrecisionLevel::Double,
1258            adaptation_history: Vec::new(),
1259            phantom: std::marker::PhantomData,
1260        }
1261    }
1262}
1263
1264impl<F: IntegrateFloat> DynamicPrecisionController<F> {
1265    pub fn new() -> Self {
1266        Default::default()
1267    }
1268}
1269
1270/// Error accumulation tracker
1271#[derive(Debug, Clone)]
1272pub struct ErrorAccumulationTracker<F: IntegrateFloat> {
1273    pub accumulated_error: F,
1274    pub error_history: Vec<F>,
1275    pub error_bounds: F,
1276}
1277
1278impl<F: IntegrateFloat> Default for ErrorAccumulationTracker<F> {
1279    fn default() -> Self {
1280        Self {
1281            accumulated_error: F::zero(),
1282            error_history: Vec::new(),
1283            error_bounds: F::from(1e-12).unwrap_or(F::zero()),
1284        }
1285    }
1286}
1287
1288impl<F: IntegrateFloat> ErrorAccumulationTracker<F> {
1289    pub fn new() -> Self {
1290        Default::default()
1291    }
1292}
1293
1294/// Performance vs accuracy tradeoff optimizer
1295#[derive(Debug, Clone)]
1296pub struct TradeoffOptimizer<F: IntegrateFloat> {
1297    pub pareto_front: Vec<(f64, F)>, // (performance, accuracy) pairs
1298    pub current_tradeoff: (f64, F),
1299    pub optimization_history: Vec<(f64, F)>,
1300}
1301
1302impl<F: IntegrateFloat> Default for TradeoffOptimizer<F> {
1303    fn default() -> Self {
1304        Self {
1305            pareto_front: Vec::new(),
1306            current_tradeoff: (1.0, F::zero()),
1307            optimization_history: Vec::new(),
1308        }
1309    }
1310}
1311
1312impl<F: IntegrateFloat> TradeoffOptimizer<F> {
1313    pub fn new() -> Self {
1314        Default::default()
1315    }
1316}
1317
1318/// Load balancing strategies for SIMD operations
1319#[derive(Debug, Clone, Default)]
1320pub struct LoadBalancingStrategy {
1321    pub strategy_type: String,
1322    pub load_distribution: Vec<f64>,
1323    pub efficiency_score: f64,
1324}
1325
1326/// Remainder handling strategy for non-aligned SIMD operations
1327#[derive(Debug, Clone, Default)]
1328pub struct RemainderStrategy {
1329    pub strategy_type: String,
1330    pub scalar_fallback: bool,
1331    pub padding_strategy: String,
1332}
1333
1334/// Data type specific SIMD optimizations
1335#[derive(Debug, Clone)]
1336pub struct DataTypeOptimizations<F: IntegrateFloat> {
1337    pub optimal_vector_width: usize,
1338    pub alignment_requirements: usize,
1339    pub preferred_operations: Vec<String>,
1340    pub phantom: std::marker::PhantomData<F>,
1341}
1342
1343impl<F: IntegrateFloat> Default for DataTypeOptimizations<F> {
1344    fn default() -> Self {
1345        Self {
1346            optimal_vector_width: 8,
1347            alignment_requirements: 32,
1348            preferred_operations: Vec::new(),
1349            phantom: std::marker::PhantomData,
1350        }
1351    }
1352}
1353
1354/// Mask generation strategies for predicated SIMD
1355#[derive(Debug, Clone, Default)]
1356pub struct MaskGenerationStrategy {
1357    pub strategy_type: String,
1358    pub mask_efficiency: f64,
1359    pub register_pressure: f64,
1360}
1361
1362/// Conditional execution patterns for SIMD
1363#[derive(Debug, Clone)]
1364pub struct ConditionalPattern<F: IntegrateFloat> {
1365    pub pattern_type: String,
1366    pub condition_selectivity: f64,
1367    pub branch_cost: F,
1368    pub phantom: std::marker::PhantomData<F>,
1369}
1370
1371impl<F: IntegrateFloat> Default for ConditionalPattern<F> {
1372    fn default() -> Self {
1373        Self {
1374            pattern_type: "default".to_string(),
1375            condition_selectivity: 0.5,
1376            branch_cost: F::zero(),
1377            phantom: std::marker::PhantomData,
1378        }
1379    }
1380}
1381
1382/// Blend operation optimization for conditional SIMD
1383#[derive(Debug, Clone)]
1384pub struct BlendOperation<F: IntegrateFloat> {
1385    pub blend_type: String,
