1#![allow(dead_code)]
16#![allow(clippy::too_many_arguments)]
17
18use crate::common::IntegrateFloat;
19use crate::error::{IntegrateError, IntegrateResult};
20use num_cpus;
21use scirs2_core::gpu::{self, DynamicKernelArg, GpuBackend, GpuDataType};
22use scirs2_core::ndarray::{Array1, ArrayView1};
23use std::collections::HashMap;
24use std::sync::{Arc, Mutex};
25use std::time::{Duration, Instant};
26
27pub struct AdvancedGPUAccelerator<F: IntegrateFloat + GpuDataType> {
29 context: Arc<Mutex<gpu::GpuContext>>,
31 memory_pool: Arc<Mutex<AdvancedGPUMemoryPool<F>>>,
33 kernel_cache: Arc<Mutex<HashMap<String, KernelPerformanceData>>>,
35 multi_gpu_config: MultiGpuConfiguration,
37 performance_monitor: Arc<Mutex<RealTimeGpuMonitor>>,
39}
40
41pub struct AdvancedGPUMemoryPool<F: IntegrateFloat + GpuDataType> {
43 available_blocks: Vec<MemoryBlock<F>>,
45 allocated_blocks: HashMap<usize, (usize, MemoryBlockType, Instant)>, total_memory: usize,
49 used_memory: usize,
51 fragmentation_ratio: f64,
53 defrag_threshold: f64,
55 block_counter: usize,
57}
58
59#[derive(Debug)]
61pub struct MemoryBlock<F: IntegrateFloat + GpuDataType> {
62 id: usize,
64 gpu_ptr: gpu::GpuPtr<F>,
66 size: usize,
68 allocated_time: Instant,
70 usage_count: usize,
72 block_type: MemoryBlockType,
74}
75
76#[derive(Debug, Clone, PartialEq)]
78pub enum MemoryBlockType {
79 Solution,
81 Derivative,
83 Jacobian,
85 Temporary,
87 Constants,
89}
90
91#[derive(Debug, Clone)]
93pub struct KernelPerformanceData {
94 avg_execution_time: Duration,
96 execution_count: usize,
98 optimal_block_size: (usize, usize, usize),
100 memory_bandwidth_usage: f64,
102 compute_utilization: f64,
104 last_optimized: Instant,
106}
107
108pub struct MultiGpuConfiguration {
110 devices: Vec<GpuDeviceInfo>,
112 load_balancing: LoadBalancingStrategy,
114 communication_channels: Vec<gpu::GpuChannel>,
116 workload_ratios: Vec<f64>,
118}
119
120impl Default for MultiGpuConfiguration {
121 fn default() -> Self {
122 MultiGpuConfiguration {
123 devices: Vec::new(),
124 load_balancing: LoadBalancingStrategy::RoundRobin,
125 communication_channels: Vec::new(),
126 workload_ratios: Vec::new(),
127 }
128 }
129}
130
131#[derive(Debug, Clone)]
133pub struct GpuDeviceInfo {
134 device_id: usize,
136 name: String,
138 total_memory: usize,
140 compute_capability: (usize, usize),
142 multiprocessor_count: usize,
144 max_threads_per_block: usize,
146 current_load: f64,
148}
149
150#[derive(Debug, Clone)]
152pub enum LoadBalancingStrategy {
153 PerformanceBased,
155 RoundRobin,
157 Adaptive,
159 Custom(Vec<f64>),
161}
162
163pub struct RealTimeGpuMonitor {
165 metrics_history: Vec<GpuPerformanceMetrics>,
167 monitoring_interval: Duration,
169 thresholds: PerformanceThresholds,
171 adaptive_optimization: bool,
173}
174
175#[derive(Debug, Clone)]
177pub struct GpuPerformanceMetrics {
178 timestamp: Instant,
180 gpu_utilization: f64,
182 memory_utilization: f64,
184 temperature: f64,
186 power_consumption: f64,
