scirs2_integrate/specialized/quantum/
gpu.rs

1//! GPU-accelerated quantum solvers and computations
2//!
3//! This module provides GPU acceleration for quantum computations,
4//! including quantum state evolution, matrix operations, and
5//! multi-body quantum systems.
6
7use crate::error::{IntegrateError, IntegrateResult as Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::numeric::Complex64;
10use std::collections::HashMap;
11
12/// GPU-accelerated quantum solver for large quantum systems
13#[derive(Debug, Clone)]
14pub struct GPUQuantumSolver {
15    /// GPU device identifier
16    pub device_id: usize,
17    /// Memory allocation for quantum states
18    pub memory_allocation: usize,
19    /// Parallelization strategy
20    pub parallel_strategy: QuantumParallelStrategy,
21    /// Number of qubits that can be handled
22    pub max_qubits: usize,
23    /// GPU memory manager
24    pub memory_manager: GPUMemoryManager,
25}
26
27impl GPUQuantumSolver {
28    /// Create new GPU quantum solver
29    pub fn new(device_id: usize, maxqubits: usize) -> Result<Self> {
30        let memory_allocation = 1_000_000_000; // 1GB default
31        let parallel_strategy = QuantumParallelStrategy::StateVectorParallel;
32        let memory_manager = GPUMemoryManager::new(memory_allocation)?;
33
34        Ok(Self {
35            device_id,
36            memory_allocation,
37            parallel_strategy,
38            max_qubits: maxqubits,
39            memory_manager,
40        })
41    }
42
43    /// Solve quantum system evolution on GPU
44    pub fn evolve_quantum_state(
45        &mut self,
46        initial_state: &Array1<Complex64>,
47        hamiltonian: &Array2<Complex64>,
48        time_step: f64,
49        n_steps: usize,
50    ) -> Result<Array1<Complex64>> {
51        if initial_state.len() > (1 << self.max_qubits) {
52            return Err(IntegrateError::InvalidInput(
53                "State too large for GPU solver".to_string(),
54            ));
55        }
56
57        // Allocate GPU memory
58        self.memory_manager
59            .allocate_state_vector(initial_state.len())?;
60        self.memory_manager
61            .allocate_hamiltonian(hamiltonian.nrows(), hamiltonian.ncols())?;
62
63        // Copy data to GPU (simulated)
64        let mut current_state = initial_state.clone();
65
66        // Time evolution using GPU-accelerated matrix exponential
67        for _step in 0..n_steps {
68            current_state =
69                self.apply_time_evolution_operator(&current_state, hamiltonian, time_step)?;
70        }
71
72        Ok(current_state)
73    }
74
75    /// Apply time evolution operator using GPU acceleration
76    fn apply_time_evolution_operator(
77        &self,
78        state: &Array1<Complex64>,
79        hamiltonian: &Array2<Complex64>,
80        dt: f64,
81    ) -> Result<Array1<Complex64>> {
82        // Simplified GPU-accelerated time evolution
83        // In practice, this would use CUDA kernels or similar
84
85        match self.parallel_strategy {
86            QuantumParallelStrategy::StateVectorParallel => {
87                self.state_vector_parallel_evolution(state, hamiltonian, dt)
88            }
89            QuantumParallelStrategy::MatrixParallel => {
90                self.matrix_parallel_evolution(state, hamiltonian, dt)
91            }
92            QuantumParallelStrategy::HybridParallel => {
93                self.hybrid_parallel_evolution(state, hamiltonian, dt)
94            }
95        }
96    }
97
98    /// State vector parallel evolution
99    fn state_vector_parallel_evolution(
100        &self,
101        state: &Array1<Complex64>,
102        hamiltonian: &Array2<Complex64>,
103        dt: f64,
104    ) -> Result<Array1<Complex64>> {
105        // Apply exp(-i * H * dt) |ψ⟩ using parallel state vector operations
106        let mut evolved_state = Array1::zeros(state.len());
107
108        // Simplified implementation - parallel matrix-vector multiplication
109        for i in 0..state.len() {
110            let mut sum = Complex64::new(0.0, 0.0);
111            for j in 0..state.len() {
112                // Simplified exponential: U ≈ I - i * H * dt
113                let matrix_element = if i == j {
114                    Complex64::new(1.0, 0.0) - Complex64::new(0.0, dt) * hamiltonian[[i, j]]
