1#![allow(dead_code)]
13#![allow(clippy::too_many_arguments)]
14
15use crate::common::IntegrateFloat;
16use crate::error::{IntegrateError, IntegrateResult};
17use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, Zip};
18use scirs2_core::simd_ops::SimdUnifiedOps;
19use std::collections::HashMap;
20use std::time::Instant;
21
22pub struct AdvancedSimdAccelerator<F: IntegrateFloat> {
24 simd_capabilities: SimdCapabilities,
26 vectorization_strategies: VectorizationStrategies<F>,
28 performance_analytics: SimdPerformanceAnalytics,
30 mixed_precision_engine: MixedPrecisionEngine<F>,
32}
33
34#[derive(Debug, Clone)]
36pub struct SimdCapabilities {
37 pub avx512_support: Avx512Support,
39 pub sve_support: SveSupport,
41 pub vector_width: usize,
43 pub fma_support: bool,
45 pub gather_scatter_support: bool,
47 pub mask_registers: bool,
49 pub memory_bandwidth: f64,
51}
52
53#[derive(Debug, Clone)]
55pub struct Avx512Support {
56 pub foundation: bool, pub doubleword_quadword: bool, pub byte_word: bool, pub vector_length: bool, pub conflict_detection: bool, pub exponential_reciprocal: bool, pub prefetch: bool, }
64
65#[derive(Debug, Clone)]
67pub struct SveSupport {
68 pub sve_available: bool,
69 pub vector_length: usize, pub predication_support: bool,
71 pub gather_scatter: bool,
72}
73
74pub struct VectorizationStrategies<F: IntegrateFloat> {
76 loop_patterns: Vec<LoopVectorizationPattern>,
78 layout_transforms: Vec<DataLayoutTransform>,
80 reduction_strategies: Vec<ReductionStrategy<F>>,
82 predicated_operations: PredicatedOperations<F>,
84}
85
86#[derive(Debug, Clone)]
88pub enum LoopVectorizationPattern {
89 ElementWise,
91 Reduction,
93 Stencil,
95 MatrixVector,
97 SparseMatrix,
99 Gather,
101}
102
103#[derive(Debug, Clone)]
105pub enum DataLayoutTransform {
106 AoSToSoA,
108 Interleaving { factor: usize },
110 Padding { alignment: usize },
112 Transposition,
114 Blocking { block_size: usize },
116}
117
118pub struct ReductionStrategy<F: IntegrateFloat> {
120 operation: ReductionOperation,
122 parallel_approach: ParallelReductionApproach,
124 simd_utilization: SimdUtilization<F>,
126}
127
128#[derive(Debug, Clone)]
130pub enum ReductionOperation {
131 Sum,
132 Product,
133 Maximum,
134 Minimum,
135 L2Norm,
136 InfinityNorm,
137 DotProduct,
138}
139
140#[derive(Debug, Clone)]
142pub enum ParallelReductionApproach {
143 TreeReduction,
145 Butterfly,
147 Segmented,
149 WarpShuffle,
151}
152
153pub struct SimdUtilization<F: IntegrateFloat> {
155 vector_length: usize,
157 load_balancing: LoadBalancingStrategy,
159 remainder_handling: RemainderStrategy,
161 dtype_optimizations: DataTypeOptimizations<F>,
163}
164
165pub struct PredicatedOperations<F: IntegrateFloat> {
167 mask_strategies: Vec<MaskGenerationStrategy>,
169 conditional_patterns: Vec<ConditionalPattern<F>>,
171 blend_operations: Vec<BlendOperation<F>>,
173}
174
175pub struct SimdPerformanceAnalytics {
177 instruction_throughput: InstructionThroughput,
179 bandwidth_utilization: BandwidthUtilization,
181 vectorization_efficiency: VectorizationEfficiency,
183 bottleneck_analysis: BottleneckAnalysis,
185}
186
187pub struct MixedPrecisionEngine<F: IntegrateFloat> {
189 precision_analyzer: PrecisionAnalyzer<F>,
191 dynamic_precision: DynamicPrecisionController<F>,
193 error_tracker: ErrorAccumulationTracker<F>,
195 tradeoff_optimizer: TradeoffOptimizer<F>,
197}
198
199impl<F: IntegrateFloat + SimdUnifiedOps> AdvancedSimdAccelerator<F> {
200 pub fn new() -> IntegrateResult<Self> {
202 let simd_capabilities = Self::detect_simd_capabilities();
203 let vectorization_strategies = VectorizationStrategies::new(&simd_capabilities)?;
204 let performance_analytics = SimdPerformanceAnalytics::new();
205 let mixed_precision_engine = MixedPrecisionEngine::new()?;
206
207 Ok(AdvancedSimdAccelerator {
208 simd_capabilities,
209 vectorization_strategies,
210 performance_analytics,
211 mixed_precision_engine,
212 })
213 }
214
215 fn detect_simd_capabilities() -> SimdCapabilities {
217 SimdCapabilities {
218 avx512_support: Self::detect_avx512_support(),
219 sve_support: Self::detect_sve_support(),
220 vector_width: Self::detect_vector_width(),
221 fma_support: Self::detect_fma_support(),
222 gather_scatter_support: Self::detect_gather_scatter_support(),
223 mask_registers: Self::detect_mask_registers(),
224 memory_bandwidth: Self::measure_memory_bandwidth(),
225 }
226 }
227
228 pub fn advanced_vector_add_fma(
230 &self,
231 a: &ArrayView1<F>,
232 b: &ArrayView1<F>,
233 c: &ArrayView1<F>,
234 scale: F,
235 ) -> IntegrateResult<Array1<F>> {
236 let n = a.len();
237 if b.len() != n || c.len() != n {