188 memory_bandwidth: f64,
190 kernel_times: HashMap<String, Duration>,
192}
193
194#[derive(Debug, Clone)]
196pub struct PerformanceThresholds {
197 max_gpu_utilization: f64,
199 max_memory_utilization: f64,
201 max_temperature: f64,
203 min_efficiency: f64,
205}
206
207impl<F: IntegrateFloat + GpuDataType> AdvancedGPUAccelerator<F> {
208 pub fn new() -> IntegrateResult<Self> {
210 let context = match gpu::GpuContext::new(GpuBackend::Cuda) {
212 Ok(ctx) => Arc::new(Mutex::new(ctx)),
213 Err(_) => {
214 match gpu::GpuContext::new(GpuBackend::OpenCL) {
216 Ok(ctx) => Arc::new(Mutex::new(ctx)),
217 Err(_) => {
218 return Err(IntegrateError::ComputationError(
220 "GPU acceleration not available - no CUDA or OpenCL support detected. Using CPU fallback.".to_string()
221 ));
222 }
223 }
224 }
225 };
226
227 let memory_pool = Arc::new(Mutex::new(AdvancedGPUMemoryPool::new()?));
228 let kernel_cache = Arc::new(Mutex::new(HashMap::new()));
229 let multi_gpu_config = MultiGpuConfiguration::default().detect_and_configure()?;
230 let performance_monitor = Arc::new(Mutex::new(RealTimeGpuMonitor::new()));
231
232 Ok(AdvancedGPUAccelerator {
233 context,
234 memory_pool,
235 kernel_cache,
236 multi_gpu_config,
237 performance_monitor,
238 })
239 }
240
241 pub fn new_with_cpu_fallback() -> IntegrateResult<Self> {
243 let memory_pool = Arc::new(Mutex::new(AdvancedGPUMemoryPool::new_cpu_fallback()?));
245 let kernel_cache = Arc::new(Mutex::new(HashMap::new()));
246 let multi_gpu_config = MultiGpuConfiguration::default().cpu_fallback_config()?;
247 let performance_monitor = Arc::new(Mutex::new(RealTimeGpuMonitor::new()));
248
249 let context = Arc::new(Mutex::new(gpu::GpuContext::new(GpuBackend::Cpu).map_err(
251 |e| {
252 IntegrateError::ComputationError(format!(
253 "CPU fallback context creation failed: {e:?}"
254 ))
255 },
256 )?));
257
258 Ok(AdvancedGPUAccelerator {
259 context,
260 memory_pool,
261 kernel_cache,
262 multi_gpu_config,
263 performance_monitor,
264 })
265 }
266
267 pub fn advanced_rk4_step(
269 &self,
270 t: F,
271 y: &ArrayView1<F>,
272 h: F,
273 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
274 ) -> IntegrateResult<Array1<F>> {
275 let start_time = Instant::now();
276
277 let mut memory_pool = self.memory_pool.lock().unwrap();
279 let y_gpu = memory_pool.allocate_solution_vector(y.len())?;
280 let k1_gpu = memory_pool.allocate_derivative_vector(y.len())?;
281 let k2_gpu = memory_pool.allocate_derivative_vector(y.len())?;
282 let k3_gpu = memory_pool.allocate_derivative_vector(y.len())?;
283 let k4_gpu = memory_pool.allocate_derivative_vector(y.len())?;
284 let result_gpu = memory_pool.allocate_solution_vector(y.len())?;
285 drop(memory_pool);
286
287 self.transfer_to_gpu_optimized(&y_gpu, y)?;
289
290 let mut kernel_cache = self.kernel_cache.lock().unwrap();
292 let kernel_name = "advanced_rk4_kernel";
293 let optimal_config =
294 self.get_or_optimize_kernel_config(&mut kernel_cache, kernel_name, y.len())?;
295 drop(kernel_cache);
