1use crate::error::{IntegrateError, IntegrateResult as Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::numeric::Complex64;
10use std::collections::HashMap;
11
12#[derive(Debug, Clone)]
14pub struct GPUQuantumSolver {
15 pub device_id: usize,
17 pub memory_allocation: usize,
19 pub parallel_strategy: QuantumParallelStrategy,
21 pub max_qubits: usize,
23 pub memory_manager: GPUMemoryManager,
25}
26
27impl GPUQuantumSolver {
28 pub fn new(device_id: usize, maxqubits: usize) -> Result<Self> {
30 let memory_allocation = 1_000_000_000; let parallel_strategy = QuantumParallelStrategy::StateVectorParallel;
32 let memory_manager = GPUMemoryManager::new(memory_allocation)?;
33
34 Ok(Self {
35 device_id,
36 memory_allocation,
37 parallel_strategy,
38 max_qubits: maxqubits,
39 memory_manager,
40 })
41 }
42
43 pub fn evolve_quantum_state(
45 &mut self,
46 initial_state: &Array1<Complex64>,
47 hamiltonian: &Array2<Complex64>,
48 time_step: f64,
49 n_steps: usize,
50 ) -> Result<Array1<Complex64>> {
51 if initial_state.len() > (1 << self.max_qubits) {
52 return Err(IntegrateError::InvalidInput(
53 "State too large for GPU solver".to_string(),
54 ));
55 }
56
57 self.memory_manager
59 .allocate_state_vector(initial_state.len())?;
60 self.memory_manager
61 .allocate_hamiltonian(hamiltonian.nrows(), hamiltonian.ncols())?;
62
63 let mut current_state = initial_state.clone();
65
66 for _step in 0..n_steps {
68 current_state =
69 self.apply_time_evolution_operator(¤t_state, hamiltonian, time_step)?;
70 }
71
72 Ok(current_state)
73 }
74
75 fn apply_time_evolution_operator(
77 &self,
78 state: &Array1<Complex64>,
79 hamiltonian: &Array2<Complex64>,
80 dt: f64,
81 ) -> Result<Array1<Complex64>> {
82 match self.parallel_strategy {
86 QuantumParallelStrategy::StateVectorParallel => {
87 self.state_vector_parallel_evolution(state, hamiltonian, dt)
88 }
89 QuantumParallelStrategy::MatrixParallel => {
90 self.matrix_parallel_evolution(state, hamiltonian, dt)
91 }
92 QuantumParallelStrategy::HybridParallel => {
93 self.hybrid_parallel_evolution(state, hamiltonian, dt)
94 }
95 }
96 }
97
98 fn state_vector_parallel_evolution(
100 &self,
101 state: &Array1<Complex64>,
102 hamiltonian: &Array2<Complex64>,
103 dt: f64,
104 ) -> Result<Array1<Complex64>> {
105 let mut evolved_state = Array1::zeros(state.len());
107
108 for i in 0..state.len() {
110 let mut sum = Complex64::new(0.0, 0.0);
111 for j in 0..state.len() {
112 let matrix_element = if i == j {
114 Complex64::new(1.0, 0.0) - Complex64::new(0.0, dt) * hamiltonian[[i, j]]
115 } else {
116 -Complex64::new(0.0, dt) * hamiltonian[[i, j]]
117 };
118 sum += matrix_element * state[j];
119 }
120 evolved_state[i] = sum;
121 }
122
123 Ok(evolved_state)
124 }
125
126 fn matrix_parallel_evolution(
128 &self,
129 state: &Array1<Complex64>,
130 hamiltonian: &Array2<Complex64>,
131 dt: f64,
132 ) -> Result<Array1<Complex64>> {
133 let evolved_state = hamiltonian.dot(state);
135 let result = state + &(evolved_state * Complex64::new(0.0, -dt));
136 Ok(result)
137 }
138
139 fn hybrid_parallel_evolution(
141 &self,
142 state: &Array1<Complex64>,
143 hamiltonian: &Array2<Complex64>,
144 dt: f64,
145 ) -> Result<Array1<Complex64>> {
146 if state.len() > 1024 {
148 self.matrix_parallel_evolution(state, hamiltonian, dt)
149 } else {
150 self.state_vector_parallel_evolution(state, hamiltonian, dt)
151 }
152 }
153
154 pub fn apply_quantum_gate(
156 &self,
157 state: &Array1<Complex64>,
158 gate_matrix: &Array2<Complex64>,