238 return Err(IntegrateError::ValueError(
239 "Vector lengths must match".to_string(),
240 ));
241 }
242
243 let mut result = Array1::zeros(n);
244
245 if n < 32 {
247 Zip::from(&mut result)
248 .and(a)
249 .and(b)
250 .and(c)
251 .for_each(|r, &a_val, &b_val, &c_val| {
252 *r = a_val + b_val + scale * c_val;
253 });
254 return Ok(result);
255 }
256
257 if self.simd_capabilities.avx512_support.foundation && self.simd_capabilities.fma_support {
259 self.avx512_vector_fma(&mut result, a, b, c, scale)?;
260 } else if F::simd_available() {
261 let scaled_c = F::simd_scalar_mul(c, scale);
263 let ab_sum = F::simd_add(a, b);
264 result = F::simd_add(&ab_sum.view(), &scaled_c.view());
265 } else {
266 Zip::from(&mut result)
268 .and(a)
269 .and(b)
270 .and(c)
271 .for_each(|r, &a_val, &b_val, &c_val| {
272 *r = a_val + b_val + scale * c_val;
273 });
274 }
275
276 Ok(result)
277 }
278
279 pub fn advanced_matrix_vector_multiply(
281 &self,
282 matrix: &Array2<F>,
283 vector: &ArrayView1<F>,
284 ) -> IntegrateResult<Array1<F>> {
285 let (m, n) = matrix.dim();
286 if vector.len() != n {
287 return Err(IntegrateError::ValueError(
288 "Matrix-vector dimension mismatch".to_string(),
289 ));
290 }
291
292 let mut result = Array1::zeros(m);
293
294 if self.simd_capabilities.vector_width >= 256 {
296 self.blocked_simd_matvec(&mut result, matrix, vector)?;
297 } else {
298 for i in 0..m {
300 let row = matrix.row(i);
301 result[i] = self.advanced_dot_product(&row, vector)?;
302 }
303 }
304
305 Ok(result)
306 }
307
308 pub fn advanced_dot_product(&self, a: &ArrayView1<F>, b: &ArrayView1<F>) -> IntegrateResult<F> {
310 let n = a.len();
311 if b.len() != n {
312 return Err(IntegrateError::ValueError(
313 "Vector lengths must match".to_string(),
314 ));
315 }
316
317 if n < 32 {
319 let mut sum = F::zero();
320 for i in 0..n {
321 sum += a[i] * b[i];
322 }
323 return Ok(sum);
324 }
325
326 if self.simd_capabilities.avx512_support.foundation || F::simd_available() {
328 self.simd_dot_product_multi_accumulator(a, b)
329 } else {
330 self.scalar_dot_product_multi_accumulator(a, b)
332 }
333 }
334
335 pub fn advanced_reduce_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
337 if data.is_empty() {
338 return Ok(F::zero());
339 }
340
341 if self.simd_capabilities.vector_width >= 512 {
343 self.avx512_tree_reduction_sum(data)
344 } else if F::simd_available() {
345 self.simd_tree_reduction_sum(data)
346 } else {
347 Ok(data.iter().fold(F::zero(), |acc, &x| acc + x))
348 }
349 }
350
351 pub fn advanced_elementwise_conditional(
353 &self,
354 a: &ArrayView1<F>,
355 b: &ArrayView1<F>,
356 condition: impl Fn(F, F) -> bool,
357 true_op: impl Fn(F, F) -> F,
358 false_op: impl Fn(F, F) -> F,
359 ) -> IntegrateResult<Array1<F>> {
360 let n = a.len();
361 if b.len() != n {
362 return Err(IntegrateError::ValueError(
363 "Vector lengths must match".to_string(),
364 ));
365 }
366
367 let mut result = Array1::zeros(n);
368
369 if self.simd_capabilities.mask_registers {
371 self.predicated_simd_conditional(&mut result, a, b, condition, true_op, false_op)?;
372 } else {
373 Zip::from(&mut result)
375 .and(a)
376 .and(b)
377 .for_each(|r, &a_val, &b_val| {
378 *r = if condition(a_val, b_val) {
379 true_op(a_val, b_val)
380 } else {
381 false_op(a_val, b_val)
382 };
383 });
384 }
385
386 Ok(result)
387 }
388
389 pub fn advanced_gather(
391 &self,
392 data: &ArrayView1<F>,
393 indices: &[usize],
394 ) -> IntegrateResult<Array1<F>> {
395 let mut result = Array1::zeros(indices.len());
396
397 if self.simd_capabilities.gather_scatter_support {
399 self.hardware_gather(&mut result, data, indices)?;
400 } else {
401 self.software_gather_with_prefetch(&mut result, data, indices)?;
403 }
404
405 Ok(result)
406 }
407
408 pub fn advanced_rk4_vectorized(
410 &self,
411 t: F,
412 y: &ArrayView1<F>,
413 h: F,
414 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
415 ) -> IntegrateResult<Array1<F>> {
416 let n = y.len();
417
418 let mut temp_y = Array1::zeros(n);
420 let mut result = Array1::zeros(n);
421
422 let mut k1 = f(t, y)?;
424 self.advanced_scalar_multiply_inplace(&mut k1, h)?;
425
426 self.advanced_vector_add_scalar(&mut temp_y, y, &k1.view(), F::from(0.5).unwrap())?;
428 let mut k2 = f(t + h / F::from(2.0).unwrap(), &temp_y.view())?;
429 self.advanced_scalar_multiply_inplace(&mut k2, h)?;
430
431 self.advanced_vector_add_scalar(&mut temp_y, y, &k2.view(), F::from(0.5).unwrap())?;
433 let mut k3 = f(t + h / F::from(2.0).unwrap(), &temp_y.view())?;
434 self.advanced_scalar_multiply_inplace(&mut k3, h)?;
435
436 self.advanced_vector_add_scalar(&mut temp_y, y, &k3.view(), F::one())?;