115                } else {
116                    -Complex64::new(0.0, dt) * hamiltonian[[i, j]]
117                };
118                sum += matrix_element * state[j];
119            }
120            evolved_state[i] = sum;
121        }
122
123        Ok(evolved_state)
124    }
125
126    /// Matrix parallel evolution
127    fn matrix_parallel_evolution(
128        &self,
129        state: &Array1<Complex64>,
130        hamiltonian: &Array2<Complex64>,
131        dt: f64,
132    ) -> Result<Array1<Complex64>> {
133        // GPU-accelerated matrix operations
134        let evolved_state = hamiltonian.dot(state);
135        let result = state + &(evolved_state * Complex64::new(0.0, -dt));
136        Ok(result)
137    }
138
139    /// Hybrid parallel evolution
140    fn hybrid_parallel_evolution(
141        &self,
142        state: &Array1<Complex64>,
143        hamiltonian: &Array2<Complex64>,
144        dt: f64,
145    ) -> Result<Array1<Complex64>> {
146        // Combine state vector and matrix parallelization
147        if state.len() > 1024 {
148            self.matrix_parallel_evolution(state, hamiltonian, dt)
149        } else {
150            self.state_vector_parallel_evolution(state, hamiltonian, dt)
151        }
152    }
153
154    /// Apply quantum gate using GPU acceleration
155    pub fn apply_quantum_gate(
156        &self,
157        state: &Array1<Complex64>,
158        gate_matrix: &Array2<Complex64>,
159        target_qubits: &[usize],
160    ) -> Result<Array1<Complex64>> {
161        if target_qubits.len() > 3 {
162            return Err(IntegrateError::InvalidInput(
163                "GPU solver supports up to 3-qubit gates".to_string(),
164            ));
165        }
166
167        // GPU-accelerated gate application
168        let mut result_state = state.clone();
169
170        // Apply gate to target qubits (simplified implementation)
171        let gate_size = 1 << target_qubits.len();
172        if gate_matrix.nrows() != gate_size || gate_matrix.ncols() != gate_size {
173            return Err(IntegrateError::InvalidInput(
174                "Gate matrix size mismatch".to_string(),
175            ));
176        }
177
178        // Parallel gate application across all basis states
179        self.parallel_gate_application(&mut result_state, gate_matrix, target_qubits)?;
180
181        Ok(result_state)
182    }
183
184    /// Parallel gate application implementation
185    fn parallel_gate_application(
186        &self,
187        state: &mut Array1<Complex64>,
188        gate_matrix: &Array2<Complex64>,
189        target_qubits: &[usize],
190    ) -> Result<()> {
191        let n_qubits = (state.len() as f64).log2() as usize;
192        let gate_size = 1 << target_qubits.len();
193
194        // Create mapping for target qubit configurations
195        let mut temp_state = state.clone();
196
197        // Iterate through all basis states
198        for basis_state in 0..state.len() {
199            // Extract target qubit configuration
200            let mut target_config = 0;
201            for (bit_pos, &qubit) in target_qubits.iter().enumerate() {
202                if (basis_state >> (n_qubits - 1 - qubit)) & 1 == 1 {
203                    target_config |= 1 << bit_pos;
204                }
205            }
206
207            // Apply gate matrix to this configuration
208            temp_state[basis_state] = Complex64::new(0.0, 0.0);
209            for input_config in 0..gate_size {
210                let input_basis_state =
211                    self.construct_basis_state(basis_state, target_qubits, input_config, n_qubits);
212                if input_basis_state < state.len() {
213                    temp_state[basis_state] +=
214                        gate_matrix[[target_config, input_config]] * state[input_basis_state];
215                }
216            }
217        }
218
219        *state = temp_state;
220        Ok(())
221    }
222
223    /// Construct basis state with specific target qubit configuration
224    fn construct_basis_state(
225        &self,
226        basis_state: usize,
227        target_qubits: &[usize],
228        target_config: usize,
229        n_qubits: usize,
230    ) -> usize {
231        let mut new_state = basis_state;
232
233        // Set target qubits according to target_config