1386    pub performance_cost: F,
1387    pub accuracy_impact: F,
1388    pub phantom: std::marker::PhantomData<F>,
1389}
1390
1391impl<F: IntegrateFloat> Default for BlendOperation<F> {
1392    fn default() -> Self {
1393        Self {
1394            blend_type: "default".to_string(),
1395            performance_cost: F::zero(),
1396            accuracy_impact: F::zero(),
1397            phantom: std::marker::PhantomData,
1398        }
1399    }
1400}
1401
1402// Implement new() methods
1403impl InstructionThroughput {
1404    pub fn new() -> Self {
1405        Default::default()
1406    }
1407}
1408
1409impl BandwidthUtilization {
1410    pub fn new() -> Self {
1411        Default::default()
1412    }
1413}
1414
1415impl VectorizationEfficiency {
1416    pub fn new() -> Self {
1417        Default::default()
1418    }
1419}
1420
1421impl BottleneckAnalysis {
1422    pub fn new() -> Self {
1423        Default::default()
1424    }
1425}
1426
1427impl LoadBalancingStrategy {
1428    pub fn new() -> Self {
1429        Default::default()
1430    }
1431}
1432
1433impl RemainderStrategy {
1434    pub fn new() -> Self {
1435        Default::default()
1436    }
1437}
1438
1439impl<F: IntegrateFloat> DataTypeOptimizations<F> {
1440    pub fn new() -> Self {
1441        Default::default()
1442    }
1443}
1444
1445impl MaskGenerationStrategy {
1446    pub fn new() -> Self {
1447        Default::default()
1448    }
1449}
1450
1451impl<F: IntegrateFloat> ConditionalPattern<F> {
1452    pub fn new() -> Self {
1453        Default::default()
1454    }
1455}
1456
1457impl<F: IntegrateFloat> BlendOperation<F> {
1458    pub fn new() -> Self {
1459        Default::default()
1460    }
1461}
1462
1463// Additional SIMD helper methods implementation
1464impl<F: IntegrateFloat + SimdUnifiedOps> AdvancedSimdAccelerator<F> {
1465    fn analyzedata_range(&self, data: &ArrayView1<F>) -> (f64, f64) {
1466        let mut min_val = F::infinity();
1467        let mut max_val = -F::infinity();
1468
1469        for &value in data.iter() {
1470            let abs_value = value.abs();
1471            if abs_value < min_val {
1472                min_val = abs_value;
1473            }
1474            if abs_value > max_val {
1475                max_val = abs_value;
1476            }
1477        }
1478
1479        (
1480            min_val.to_f64().unwrap_or(0.0),
1481            max_val.to_f64().unwrap_or(1.0),
1482        )
1483    }
1484
1485    fn single_precision_vector_mul(&self, data: &Array1<f32>) -> IntegrateResult<Array1<f32>> {
1486        // Element-wise multiplication with itself for demo
1487        let mut result = Array1::zeros(data.len());
1488        for i in 0..data.len() {
1489            result[i] = data[i] * data[i];
1490        }
1491        Ok(result)
1492    }
1493
1494    fn double_precision_vector_add(&self, data: &Array1<f64>) -> IntegrateResult<Array1<f64>> {
1495        // Add data with itself for demo
1496        let mut result = Array1::zeros(data.len());
1497        for i in 0..data.len() {
1498            result[i] = data[i] + data[i];
1499        }
1500        Ok(result)
1501    }
1502
1503    fn double_precision_vector_mul(&self, data: &Array1<f64>) -> IntegrateResult<Array1<f64>> {
1504        // Element-wise multiplication with itself for demo
1505        let mut result = Array1::zeros(data.len());
1506        for i in 0..data.len() {
1507            result[i] = data[i] * data[i];
1508        }
1509        Ok(result)
1510    }
1511
1512    fn double_precision_reduction(&self, data: &Array1<f64>) -> IntegrateResult<f64> {
1513        Ok(data.iter().sum())
1514    }
1515
1516    fn single_precision_vector_add(&self, data: &Array1<f32>) -> IntegrateResult<Array1<f32>> {
1517        // Add data with itself for demo
1518        let mut result = Array1::zeros(data.len());
1519        for i in 0..data.len() {
1520            result[i] = data[i] + data[i];
1521        }