438 let mut k4 = f(t + h, &temp_y.view())?;
439 self.advanced_scalar_multiply_inplace(&mut k4, h)?;
440
441 self.advanced_rk4_combine(
443 &mut result,
444 y,
445 &k1.view(),
446 &k2.view(),
447 &k3.view(),
448 &k4.view(),
449 )?;
450
451 Ok(result)
452 }
453
454 pub fn advanced_mixed_precision_step(
456 &self,
457 high_precisiondata: &ArrayView1<F>,
458 operation: MixedPrecisionOperation,
459 ) -> IntegrateResult<Array1<F>> {
460 let precision_requirements = self
462 .mixed_precision_engine
463 .analyze_precision_needs(high_precisiondata)?;
464
465 match precision_requirements.recommended_precision {
467 PrecisionLevel::Half => self.half_precision_computation(high_precisiondata, operation),
468 PrecisionLevel::Single => {
469 self.single_precision_computation(high_precisiondata, operation)
470 }
471 PrecisionLevel::Double => {
472 self.double_precision_computation(high_precisiondata, operation)
473 }
474 PrecisionLevel::Mixed => {
475 self.adaptive_mixed_precision_computation(high_precisiondata, operation)
476 }
477 }
478 }
479
480 fn avx512_vector_fma(
484 &self,
485 result: &mut Array1<F>,
486 a: &ArrayView1<F>,
487 b: &ArrayView1<F>,
488 c: &ArrayView1<F>,
489 scale: F,
490 ) -> IntegrateResult<()> {
491 if F::simd_available() {
494 let scaled_c = F::simd_scalar_mul(c, scale);
495 let ab_sum = F::simd_add(a, b);
496 *result = F::simd_add(&ab_sum.view(), &scaled_c.view());
497 }
498 Ok(())
499 }
500
501 fn blocked_simd_matvec(
503 &self,
504 result: &mut Array1<F>,
505 matrix: &Array2<F>,
506 vector: &ArrayView1<F>,
507 ) -> IntegrateResult<()> {
508 let (m, n) = matrix.dim();
509 let block_size = 64; for i_block in (0..m).step_by(block_size) {
512 let i_end = (i_block + block_size).min(m);
513
514 for j_block in (0..n).step_by(block_size) {
515 let j_end = (j_block + block_size).min(n);
516
517 for i in i_block..i_end {
519 let mut sum = F::zero();
520 for j in (j_block..j_end).step_by(8) {
521 let j_end_simd = (j + 8).min(j_end);
522 if j_end_simd - j >= 4 && F::simd_available() {
523 let matrix_slice = matrix.slice(s![i, j..j_end_simd]);
525 let vector_slice = vector.slice(s![j..j_end_simd]);
526 sum += F::simd_dot(&matrix_slice, &vector_slice);
527 } else {
528 for k in j..j_end_simd {
530 sum += matrix[(i, k)] * vector[k];
531 }
532 }
533 }
534 result[i] += sum;
535 }
536 }
537 }
538 Ok(())
539 }
540
541 fn simd_dot_product_multi_accumulator(
543 &self,
544 a: &ArrayView1<F>,
545 b: &ArrayView1<F>,
546 ) -> IntegrateResult<F> {
547 let n = a.len();
548 let simd_width = 8; let num_accumulators = 4;
550
551 if n < simd_width * num_accumulators {
552 return Ok(F::simd_dot(a, b));
554 }
555
556 let mut accumulators = vec![F::zero(); num_accumulators];
557 let step = simd_width * num_accumulators;
558
559 for chunk_start in (0..n).step_by(step) {
561 for acc_idx in 0..num_accumulators {
562 let start = chunk_start + acc_idx * simd_width;
563 let end = (start + simd_width).min(n);
564
565 if end > start && end - start >= 4 {
566 let a_slice = a.slice(s![start..end]);
567 let b_slice = b.slice(s![start..end]);
568 accumulators[acc_idx] += F::simd_dot(&a_slice, &b_slice);
569 }
570 }
571 }
572
573 let remainder_start = (n / step) * step;
575 if remainder_start < n {
576 for i in remainder_start..n {
577 accumulators[0] += a[i] * b[i];
578 }
579 }
580
581 Ok(accumulators.iter().fold(F::zero(), |acc, &x| acc + x))
583 }
584
585 fn scalar_dot_product_multi_accumulator(
587 &self,
588 a: &ArrayView1<F>,
589 b: &ArrayView1<F>,
590 ) -> IntegrateResult<F> {
591 let n = a.len();
592 let num_accumulators = 4;
593 let mut accumulators = vec![F::zero(); num_accumulators];
594
595 let unroll_factor = num_accumulators;
597 let unrolled_end = (n / unroll_factor) * unroll_factor;
598
599 for i in (0..unrolled_end).step_by(unroll_factor) {
600 for j in 0..unroll_factor {
601 accumulators[j] += a[i + j] * b[i + j];
602 }
603 }
604
605 for i in unrolled_end..n {
607 accumulators[0] += a[i] * b[i];
608 }
609
610 Ok(accumulators.iter().fold(F::zero(), |acc, &x| acc + x))
612 }
613
614 fn simd_tree_reduction_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
616 let n = data.len();
617 if n == 0 {
618 return Ok(F::zero());
619 }
620
621 let simd_width = 8; if n < simd_width {
623 return Ok(data.iter().fold(F::zero(), |acc, &x| acc + x));
624 }
625
626 let mut partial_sums = Vec::new();
628 for chunk in data.exact_chunks(simd_width) {
629 let sum = F::simd_sum(&chunk);
630 partial_sums.push(sum);
631 }
632
633 let remainder_start = (n / simd_width) * simd_width;
635 if remainder_start < n {
636 let remainder_sum = data
637 .slice(s![remainder_start..])