234        for (bit_pos, &qubit) in target_qubits.iter().enumerate() {
235            let qubit_bit = (target_config >> bit_pos) & 1;
236            let mask = 1 << (n_qubits - 1 - qubit);
237
238            if qubit_bit == 1 {
239                new_state |= mask;
240            } else {
241                new_state &= !mask;
242            }
243        }
244
245        new_state
246    }
247
248    /// Measure quantum state probabilities using GPU
249    pub fn measure_probabilities(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
250        let mut probabilities = Array1::zeros(state.len());
251
252        // GPU-parallel probability calculation
253        for (i, &amplitude) in state.iter().enumerate() {
254            probabilities[i] = (amplitude.conj() * amplitude).re;
255        }
256
257        Ok(probabilities)
258    }
259
260    /// Get GPU memory usage statistics
261    pub fn get_memory_stats(&self) -> HashMap<String, usize> {
262        self.memory_manager.get_memory_stats()
263    }
264}
265
266/// GPU-accelerated multi-body quantum solver for large entangled systems
267#[derive(Debug, Clone)]
268pub struct GPUMultiBodyQuantumSolver {
269    /// Base GPU solver
270    pub base_solver: GPUQuantumSolver,
271    /// Number of particles
272    pub n_particles: usize,
273    /// Interaction matrix cache
274    pub interaction_cache: HashMap<String, Array2<Complex64>>,
275    /// Tensor network representation
276    pub tensor_network: TensorNetwork,
277}
278
279impl GPUMultiBodyQuantumSolver {
280    /// Create new GPU multi-body quantum solver
281    pub fn new(device_id: usize, nparticles: usize) -> Result<Self> {
282        let max_qubits = nparticles * 2; // Assume 2 qubits per particle
283        let base_solver = GPUQuantumSolver::new(device_id, max_qubits)?;
284        let interaction_cache = HashMap::new();
285        let tensor_network = TensorNetwork::new(nparticles);
286
287        Ok(Self {
288            base_solver,
289            n_particles: nparticles,
290            interaction_cache,
291            tensor_network,
292        })
293    }
294
295    /// Solve multi-body quantum dynamics
296    pub fn solve_multi_body_dynamics(
297        &mut self,
298        initial_state: &Array1<Complex64>,
299        interaction_hamiltonian: &Array2<Complex64>,
300        time_step: f64,
301        n_steps: usize,
302    ) -> Result<Array1<Complex64>> {
303        // Use tensor network decomposition for large systems
304        if initial_state.len() > 1024 {
305            self.tensor_network_evolution(
306                initial_state,
307                interaction_hamiltonian,
308                time_step,
309                n_steps,
310            )
311        } else {
312            self.base_solver.evolve_quantum_state(
313                initial_state,
314                interaction_hamiltonian,
315                time_step,
316                n_steps,
317            )
318        }
319    }
320
321    /// Tensor network-based evolution for large systems
322    fn tensor_network_evolution(
323        &mut self,
324        initial_state: &Array1<Complex64>,
325        hamiltonian: &Array2<Complex64>,
326        dt: f64,
327        n_steps: usize,
328    ) -> Result<Array1<Complex64>> {
329        // Decompose state into tensor network
330        self.tensor_network.decompose_state(initial_state)?;
331
332        // Evolve tensor network
333        for _step in 0..n_steps {
334            self.tensor_network.apply_time_evolution(hamiltonian, dt)?;
335        }
336
337        // Reconstruct final state
338        self.tensor_network.reconstruct_state()
339    }
340
341    /// Calculate entanglement entropy using GPU
342    pub fn calculate_entanglement_entropy(
343        &self,
344        state: &Array1<Complex64>,
345        subsystem_size: usize,
346    ) -> Result<f64> {
347        if subsystem_size >= self.n_particles {
348            return Err(IntegrateError::InvalidInput(
349                "Subsystem size must be smaller than total system".to_string(),
350            ));
351        }
352
353        // GPU-accelerated reduced density matrix calculation
354        let rho_reduced = self.compute_reduced_density_matrix(state, subsystem_size)?;
355
356        // Calculate eigenvalues and entropy
357        let eigenvalues = self.compute_eigenvalues_gpu(&rho_reduced)?;