159 target_qubits: &[usize],
160 ) -> Result<Array1<Complex64>> {
161 if target_qubits.len() > 3 {
162 return Err(IntegrateError::InvalidInput(
163 "GPU solver supports up to 3-qubit gates".to_string(),
164 ));
165 }
166
167 let mut result_state = state.clone();
169
170 let gate_size = 1 << target_qubits.len();
172 if gate_matrix.nrows() != gate_size || gate_matrix.ncols() != gate_size {
173 return Err(IntegrateError::InvalidInput(
174 "Gate matrix size mismatch".to_string(),
175 ));
176 }
177
178 self.parallel_gate_application(&mut result_state, gate_matrix, target_qubits)?;
180
181 Ok(result_state)
182 }
183
184 fn parallel_gate_application(
186 &self,
187 state: &mut Array1<Complex64>,
188 gate_matrix: &Array2<Complex64>,
189 target_qubits: &[usize],
190 ) -> Result<()> {
191 let n_qubits = (state.len() as f64).log2() as usize;
192 let gate_size = 1 << target_qubits.len();
193
194 let mut temp_state = state.clone();
196
197 for basis_state in 0..state.len() {
199 let mut target_config = 0;
201 for (bit_pos, &qubit) in target_qubits.iter().enumerate() {
202 if (basis_state >> (n_qubits - 1 - qubit)) & 1 == 1 {
203 target_config |= 1 << bit_pos;
204 }
205 }
206
207 temp_state[basis_state] = Complex64::new(0.0, 0.0);
209 for input_config in 0..gate_size {
210 let input_basis_state =
211 self.construct_basis_state(basis_state, target_qubits, input_config, n_qubits);
212 if input_basis_state < state.len() {
213 temp_state[basis_state] +=
214 gate_matrix[[target_config, input_config]] * state[input_basis_state];
215 }
216 }
217 }
218
219 *state = temp_state;
220 Ok(())
221 }
222
223 fn construct_basis_state(
225 &self,
226 basis_state: usize,
227 target_qubits: &[usize],
228 target_config: usize,
229 n_qubits: usize,
230 ) -> usize {
231 let mut new_state = basis_state;
232
233 for (bit_pos, &qubit) in target_qubits.iter().enumerate() {
235 let qubit_bit = (target_config >> bit_pos) & 1;
236 let mask = 1 << (n_qubits - 1 - qubit);
237
238 if qubit_bit == 1 {
239 new_state |= mask;
240 } else {
241 new_state &= !mask;
242 }
243 }
244
245 new_state
246 }
247
248 pub fn measure_probabilities(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
250 let mut probabilities = Array1::zeros(state.len());
251
252 for (i, &litude) in state.iter().enumerate() {
254 probabilities[i] = (amplitude.conj() * amplitude).re;
255 }
256
257 Ok(probabilities)
258 }
259
260 pub fn get_memory_stats(&self) -> HashMap<String, usize> {
262 self.memory_manager.get_memory_stats()
263 }
264}
265
266#[derive(Debug, Clone)]
268pub struct GPUMultiBodyQuantumSolver {
269 pub base_solver: GPUQuantumSolver,
271 pub n_particles: usize,
273 pub interaction_cache: HashMap<String, Array2<Complex64>>,
275 pub tensor_network: TensorNetwork,
277}
278
279impl GPUMultiBodyQuantumSolver {
280 pub fn new(device_id: usize, nparticles: usize) -> Result<Self> {
282 let max_qubits = nparticles * 2; let base_solver = GPUQuantumSolver::new(device_id, max_qubits)?;
284 let interaction_cache = HashMap::new();
285 let tensor_network = TensorNetwork::new(nparticles);
286
287 Ok(Self {
288 base_solver,
289 n_particles: nparticles,
290 interaction_cache,
291 tensor_network,
292 })
293 }
294
295 pub fn solve_multi_body_dynamics(
297 &mut self,
298 initial_state: &Array1<Complex64>,
299 interaction_hamiltonian: &Array2<Complex64>,
300 time_step: f64,
301 n_steps: usize,
302 ) -> Result<Array1<Complex64>> {
303 if initial_state.len() > 1024 {
305 self.tensor_network_evolution(
306 initial_state,