638 .iter()
639 .fold(F::zero(), |acc, &x| acc + x);
640 partial_sums.push(remainder_sum);
641 }
642
643 while partial_sums.len() > 1 {
645 let mut next_level = Vec::new();
646 for chunk in partial_sums.chunks(2) {
647 let sum = if chunk.len() == 2 {
648 chunk[0] + chunk[1]
649 } else {
650 chunk[0]
651 };
652 next_level.push(sum);
653 }
654 partial_sums = next_level;
655 }
656
657 Ok(partial_sums[0])
658 }
659
660 fn avx512_tree_reduction_sum(&self, data: &ArrayView1<F>) -> IntegrateResult<F> {
662 self.simd_tree_reduction_sum(data)
664 }
665
666 fn predicated_simd_conditional<CondFn, TrueFn, FalseFn>(
668 &self,
669 result: &mut Array1<F>,
670 a: &ArrayView1<F>,
671 b: &ArrayView1<F>,
672 condition: CondFn,
673 true_op: TrueFn,
674 false_op: FalseFn,
675 ) -> IntegrateResult<()>
676 where
677 CondFn: Fn(F, F) -> bool,
678 TrueFn: Fn(F, F) -> F,
679 FalseFn: Fn(F, F) -> F,
680 {
681 Zip::from(result)
683 .and(a)
684 .and(b)
685 .for_each(|r, &a_val, &b_val| {
686 *r = if condition(a_val, b_val) {
687 true_op(a_val, b_val)
688 } else {
689 false_op(a_val, b_val)
690 };
691 });
692 Ok(())
693 }
694
695 fn hardware_gather(
697 &self,
698 result: &mut Array1<F>,
699 data: &ArrayView1<F>,
700 indices: &[usize],
701 ) -> IntegrateResult<()> {
702 for (i, &idx) in indices.iter().enumerate() {
704 if idx < data.len() {
705 result[i] = data[idx];
706 }
707 }
708 Ok(())
709 }
710
711 fn software_gather_with_prefetch(
713 &self,
714 result: &mut Array1<F>,
715 data: &ArrayView1<F>,
716 indices: &[usize],
717 ) -> IntegrateResult<()> {
718 const PREFETCH_DISTANCE: usize = 8;
719
720 for (i, &idx) in indices.iter().enumerate() {
721 if i + PREFETCH_DISTANCE < indices.len() {
723 let prefetch_idx = indices[i + PREFETCH_DISTANCE];
724 if prefetch_idx < data.len() {
725 #[cfg(target_arch = "x86_64")]
727 {
728 use std::arch::x86_64::_mm_prefetch;
729 use std::arch::x86_64::_MM_HINT_T0;
730 unsafe {
731 let ptr = data.as_ptr().add(prefetch_idx);
732 _mm_prefetch(ptr as *const i8, _MM_HINT_T0);
733 }
734 }
735 #[cfg(not(target_arch = "x86_64"))]
736 {
737 std::hint::black_box(&data[prefetch_idx]);
739 }
740 }
741 }
742
743 if idx < data.len() {
744 result[i] = data[idx];
745 }
746 }
747 Ok(())
748 }
749
750 fn advanced_scalar_multiply_inplace(
752 &self,
753 vector: &mut Array1<F>,
754 scalar: F,
755 ) -> IntegrateResult<()> {
756 if F::simd_available() {
757 let result = F::simd_scalar_mul(&vector.view(), scalar);
758 vector.assign(&result);
759 } else {
760 vector.mapv_inplace(|x| x * scalar);
761 }
762 Ok(())
763 }
764
765 fn advanced_vector_add_scalar(
767 &self,
768 result: &mut Array1<F>,
769 a: &ArrayView1<F>,
770 b: &ArrayView1<F>,
771 scalar: F,
772 ) -> IntegrateResult<()> {
773 if F::simd_available() {
774 let scaled_b = F::simd_scalar_mul(b, scalar);
775 *result = F::simd_add(a, &scaled_b.view());
776 } else {
777 Zip::from(result)
778 .and(a)
779 .and(b)
780 .for_each(|r, &a_val, &b_val| {
781 *r = a_val + scalar * b_val;
782 });
783 }
784 Ok(())
785 }
786
787 fn advanced_rk4_combine(
789 &self,
790 result: &mut Array1<F>,
791 y: &ArrayView1<F>,
792 k1: &ArrayView1<F>,
793 k2: &ArrayView1<F>,
794 k3: &ArrayView1<F>,
795 k4: &ArrayView1<F>,
796 ) -> IntegrateResult<()> {
797 let one_sixth = F::one() / F::from(6.0).unwrap();
798
799 if F::simd_available() {
800 let k2_doubled = F::simd_scalar_mul(k2, F::from(2.0).unwrap());
802 let k3_doubled = F::simd_scalar_mul(k3, F::from(2.0).unwrap());
803
804 let sum1 = F::simd_add(k1, &k2_doubled.view());
805 let sum2 = F::simd_add(&k3_doubled.view(), k4);
806 let total_k = F::simd_add(&sum1.view(), &sum2.view());
807 let scaled_k = F::simd_scalar_mul(&total_k.view(), one_sixth);
808
809 *result = F::simd_add(y, &scaled_k.view());
810 } else {
811 Zip::from(result)
812 .and(y)
813 .and(k1)
814 .and(k2)
815 .and(k3)
816 .and(k4)
817 .for_each(|r, &y_val, &k1_val, &k2_val, &k3_val, &k4_val| {
818 *r = y_val
819 + one_sixth
820 * (k1_val
821 + F::from(2.0).unwrap() * k2_val
822 + F::from(2.0).unwrap() * k3_val
823 + k4_val);
824 });
825 }
826 Ok(())
827 }
828
829 fn half_precision_computation(
831 &self,
832 data: &ArrayView1<F>,
833 operation: MixedPrecisionOperation,
834 ) -> IntegrateResult<Array1<F>> {
835 let f16data: Array1<half::f16> = Array1::from_vec(
837 data.iter()
838 .map(|&x| half::f16::from_f64(x.to_f64().unwrap_or(0.0)))
839 .collect(),
840 );
841
842 let result_f16 = match operation {
844 MixedPrecisionOperation::Addition => self.half_precision_vector_add(&f16data)?,
845 MixedPrecisionOperation::Multiplication => self.half_precision_vector_mul(&f16data)?,
846 MixedPrecisionOperation::DotProduct => {
847 Array1::from_vec(vec![self.half_precision_dot_product(&f16data, &f16data)?])
848 }
849 MixedPrecisionOperation::Reduction => {
850 Array1::from_vec(vec![self.half_precision_reduction(&f16data)?])
851 }
852 MixedPrecisionOperation::MatrixMultiply => {
853 self.half_precision_vector_mul(&f16data)?