296
297 self.launch_rk4_stage1_kernel(&y_gpu, &k1_gpu, t, h, &optimal_config)?;
299 self.launch_rk4_stage2_kernel(&y_gpu, &k1_gpu, &k2_gpu, t, h, &optimal_config)?;
300 self.launch_rk4_stage3_kernel(&y_gpu, &k2_gpu, &k3_gpu, t, h, &optimal_config)?;
301 self.launch_rk4_stage4_kernel(&y_gpu, &k3_gpu, &k4_gpu, t, h, &optimal_config)?;
302
303 self.launch_rk4_combine_kernel(
305 &y_gpu,
306 &k1_gpu,
307 &k2_gpu,
308 &k3_gpu,
309 &k4_gpu,
310 &result_gpu,
311 h,
312 &optimal_config,
313 )?;
314
315 let result = self.transfer_from_gpu_optimized(&result_gpu)?;
317
318 let execution_time = start_time.elapsed();
320 self.update_kernel_performance(kernel_name, execution_time, &optimal_config)?;
321
322 let mut memory_pool = self.memory_pool.lock().unwrap();
324 memory_pool.deallocate(y_gpu.id)?;
325 memory_pool.deallocate(k1_gpu.id)?;
326 memory_pool.deallocate(k2_gpu.id)?;
327 memory_pool.deallocate(k3_gpu.id)?;
328 memory_pool.deallocate(k4_gpu.id)?;
329 memory_pool.deallocate(result_gpu.id)?;
330
331 Ok(result)
332 }
333
334 pub fn advanced_adaptive_step(
336 &self,
337 t: F,
338 y: &ArrayView1<F>,
339 h: F,
340 rtol: F,
341 atol: F,
342 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
343 ) -> IntegrateResult<(Array1<F>, F, bool)> {
344 let y1 = self.advanced_rk4_step(t, y, h, &f)?;
346 let y_half1 = self.advanced_rk4_step(t, y, h / F::from(2.0).unwrap(), &f)?;
347 let y2 = self.advanced_rk4_step(
348 t + h / F::from(2.0).unwrap(),
349 &y_half1.view(),
350 h / F::from(2.0).unwrap(),
351 &f,
352 )?;
353
354 let error = self.advanced_gpu_error_estimate(&y1.view(), &y2.view(), rtol, atol)?;
356
357 let safety_factor = F::from(0.9).unwrap();
359 let error_tolerance = F::one();
360
361 if error <= error_tolerance {
362 let factor = safety_factor * (error_tolerance / error).powf(F::from(0.2).unwrap());
364 let new_h = h * factor.min(F::from(2.0).unwrap()).max(F::from(0.5).unwrap());
365 Ok((y2, new_h, true))
366 } else {
367 let factor = safety_factor * (error_tolerance / error).powf(F::from(0.25).unwrap());
369 let new_h = h * factor.max(F::from(0.1).unwrap());
370 Ok((y.to_owned(), new_h, false))
371 }
372 }
373
374 fn launch_rk4_stage1_kernel(
376 &self,
377 y: &MemoryBlock<F>,
378 k1: &MemoryBlock<F>,
379 t: F,
380 h: F,
381 config: &KernelConfiguration,
382 ) -> IntegrateResult<()> {
383 let context = self.context.lock().unwrap();
384
385 context
387 .launch_kernel(
388 "rk4_stage1",
389 config.grid_size,
390 config.block_size,
391 &[
392 DynamicKernelArg::Buffer(y.gpu_ptr.as_ptr()),
393 DynamicKernelArg::Buffer(k1.gpu_ptr.as_ptr()),
394 DynamicKernelArg::F64(t.to_f64().unwrap_or(0.0)),
395 DynamicKernelArg::F64(h.to_f64().unwrap_or(0.0)),
396 DynamicKernelArg::Usize(y.size),
397 ],
398 )
399 .map_err(|e| {
400 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
401 })?;
402
403 Ok(())
404 }
405
406 fn launch_rk4_stage2_kernel(
408 &self,
409 y: &MemoryBlock<F>,
410 k1: &MemoryBlock<F>,
411 k2: &MemoryBlock<F>,