1522        Ok(result)
1523    }
1524
1525    fn single_precision_dot_product(
1526        &self,
1527        a: &Array1<f32>,
1528        b: &Array1<f32>,
1529    ) -> IntegrateResult<f32> {
1530        let mut sum = 0.0f32;
1531        for i in 0..a.len().min(b.len()) {
1532            sum += a[i] * b[i];
1533        }
1534        Ok(sum)
1535    }
1536
1537    fn single_precision_reduction(&self, data: &Array1<f32>) -> IntegrateResult<f32> {
1538        Ok(data.iter().sum())
1539    }
1540
1541    fn half_precision_vector_add(
1542        &self,
1543        data: &Array1<half::f16>,
1544    ) -> IntegrateResult<Array1<half::f16>> {
1545        // Add data with itself for demo
1546        let mut result = Array1::from_vec(vec![half::f16::ZERO; data.len()]);
1547        for i in 0..data.len() {
1548            result[i] = data[i] + data[i];
1549        }
1550        Ok(result)
1551    }
1552
1553    fn half_precision_vector_mul(
1554        &self,
1555        data: &Array1<half::f16>,
1556    ) -> IntegrateResult<Array1<half::f16>> {
1557        // Element-wise multiplication with itself for demo
1558        let mut result = Array1::from_vec(vec![half::f16::ZERO; data.len()]);
1559        for i in 0..data.len() {
1560            result[i] = data[i] * data[i];
1561        }
1562        Ok(result)
1563    }
1564
1565    fn half_precision_dot_product(
1566        &self,
1567        a: &Array1<half::f16>,
1568        b: &Array1<half::f16>,
1569    ) -> IntegrateResult<half::f16> {
1570        let mut sum = half::f16::ZERO;
1571        for i in 0..a.len().min(b.len()) {
1572            sum += a[i] * b[i];
1573        }
1574        Ok(sum)
1575    }
1576
1577    fn half_precision_reduction(&self, data: &Array1<half::f16>) -> IntegrateResult<half::f16> {
1578        let mut sum = half::f16::ZERO;
1579        for &val in data.iter() {
1580            sum += val;
1581        }
1582        Ok(sum)
1583    }
1584}
1585
1586#[cfg(test)]
1587mod tests {
1588    use super::*;
1589    use scirs2_core::ndarray::array;
1590
1591    #[test]
1592    fn test_advanced_simd_accelerator_creation() {
1593        let accelerator = AdvancedSimdAccelerator::<f64>::new();
1594        assert!(accelerator.is_ok());
1595    }
1596
1597    #[test]
1598    fn test_advanced_vector_add_fma() {
1599        let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1600        let a = array![1.0, 2.0, 3.0, 4.0];
1601        let b = array![0.1, 0.2, 0.3, 0.4];
1602        let c = array![0.01, 0.02, 0.03, 0.04];
1603        let scale = 2.0;
1604
1605        let result = accelerator.advanced_vector_add_fma(&a.view(), &b.view(), &c.view(), scale);
1606        assert!(result.is_ok());
1607
1608        let expected = array![1.12, 2.24, 3.36, 4.48]; // a + b + scale * c
1609        let actual = result.unwrap();
1610        for (exp, act) in expected.iter().zip(actual.iter()) {
1611            assert!((exp - act).abs() < 1e-10);
1612        }
1613    }
1614
1615    #[test]
1616    fn test_advanced_dot_product() {
1617        let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1618        let a = array![1.0, 2.0, 3.0, 4.0];
1619        let b = array![0.1, 0.2, 0.3, 0.4];
1620
1621        let result = accelerator.advanced_dot_product(&a.view(), &b.view());
1622        assert!(result.is_ok());
1623
1624        let expected = 3.0; // 1*0.1 + 2*0.2 + 3*0.3 + 4*0.4
1625        let actual = result.unwrap();
1626        assert!((expected - actual).abs() < 1e-10);
1627    }
1628
1629    #[test]
1630    fn test_advanced_reduce_sum() {
1631        let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1632        let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
1633
1634        let result = accelerator.advanced_reduce_sum(&data.view());
1635        assert!(result.is_ok());
1636
1637        let expected = 15.0;
1638        let actual = result.unwrap();
1639        assert!((expected - actual).abs() < 1e-10);
1640    }
1641}