855 }
856 };
857
858 let result: Array1<F> = result_f16
860 .iter()
861 .map(|&x| F::from_f64(x.to_f64()).unwrap_or(F::zero()))
862 .collect();
863
864 Ok(result)
865 }
866
867 fn single_precision_computation(
868 &self,
869 data: &ArrayView1<F>,
870 operation: MixedPrecisionOperation,
871 ) -> IntegrateResult<Array1<F>> {
872 let f32data: Array1<f32> = Array1::from_vec(
874 data.iter()
875 .map(|&x| x.to_f64().unwrap_or(0.0) as f32)
876 .collect(),
877 );
878
879 let result_f32 = match operation {
881 MixedPrecisionOperation::Addition => self.single_precision_vector_add(&f32data)?,
882 MixedPrecisionOperation::Multiplication => {
883 self.single_precision_vector_mul(&f32data)?
884 }
885 MixedPrecisionOperation::DotProduct => {
886 Array1::from_vec(vec![self.single_precision_dot_product(&f32data, &f32data)?])
887 }
888 MixedPrecisionOperation::Reduction => {
889 Array1::from_vec(vec![self.single_precision_reduction(&f32data)?])
890 }
891 MixedPrecisionOperation::MatrixMultiply => {
892 self.single_precision_vector_mul(&f32data)?
894 }
895 };
896
897 let result: Array1<F> = result_f32
899 .iter()
900 .map(|&x| F::from_f64(x as f64).unwrap_or(F::zero()))
901 .collect();
902
903 Ok(result)
904 }
905
906 fn double_precision_computation(
907 &self,
908 data: &ArrayView1<F>,
909 operation: MixedPrecisionOperation,
910 ) -> IntegrateResult<Array1<F>> {
911 let f64data: Array1<f64> =
913 Array1::from_vec(data.iter().map(|&x| x.to_f64().unwrap_or(0.0)).collect());
914
915 let result_f64 = match operation {
917 MixedPrecisionOperation::Addition => self.double_precision_vector_add(&f64data)?,
918 MixedPrecisionOperation::Multiplication => {
919 self.double_precision_vector_mul(&f64data)?
920 }
921 MixedPrecisionOperation::DotProduct => {
922 Array1::from_vec(vec![self.double_precision_reduction(&f64data)?])
923 }
924 MixedPrecisionOperation::Reduction => {
925 Array1::from_vec(vec![self.double_precision_reduction(&f64data)?])
926 }
927 MixedPrecisionOperation::MatrixMultiply => {
928 self.double_precision_vector_mul(&f64data)?
930 }
931 };
932
933 let result: Array1<F> = result_f64
935 .iter()
936 .map(|&x| F::from_f64(x).unwrap_or(F::zero()))
937 .collect();
938
939 Ok(result)
940 }
941
942 fn analyze_error_sensitivity(
943 &self,
944 data: &ArrayView1<F>,
945 operation: &MixedPrecisionOperation,
946 ) -> f64 {
947 let magnitude_range = data
949 .iter()
950 .fold((F::infinity(), -F::infinity()), |(min, max), &x| {
951 (min.min(x.abs()), max.max(x.abs()))
952 });
953
954 let condition_number =
955 magnitude_range.1.to_f64().unwrap_or(1.0) / magnitude_range.0.to_f64().unwrap_or(1.0);
956
957 match operation {
958 MixedPrecisionOperation::DotProduct => condition_number.sqrt(),
959 MixedPrecisionOperation::Reduction => condition_number * 0.5,
960 MixedPrecisionOperation::MatrixMultiply => condition_number,
961 MixedPrecisionOperation::Addition => condition_number * 0.3,
962 MixedPrecisionOperation::Multiplication => condition_number * 0.7,
963 }
964 }
965
966 fn determine_optimal_precision(
967 &self,
968 data_range: (f64, f64),
969 error_sensitivity: f64,
970 ) -> PrecisionLevel {
971 let (min_val, max_val) = data_range;
972 let dynamic_range = max_val / min_val.max(1e-300);
973
974 if error_sensitivity < 10.0 && dynamic_range < 1e3 {
975 PrecisionLevel::Half
976 } else if error_sensitivity < 100.0 && dynamic_range < 1e6 {
977 PrecisionLevel::Single
978 } else if error_sensitivity < 1000.0 {
979 PrecisionLevel::Double
980 } else {
981 PrecisionLevel::Mixed
982 }
983 }
984
985 fn adaptive_mixed_precision_computation(
986 &self,
987 data: &ArrayView1<F>,
988 operation: MixedPrecisionOperation,
989 ) -> IntegrateResult<Array1<F>> {
990 let data_range = self.analyzedata_range(data);
992 let error_sensitivity = self.analyze_error_sensitivity(data, &operation);
993
994 let optimal_precision = self.determine_optimal_precision(data_range, error_sensitivity);
996
997 match optimal_precision {
998 PrecisionLevel::Half => {
999 self.half_precision_computation(data, operation)
1001 }
1002 PrecisionLevel::Single => {
1003 self.single_precision_computation(data, operation)
1005 }
1006 PrecisionLevel::Double => {
1007 self.double_precision_computation(data, operation)
1009 }
1010 PrecisionLevel::Mixed => {
1011 self.double_precision_computation(data, operation)
1013 }
1014 }
1015 }
1016
1017 fn detect_avx512_support() -> Avx512Support {
1019 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1020 {
1021 Avx512Support {
1022 foundation: is_x86_feature_detected!("avx512f"),
1023 doubleword_quadword: is_x86_feature_detected!("avx512dq"),
1024 byte_word: is_x86_feature_detected!("avx512bw"),
1025 vector_length: is_x86_feature_detected!("avx512vl"),
1026 conflict_detection: is_x86_feature_detected!("avx512cd"),
1027 exponential_reciprocal: false, prefetch: false, }
1030 }
1031 #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1032 {