358
359        let mut entropy = 0.0;
360        for &lambda in &eigenvalues {
361            if lambda > 1e-12 {
362                entropy += -lambda * lambda.ln();
363            }
364        }
365
366        Ok(entropy)
367    }
368
369    /// Compute reduced density matrix using GPU
370    fn compute_reduced_density_matrix(
371        &self,
372        state: &Array1<Complex64>,
373        subsystem_size: usize,
374    ) -> Result<Array2<Complex64>> {
375        let subsystem_dim = 1 << subsystem_size;
376        let mut rho_reduced = Array2::zeros((subsystem_dim, subsystem_dim));
377
378        // GPU-parallel reduced density matrix calculation
379        for i in 0..subsystem_dim {
380            for j in 0..subsystem_dim {
381                let mut sum = Complex64::new(0.0, 0.0);
382
383                let env_size = self.n_particles - subsystem_size;
384                let env_dim = 1 << env_size;
385
386                for env_config in 0..env_dim {
387                    let full_i = (i << env_size) | env_config;
388                    let full_j = (j << env_size) | env_config;
389
390                    if full_i < state.len() && full_j < state.len() {
391                        sum += state[full_i].conj() * state[full_j];
392                    }
393                }
394
395                rho_reduced[[i, j]] = sum;
396            }
397        }
398
399        Ok(rho_reduced)
400    }
401
402    /// Compute eigenvalues using GPU
403    fn compute_eigenvalues_gpu(&self, matrix: &Array2<Complex64>) -> Result<Vec<f64>> {
404        let n = matrix.nrows();
405        let mut eigenvalues = Vec::new();
406
407        // Simplified eigenvalue computation (diagonal elements)
408        for i in 0..n {
409            eigenvalues.push(matrix[[i, i]].re);
410        }
411
412        Ok(eigenvalues)
413    }
414}
415
416/// Parallelization strategies for quantum computations
417#[derive(Debug, Clone, Copy)]
418pub enum QuantumParallelStrategy {
419    /// Parallelize over state vector elements
420    StateVectorParallel,
421    /// Parallelize matrix operations
422    MatrixParallel,
423    /// Hybrid parallelization approach
424    HybridParallel,
425}
426
427/// GPU memory manager for quantum computations
428#[derive(Debug, Clone)]
429pub struct GPUMemoryManager {
430    /// Total available memory
431    pub total_memory: usize,
432    /// Currently allocated memory
433    pub allocated_memory: usize,
434    /// Memory allocations tracking
435    pub allocations: HashMap<String, usize>,
436}
437
438impl GPUMemoryManager {
439    /// Create new GPU memory manager
440    pub fn new(totalmemory: usize) -> Result<Self> {
441        Ok(Self {
442            total_memory: totalmemory,
443            allocated_memory: 0,
444            allocations: HashMap::new(),
445        })
446    }
447
448    /// Allocate memory for state vector
449    pub fn allocate_state_vector(&mut self, size: usize) -> Result<()> {
450        let required_memory = size * std::mem::size_of::<Complex64>();
451        if self.allocated_memory + required_memory > self.total_memory {
452            return Err(IntegrateError::ComputationError(
453                "Insufficient GPU memory".to_string(),
454            ));
455        }
456
457        self.allocated_memory += required_memory;
458        self.allocations
459            .insert("state_vector".to_string(), required_memory);
460        Ok(())
461    }
462
463    /// Allocate memory for Hamiltonian matrix
464    pub fn allocate_hamiltonian(&mut self, rows: usize, cols: usize) -> Result<()> {
465        let required_memory = rows * cols * std::mem::size_of::<Complex64>();
466        if self.allocated_memory + required_memory > self.total_memory {
467            return Err(IntegrateError::ComputationError(
468                "Insufficient GPU memory".to_string(),
469            ));
470        }
471
472        self.allocated_memory += required_memory;
473        self.allocations
474            .insert("hamiltonian".to_string(), required_memory);
475        Ok(())
476    }
477
478    /// Get memory usage statistics
479    pub fn get_memory_stats(&self) -> HashMap<String, usize> {
480        let mut stats = HashMap::new();
481        stats.insert("total_memory".to_string(), self.total_memory);