307 interaction_hamiltonian,
308 time_step,
309 n_steps,
310 )
311 } else {
312 self.base_solver.evolve_quantum_state(
313 initial_state,
314 interaction_hamiltonian,
315 time_step,
316 n_steps,
317 )
318 }
319 }
320
321 fn tensor_network_evolution(
323 &mut self,
324 initial_state: &Array1<Complex64>,
325 hamiltonian: &Array2<Complex64>,
326 dt: f64,
327 n_steps: usize,
328 ) -> Result<Array1<Complex64>> {
329 self.tensor_network.decompose_state(initial_state)?;
331
332 for _step in 0..n_steps {
334 self.tensor_network.apply_time_evolution(hamiltonian, dt)?;
335 }
336
337 self.tensor_network.reconstruct_state()
339 }
340
341 pub fn calculate_entanglement_entropy(
343 &self,
344 state: &Array1<Complex64>,
345 subsystem_size: usize,
346 ) -> Result<f64> {
347 if subsystem_size >= self.n_particles {
348 return Err(IntegrateError::InvalidInput(
349 "Subsystem size must be smaller than total system".to_string(),
350 ));
351 }
352
353 let rho_reduced = self.compute_reduced_density_matrix(state, subsystem_size)?;
355
356 let eigenvalues = self.compute_eigenvalues_gpu(&rho_reduced)?;
358
359 let mut entropy = 0.0;
360 for &lambda in &eigenvalues {
361 if lambda > 1e-12 {
362 entropy += -lambda * lambda.ln();
363 }
364 }
365
366 Ok(entropy)
367 }
368
369 fn compute_reduced_density_matrix(
371 &self,
372 state: &Array1<Complex64>,
373 subsystem_size: usize,
374 ) -> Result<Array2<Complex64>> {
375 let subsystem_dim = 1 << subsystem_size;
376 let mut rho_reduced = Array2::zeros((subsystem_dim, subsystem_dim));
377
378 for i in 0..subsystem_dim {
380 for j in 0..subsystem_dim {
381 let mut sum = Complex64::new(0.0, 0.0);
382
383 let env_size = self.n_particles - subsystem_size;
384 let env_dim = 1 << env_size;
385
386 for env_config in 0..env_dim {
387 let full_i = (i << env_size) | env_config;
388 let full_j = (j << env_size) | env_config;
389
390 if full_i < state.len() && full_j < state.len() {
391 sum += state[full_i].conj() * state[full_j];
392 }
393 }
394
395 rho_reduced[[i, j]] = sum;
396 }
397 }
398
399 Ok(rho_reduced)
400 }
401
402 fn compute_eigenvalues_gpu(&self, matrix: &Array2<Complex64>) -> Result<Vec<f64>> {
404 let n = matrix.nrows();
405 let mut eigenvalues = Vec::new();
406
407 for i in 0..n {
409 eigenvalues.push(matrix[[i, i]].re);
410 }
411
412 Ok(eigenvalues)
413 }
414}
415
416#[derive(Debug, Clone, Copy)]
418pub enum QuantumParallelStrategy {
419 StateVectorParallel,
421 MatrixParallel,
423 HybridParallel,
425}
426
427#[derive(Debug, Clone)]
429pub struct GPUMemoryManager {
430 pub total_memory: usize,
432 pub allocated_memory: usize,
434 pub allocations: HashMap<String, usize>,
436}
437
438impl GPUMemoryManager {
439 pub fn new(totalmemory: usize) -> Result<Self> {
441 Ok(Self {
442 total_memory: totalmemory,
443 allocated_memory: 0,
444 allocations: HashMap::new(),
445 })
446 }
447
448 pub fn allocate_state_vector(&mut self, size: usize) -> Result<()> {
450 let required_memory = size * std::mem::size_of::<Complex64>();
451 if self.allocated_memory + required_memory > self.total_memory {
452 return Err(IntegrateError::ComputationError(
453 "Insufficient GPU memory".to_string(),
454 ));
455 }
456
457 self.allocated_memory += required_memory;
458 self.allocations
459 .insert("state_vector".to_string(), required_memory);
460 Ok(())
461 }
462
463 pub fn allocate_hamiltonian(&mut self, rows: usize, cols: usize) -> Result<()> {
465 let required_memory = rows * cols * std::mem::size_of::<Complex64>();