1033 Avx512Support {
1034 foundation: false,
1035 doubleword_quadword: false,
1036 byte_word: false,
1037 vector_length: false,
1038 conflict_detection: false,
1039 exponential_reciprocal: false,
1040 prefetch: false,
1041 }
1042 }
1043 }
1044
1045 fn detect_sve_support() -> SveSupport {
1046 SveSupport {
1047 sve_available: false, vector_length: 0,
1049 predication_support: false,
1050 gather_scatter: false,
1051 }
1052 }
1053
1054 fn detect_vector_width() -> usize {
1055 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1056 {
1057 if is_x86_feature_detected!("avx512f") {
1058 512
1059 } else if is_x86_feature_detected!("avx2") {
1060 256
1061 } else if is_x86_feature_detected!("sse2") {
1062 128
1063 } else {
1064 64 }
1066 }
1067 #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1068 {
1069 128
1072 }
1073 }
1074
1075 fn detect_fma_support() -> bool {
1076 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1077 {
1078 is_x86_feature_detected!("fma")
1079 }
1080 #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1081 {
1082 false
1083 }
1084 }
1085
1086 fn detect_gather_scatter_support() -> bool {
1087 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1088 {
1089 is_x86_feature_detected!("avx2") }
1091 #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1092 {
1093 false
1094 }
1095 }
1096
1097 fn detect_mask_registers() -> bool {
1098 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
1099 {
1100 is_x86_feature_detected!("avx512f") }
1102 #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
1103 {
1104 false
1105 }
1106 }
1107
1108 fn measure_memory_bandwidth() -> f64 {
1109 100.0 }
1112}
1113
1114#[derive(Debug, Clone)]
1117pub enum MixedPrecisionOperation {
1118 Addition,
1119 Multiplication,
1120 DotProduct,
1121 MatrixMultiply,
1122 Reduction,
1123}
1124
1125#[derive(Debug, Clone)]
1126pub enum PrecisionLevel {
1127 Half, Single, Double, Mixed, }
1132
1133pub struct PrecisionRequirements {
1134 pub recommended_precision: PrecisionLevel,
1135 pub error_tolerance: f64,
1136 pub performance_gain: f64,
1137}
1138
1139impl<F: IntegrateFloat> VectorizationStrategies<F> {
1141 fn new(capabilities: &SimdCapabilities) -> IntegrateResult<Self> {
1142 Ok(VectorizationStrategies {
1143 loop_patterns: Vec::new(),
1144 layout_transforms: Vec::new(),
1145 reduction_strategies: Vec::new(),
1146 predicated_operations: PredicatedOperations {
1147 mask_strategies: Vec::new(),
1148 conditional_patterns: Vec::new(),
1149 blend_operations: Vec::new(),
1150 },
1151 })
1152 }
1153}
1154
1155impl SimdPerformanceAnalytics {
1156 fn new() -> Self {
1157 SimdPerformanceAnalytics {
1158 instruction_throughput: InstructionThroughput::default(),
1159 bandwidth_utilization: BandwidthUtilization::default(),
1160 vectorization_efficiency: VectorizationEfficiency::default(),
1161 bottleneck_analysis: BottleneckAnalysis::default(),
1162 }
1163 }
1164}
1165
1166impl<F: IntegrateFloat> MixedPrecisionEngine<F> {
1167 fn new() -> IntegrateResult<Self> {
1168 Ok(MixedPrecisionEngine {
1169 precision_analyzer: PrecisionAnalyzer::new(),
1170 dynamic_precision: DynamicPrecisionController::new(),
1171 error_tracker: ErrorAccumulationTracker::new(),
1172 tradeoff_optimizer: TradeoffOptimizer::new(),
1173 })
1174 }
1175
1176 fn analyze_precision_needs(
1177 &self,
1178 data: &ArrayView1<F>,
1179 ) -> IntegrateResult<PrecisionRequirements> {
1180 Ok(PrecisionRequirements {
1181 recommended_precision: PrecisionLevel::Double,
1182 error_tolerance: 1e-15,
1183 performance_gain: 1.0,
1184 })
1185 }
1186}
1187
1188#[derive(Debug, Clone, Default)]
1192pub struct InstructionThroughput {
1193 pub instructions_per_cycle: f64,
1194 pub peak_throughput: f64,
1195 pub current_utilization: f64,
1196}
1197
1198#[derive(Debug, Clone, Default)]
1200pub struct BandwidthUtilization {
1201 pub theoretical_peak: f64,
1202 pub achieved_bandwidth: f64,
1203 pub utilization_ratio: f64,
1204}
1205
1206#[derive(Debug, Clone, Default)]
1208pub struct VectorizationEfficiency {
1209 pub vector_utilization: f64,
1210 pub scalar_fallback_ratio: f64,
1211 pub simd_speedup: f64,
1212}
1213
1214#[derive(Debug, Clone, Default)]
1216pub struct BottleneckAnalysis {
1217 pub bottleneck_type: String,
1218 pub severity: f64,
1219 pub improvement_potential: f64,
1220}
1221
1222#[derive(Debug, Clone)]
1224pub struct PrecisionAnalyzer<F: IntegrateFloat> {
1225 pub error_thresholds: Vec<F>,
1226 pub precision_requirements: HashMap<String, PrecisionLevel>,
1227 pub phantom: std::marker::PhantomData<F>,
1228}
1229
1230impl<F: IntegrateFloat> Default for PrecisionAnalyzer<F> {
1231 fn default() -> Self {
1232 Self {
1233 error_thresholds: Vec::new(),
1234 precision_requirements: HashMap::new(),
1235 phantom: std::marker::PhantomData,
1236 }
1237 }
1238}
1239
1240impl<F: IntegrateFloat> PrecisionAnalyzer<F> {
1241 pub fn new() -> Self {
1242 Default::default()
1243 }
1244}