482        stats.insert("allocated_memory".to_string(), self.allocated_memory);
483        stats.insert(
484            "free_memory".to_string(),
485            self.total_memory - self.allocated_memory,
486        );
487        stats
488    }
489}
490
491/// Tensor network representation for large quantum systems
492#[derive(Debug, Clone)]
493pub struct TensorNetwork {
494    /// Number of particles
495    pub n_particles: usize,
496    /// Tensor components
497    pub tensors: Vec<Array2<Complex64>>,
498    /// Bond dimensions
499    pub bond_dimensions: Vec<usize>,
500}
501
502impl TensorNetwork {
503    /// Create new tensor network
504    pub fn new(nparticles: usize) -> Self {
505        let tensors = vec![Array2::zeros((2, 2)); nparticles];
506        let bond_dimensions = vec![2; nparticles - 1];
507
508        Self {
509            n_particles: nparticles,
510            tensors,
511            bond_dimensions,
512        }
513    }
514
515    /// Decompose quantum state into tensor network
516    pub fn decompose_state(&mut self, state: &Array1<Complex64>) -> Result<()> {
517        // Simplified tensor network decomposition
518        // In practice, this would use SVD or other decomposition methods
519
520        let n_qubits = (state.len() as f64).log2() as usize;
521        if n_qubits != self.n_particles {
522            return Err(IntegrateError::InvalidInput(
523                "State dimension mismatch with tensor network".to_string(),
524            ));
525        }
526
527        // Initialize tensors with state information
528        for i in 0..self.n_particles {
529            self.tensors[i] = Array2::eye(2);
530        }
531
532        Ok(())
533    }
534
535    /// Apply time evolution to tensor network
536    pub fn apply_time_evolution(
537        &mut self,
538        _hamiltonian: &Array2<Complex64>,
539        _dt: f64,
540    ) -> Result<()> {
541        // Simplified time evolution for tensor network
542        // In practice, this would use TEBD or similar algorithms
543        Ok(())
544    }
545
546    /// Reconstruct full quantum state from tensor network
547    pub fn reconstruct_state(&self) -> Result<Array1<Complex64>> {
548        let state_size = 1 << self.n_particles;
549        let mut state = Array1::zeros(state_size);
550
551        // Simplified reconstruction
552        state[0] = Complex64::new(1.0, 0.0);
553
554        Ok(state)
555    }
556}
557
558#[cfg(test)]
559mod tests {
560    use super::*;
561    use approx::assert_relative_eq;
562
563    #[test]
564    fn test_gpu_quantum_solver_creation() {
565        let solver = GPUQuantumSolver::new(0, 4);
566        assert!(solver.is_ok());
567
568        let gpu_solver = solver.unwrap();
569        assert_eq!(gpu_solver.device_id, 0);
570        assert_eq!(gpu_solver.max_qubits, 4);
571    }
572
573    #[test]
574    fn test_quantum_state_evolution() {
575        let mut solver = GPUQuantumSolver::new(0, 2).unwrap();
576
577        // Simple 2-qubit state
578        let initial_state = Array1::from_vec(vec![
579            Complex64::new(1.0, 0.0),
580            Complex64::new(0.0, 0.0),
581            Complex64::new(0.0, 0.0),
582            Complex64::new(0.0, 0.0),
583        ]);
584
585        // Identity Hamiltonian for simple test
586        let hamiltonian = Array2::eye(4);
587
588        let evolved_state = solver.evolve_quantum_state(&initial_state, &hamiltonian, 0.1, 10);
589        assert!(evolved_state.is_ok());
590
591        let final_state = evolved_state.unwrap();
592        assert_eq!(final_state.len(), 4);
593    }
594
595    #[test]
596    fn test_gpu_memory_manager() {
597        let mut memory_manager = GPUMemoryManager::new(1_000_000).unwrap();
598
599        let result = memory_manager.allocate_state_vector(1000);
600        assert!(result.is_ok());
601
602        let stats = memory_manager.get_memory_stats();
603        assert!(stats["allocated_memory"] > 0);
604        assert!(stats["free_memory"] < stats["total_memory"]);
605    }
606
607    #[test]
608    fn test_multi_body_solver() {
609        let solver = GPUMultiBodyQuantumSolver::new(0, 3);
610        assert!(solver.is_ok());
611
612        let multi_body_solver = solver.unwrap();
613        assert_eq!(multi_body_solver.n_particles, 3);
614        assert_eq!(multi_body_solver.base_solver.max_qubits, 6);
615    }
616}