466 if self.allocated_memory + required_memory > self.total_memory {
467 return Err(IntegrateError::ComputationError(
468 "Insufficient GPU memory".to_string(),
469 ));
470 }
471
472 self.allocated_memory += required_memory;
473 self.allocations
474 .insert("hamiltonian".to_string(), required_memory);
475 Ok(())
476 }
477
478 pub fn get_memory_stats(&self) -> HashMap<String, usize> {
480 let mut stats = HashMap::new();
481 stats.insert("total_memory".to_string(), self.total_memory);
482 stats.insert("allocated_memory".to_string(), self.allocated_memory);
483 stats.insert(
484 "free_memory".to_string(),
485 self.total_memory - self.allocated_memory,
486 );
487 stats
488 }
489}
490
491#[derive(Debug, Clone)]
493pub struct TensorNetwork {
494 pub n_particles: usize,
496 pub tensors: Vec<Array2<Complex64>>,
498 pub bond_dimensions: Vec<usize>,
500}
501
502impl TensorNetwork {
503 pub fn new(nparticles: usize) -> Self {
505 let tensors = vec![Array2::zeros((2, 2)); nparticles];
506 let bond_dimensions = vec![2; nparticles - 1];
507
508 Self {
509 n_particles: nparticles,
510 tensors,
511 bond_dimensions,
512 }
513 }
514
515 pub fn decompose_state(&mut self, state: &Array1<Complex64>) -> Result<()> {
517 let n_qubits = (state.len() as f64).log2() as usize;
521 if n_qubits != self.n_particles {
522 return Err(IntegrateError::InvalidInput(
523 "State dimension mismatch with tensor network".to_string(),
524 ));
525 }
526
527 for i in 0..self.n_particles {
529 self.tensors[i] = Array2::eye(2);
530 }
531
532 Ok(())
533 }
534
535 pub fn apply_time_evolution(
537 &mut self,
538 _hamiltonian: &Array2<Complex64>,
539 _dt: f64,
540 ) -> Result<()> {
541 Ok(())
544 }
545
546 pub fn reconstruct_state(&self) -> Result<Array1<Complex64>> {
548 let state_size = 1 << self.n_particles;
549 let mut state = Array1::zeros(state_size);
550
551 state[0] = Complex64::new(1.0, 0.0);
553
554 Ok(state)
555 }
556}
557
558#[cfg(test)]
559mod tests {
560 use super::*;
561 use approx::assert_relative_eq;
562
563 #[test]
564 fn test_gpu_quantum_solver_creation() {
565 let solver = GPUQuantumSolver::new(0, 4);
566 assert!(solver.is_ok());
567
568 let gpu_solver = solver.unwrap();
569 assert_eq!(gpu_solver.device_id, 0);
570 assert_eq!(gpu_solver.max_qubits, 4);
571 }
572
573 #[test]
574 fn test_quantum_state_evolution() {
575 let mut solver = GPUQuantumSolver::new(0, 2).unwrap();
576
577 let initial_state = Array1::from_vec(vec![
579 Complex64::new(1.0, 0.0),
580 Complex64::new(0.0, 0.0),
581 Complex64::new(0.0, 0.0),
582 Complex64::new(0.0, 0.0),
583 ]);
584
585 let hamiltonian = Array2::eye(4);
587
588 let evolved_state = solver.evolve_quantum_state(&initial_state, &hamiltonian, 0.1, 10);
589 assert!(evolved_state.is_ok());
590
591 let final_state = evolved_state.unwrap();
592 assert_eq!(final_state.len(), 4);
593 }
594
595 #[test]
596 fn test_gpu_memory_manager() {
597 let mut memory_manager = GPUMemoryManager::new(1_000_000).unwrap();
598
599 let result = memory_manager.allocate_state_vector(1000);
600 assert!(result.is_ok());
601
602 let stats = memory_manager.get_memory_stats();
603 assert!(stats["allocated_memory"] > 0);
604 assert!(stats["free_memory"] < stats["total_memory"]);
605 }
606
607 #[test]
608 fn test_multi_body_solver() {
609 let solver = GPUMultiBodyQuantumSolver::new(0, 3);
610 assert!(solver.is_ok());
611
612 let multi_body_solver = solver.unwrap();
613 assert_eq!(multi_body_solver.n_particles, 3);
614 assert_eq!(multi_body_solver.base_solver.max_qubits, 6);
615 }
616}