1245
1246#[derive(Debug, Clone)]
1248pub struct DynamicPrecisionController<F: IntegrateFloat> {
1249 pub current_precision: PrecisionLevel,
1250 pub adaptation_history: Vec<(Instant, PrecisionLevel)>,
1251 pub phantom: std::marker::PhantomData<F>,
1252}
1253
1254impl<F: IntegrateFloat> Default for DynamicPrecisionController<F> {
1255 fn default() -> Self {
1256 Self {
1257 current_precision: PrecisionLevel::Double,
1258 adaptation_history: Vec::new(),
1259 phantom: std::marker::PhantomData,
1260 }
1261 }
1262}
1263
1264impl<F: IntegrateFloat> DynamicPrecisionController<F> {
1265 pub fn new() -> Self {
1266 Default::default()
1267 }
1268}
1269
1270#[derive(Debug, Clone)]
1272pub struct ErrorAccumulationTracker<F: IntegrateFloat> {
1273 pub accumulated_error: F,
1274 pub error_history: Vec<F>,
1275 pub error_bounds: F,
1276}
1277
1278impl<F: IntegrateFloat> Default for ErrorAccumulationTracker<F> {
1279 fn default() -> Self {
1280 Self {
1281 accumulated_error: F::zero(),
1282 error_history: Vec::new(),
1283 error_bounds: F::from(1e-12).unwrap_or(F::zero()),
1284 }
1285 }
1286}
1287
1288impl<F: IntegrateFloat> ErrorAccumulationTracker<F> {
1289 pub fn new() -> Self {
1290 Default::default()
1291 }
1292}
1293
1294#[derive(Debug, Clone)]
1296pub struct TradeoffOptimizer<F: IntegrateFloat> {
1297 pub pareto_front: Vec<(f64, F)>, pub current_tradeoff: (f64, F),
1299 pub optimization_history: Vec<(f64, F)>,
1300}
1301
1302impl<F: IntegrateFloat> Default for TradeoffOptimizer<F> {
1303 fn default() -> Self {
1304 Self {
1305 pareto_front: Vec::new(),
1306 current_tradeoff: (1.0, F::zero()),
1307 optimization_history: Vec::new(),
1308 }
1309 }
1310}
1311
1312impl<F: IntegrateFloat> TradeoffOptimizer<F> {
1313 pub fn new() -> Self {
1314 Default::default()
1315 }
1316}
1317
1318#[derive(Debug, Clone, Default)]
1320pub struct LoadBalancingStrategy {
1321 pub strategy_type: String,
1322 pub load_distribution: Vec<f64>,
1323 pub efficiency_score: f64,
1324}
1325
1326#[derive(Debug, Clone, Default)]
1328pub struct RemainderStrategy {
1329 pub strategy_type: String,
1330 pub scalar_fallback: bool,
1331 pub padding_strategy: String,
1332}
1333
1334#[derive(Debug, Clone)]
1336pub struct DataTypeOptimizations<F: IntegrateFloat> {
1337 pub optimal_vector_width: usize,
1338 pub alignment_requirements: usize,
1339 pub preferred_operations: Vec<String>,
1340 pub phantom: std::marker::PhantomData<F>,
1341}
1342
1343impl<F: IntegrateFloat> Default for DataTypeOptimizations<F> {
1344 fn default() -> Self {
1345 Self {
1346 optimal_vector_width: 8,
1347 alignment_requirements: 32,
1348 preferred_operations: Vec::new(),
1349 phantom: std::marker::PhantomData,
1350 }
1351 }
1352}
1353
1354#[derive(Debug, Clone, Default)]
1356pub struct MaskGenerationStrategy {
1357 pub strategy_type: String,
1358 pub mask_efficiency: f64,
1359 pub register_pressure: f64,
1360}
1361
1362#[derive(Debug, Clone)]
1364pub struct ConditionalPattern<F: IntegrateFloat> {
1365 pub pattern_type: String,
1366 pub condition_selectivity: f64,
1367 pub branch_cost: F,
1368 pub phantom: std::marker::PhantomData<F>,
1369}
1370
1371impl<F: IntegrateFloat> Default for ConditionalPattern<F> {
1372 fn default() -> Self {
1373 Self {
1374 pattern_type: "default".to_string(),
1375 condition_selectivity: 0.5,
1376 branch_cost: F::zero(),
1377 phantom: std::marker::PhantomData,
1378 }
1379 }
1380}
1381
1382#[derive(Debug, Clone)]
1384pub struct BlendOperation<F: IntegrateFloat> {
1385 pub blend_type: String,
1386 pub performance_cost: F,
1387 pub accuracy_impact: F,
1388 pub phantom: std::marker::PhantomData<F>,
1389}
1390
1391impl<F: IntegrateFloat> Default for BlendOperation<F> {
1392 fn default() -> Self {
1393 Self {
1394 blend_type: "default".to_string(),
1395 performance_cost: F::zero(),
1396 accuracy_impact: F::zero(),
1397 phantom: std::marker::PhantomData,
1398 }
1399 }
1400}
1401
1402impl InstructionThroughput {
1404 pub fn new() -> Self {
1405 Default::default()
1406 }
1407}
1408
1409impl BandwidthUtilization {
1410 pub fn new() -> Self {
1411 Default::default()
1412 }
1413}
1414
1415impl VectorizationEfficiency {
1416 pub fn new() -> Self {
1417 Default::default()
1418 }
1419}
1420
1421impl BottleneckAnalysis {
1422 pub fn new() -> Self {
1423 Default::default()
1424 }
1425}
1426
1427impl LoadBalancingStrategy {
1428 pub fn new() -> Self {
1429 Default::default()
1430 }
1431}
1432
1433impl RemainderStrategy {
1434 pub fn new() -> Self {
1435 Default::default()
1436 }
1437}
1438
1439impl<F: IntegrateFloat> DataTypeOptimizations<F> {
1440 pub fn new() -> Self {
1441 Default::default()
1442 }
1443}
1444
1445impl MaskGenerationStrategy {
1446 pub fn new() -> Self {
1447 Default::default()
1448 }
1449}
1450
1451impl<F: IntegrateFloat> ConditionalPattern<F> {
1452 pub fn new() -> Self {
1453 Default::default()
1454 }
1455}
1456
1457impl<F: IntegrateFloat> BlendOperation<F> {
1458 pub fn new() -> Self {
1459 Default::default()
1460 }
1461}
1462
1463impl<F: IntegrateFloat + SimdUnifiedOps> AdvancedSimdAccelerator<F> {
1465 fn analyzedata_range(&self, data: &ArrayView1<F>) -> (f64, f64) {
1466 let mut min_val = F::infinity();
1467 let mut max_val = -F::infinity();
1468
1469 for &value in data.iter() {
1470 let abs_value = value.abs();
1471 if abs_value < min_val {
1472 min_val = abs_value;
1473 }
1474 if abs_value > max_val {
1475 max_val = abs_value;
1476 }
1477 }
1478
1479 (
1480 min_val.to_f64().unwrap_or(0.0),
1481 max_val.to_f64().unwrap_or(1.0),
1482 )
1483 }
1484
1485 fn single_precision_vector_mul(&self, data: &Array1<f32>) -> IntegrateResult<Array1<f32>> {
1486 let mut result = Array1::zeros(data.len());
1488 for i in 0..data.len() {
1489 result[i] = data[i] * data[i];
1490 }
1491 Ok(result)
1492 }
1493
1494 fn double_precision_vector_add(&self, data: &Array1<f64>) -> IntegrateResult<Array1<f64>> {
1495 let mut result = Array1::zeros(data.len());
1497 for i in 0..data.len() {
1498 result[i] = data[i] + data[i];
1499 }
1500 Ok(result)
1501 }
1502
1503 fn double_precision_vector_mul(&self, data: &Array1<f64>) -> IntegrateResult<Array1<f64>> {
1504 let mut result = Array1::zeros(data.len());
1506 for i in 0..data.len() {
1507 result[i] = data[i] * data[i];
1508 }
1509 Ok(result)
1510 }
1511
1512 fn double_precision_reduction(&self, data: &Array1<f64>) -> IntegrateResult<f64> {
1513 Ok(data.iter().sum())
1514 }
1515
1516 fn single_precision_vector_add(&self, data: &Array1<f32>) -> IntegrateResult<Array1<f32>> {
1517 let mut result = Array1::zeros(data.len());
1519 for i in 0..data.len() {
1520 result[i] = data[i] + data[i];
1521 }
1522 Ok(result)
1523 }
1524
1525 fn single_precision_dot_product(
1526 &self,
1527 a: &Array1<f32>,
1528 b: &Array1<f32>,
1529 ) -> IntegrateResult<f32> {
1530 let mut sum = 0.0f32;
1531 for i in 0..a.len().min(b.len()) {
1532 sum += a[i] * b[i];
1533 }
1534 Ok(sum)
1535 }
1536
1537 fn single_precision_reduction(&self, data: &Array1<f32>) -> IntegrateResult<f32> {
1538 Ok(data.iter().sum())
1539 }
1540
1541 fn half_precision_vector_add(
1542 &self,
1543 data: &Array1<half::f16>,
1544 ) -> IntegrateResult<Array1<half::f16>> {
1545 let mut result = Array1::from_vec(vec![half::f16::ZERO; data.len()]);
1547 for i in 0..data.len() {
1548 result[i] = data[i] + data[i];
1549 }
1550 Ok(result)
1551 }
1552
1553 fn half_precision_vector_mul(
1554 &self,
1555 data: &Array1<half::f16>,
1556 ) -> IntegrateResult<Array1<half::f16>> {
1557 let mut result = Array1::from_vec(vec![half::f16::ZERO; data.len()]);
1559 for i in 0..data.len() {
1560 result[i] = data[i] * data[i];
1561 }
1562 Ok(result)
1563 }
1564
1565 fn half_precision_dot_product(
1566 &self,
1567 a: &Array1<half::f16>,
1568 b: &Array1<half::f16>,
1569 ) -> IntegrateResult<half::f16> {
1570 let mut sum = half::f16::ZERO;
1571 for i in 0..a.len().min(b.len()) {
1572 sum += a[i] * b[i];
1573 }
1574 Ok(sum)
1575 }
1576
1577 fn half_precision_reduction(&self, data: &Array1<half::f16>) -> IntegrateResult<half::f16> {
1578 let mut sum = half::f16::ZERO;
1579 for &val in data.iter() {
1580 sum += val;
1581 }
1582 Ok(sum)
1583 }
1584}
1585
1586#[cfg(test)]
1587mod tests {
1588 use super::*;
1589 use scirs2_core::ndarray::array;
1590
1591 #[test]
1592 fn test_advanced_simd_accelerator_creation() {
1593 let accelerator = AdvancedSimdAccelerator::<f64>::new();
1594 assert!(accelerator.is_ok());
1595 }
1596
1597 #[test]
1598 fn test_advanced_vector_add_fma() {
1599 let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1600 let a = array![1.0, 2.0, 3.0, 4.0];
1601 let b = array![0.1, 0.2, 0.3, 0.4];
1602 let c = array![0.01, 0.02, 0.03, 0.04];
1603 let scale = 2.0;
1604
1605 let result = accelerator.advanced_vector_add_fma(&a.view(), &b.view(), &c.view(), scale);
1606 assert!(result.is_ok());
1607
1608 let expected = array![1.12, 2.24, 3.36, 4.48]; let actual = result.unwrap();
1610 for (exp, act) in expected.iter().zip(actual.iter()) {
1611 assert!((exp - act).abs() < 1e-10);
1612 }
1613 }
1614
1615 #[test]
1616 fn test_advanced_dot_product() {
1617 let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1618 let a = array![1.0, 2.0, 3.0, 4.0];
1619 let b = array![0.1, 0.2, 0.3, 0.4];
1620
1621 let result = accelerator.advanced_dot_product(&a.view(), &b.view());
1622 assert!(result.is_ok());
1623
1624 let expected = 3.0; let actual = result.unwrap();
1626 assert!((expected - actual).abs() < 1e-10);
1627 }
1628
1629 #[test]
1630 fn test_advanced_reduce_sum() {
1631 let accelerator = AdvancedSimdAccelerator::<f64>::new().unwrap();
1632 let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
1633
1634 let result = accelerator.advanced_reduce_sum(&data.view());
1635 assert!(result.is_ok());
1636
1637 let expected = 15.0;
1638 let actual = result.unwrap();
1639 assert!((expected - actual).abs() < 1e-10);
1640 }
1641}