412 t: F,
413 h: F,
414 config: &KernelConfiguration,
415 ) -> IntegrateResult<()> {
416 let context = self.context.lock().unwrap();
417
418 context
419 .launch_kernel(
420 "rk4_stage2",
421 config.grid_size,
422 config.block_size,
423 &[
424 DynamicKernelArg::Buffer(y.gpu_ptr.as_ptr()),
425 DynamicKernelArg::Buffer(k1.gpu_ptr.as_ptr()),
426 DynamicKernelArg::Buffer(k2.gpu_ptr.as_ptr()),
427 DynamicKernelArg::F64(t.to_f64().unwrap_or(0.0)),
428 DynamicKernelArg::F64(h.to_f64().unwrap_or(0.0)),
429 DynamicKernelArg::Usize(y.size),
430 ],
431 )
432 .map_err(|e| {
433 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
434 })?;
435
436 Ok(())
437 }
438
439 fn launch_rk4_stage3_kernel(
441 &self,
442 y: &MemoryBlock<F>,
443 k2: &MemoryBlock<F>,
444 k3: &MemoryBlock<F>,
445 t: F,
446 h: F,
447 config: &KernelConfiguration,
448 ) -> IntegrateResult<()> {
449 let context = self.context.lock().unwrap();
450
451 context
452 .launch_kernel(
453 "rk4_stage3",
454 config.grid_size,
455 config.block_size,
456 &[
457 DynamicKernelArg::Buffer(y.gpu_ptr.as_ptr()),
458 DynamicKernelArg::Buffer(k2.gpu_ptr.as_ptr()),
459 DynamicKernelArg::Buffer(k3.gpu_ptr.as_ptr()),
460 DynamicKernelArg::F64(t.to_f64().unwrap_or(0.0)),
461 DynamicKernelArg::F64(h.to_f64().unwrap_or(0.0)),
462 DynamicKernelArg::Usize(y.size),
463 ],
464 )
465 .map_err(|e| {
466 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
467 })?;
468
469 Ok(())
470 }
471
472 fn launch_rk4_stage4_kernel(
474 &self,
475 y: &MemoryBlock<F>,
476 k3: &MemoryBlock<F>,
477 k4: &MemoryBlock<F>,
478 t: F,
479 h: F,
480 config: &KernelConfiguration,
481 ) -> IntegrateResult<()> {
482 let context = self.context.lock().unwrap();
483
484 context
485 .launch_kernel(
486 "rk4_stage4",
487 config.grid_size,
488 config.block_size,
489 &[
490 DynamicKernelArg::Buffer(y.gpu_ptr.as_ptr()),
491 DynamicKernelArg::Buffer(k3.gpu_ptr.as_ptr()),
492 DynamicKernelArg::Buffer(k4.gpu_ptr.as_ptr()),
493 DynamicKernelArg::F64(t.to_f64().unwrap_or(0.0)),
494 DynamicKernelArg::F64(h.to_f64().unwrap_or(0.0)),
495 DynamicKernelArg::Usize(y.size),
496 ],
497 )
498 .map_err(|e| {
499 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
500 })?;
501
502 Ok(())
503 }
504
505 fn launch_rk4_combine_kernel(
507 &self,
508 y: &MemoryBlock<F>,
509 k1: &MemoryBlock<F>,
510 k2: &MemoryBlock<F>,
511 k3: &MemoryBlock<F>,
512 k4: &MemoryBlock<F>,
513 result: &MemoryBlock<F>,
514 h: F,
515 config: &KernelConfiguration,
516 ) -> IntegrateResult<()> {
517 let context = self.context.lock().unwrap();
518
519 context
520 .launch_kernel(
521 "rk4_combine",
522 config.grid_size,
523 config.block_size,
524 &[
525 DynamicKernelArg::Buffer(y.gpu_ptr.as_ptr()),
526 DynamicKernelArg::Buffer(k1.gpu_ptr.as_ptr()),
527 DynamicKernelArg::Buffer(k2.gpu_ptr.as_ptr()),
528 DynamicKernelArg::Buffer(k3.gpu_ptr.as_ptr()),
529 DynamicKernelArg::Buffer(k4.gpu_ptr.as_ptr()),
530 DynamicKernelArg::Buffer(result.gpu_ptr.as_ptr()),
531 DynamicKernelArg::F64(h.to_f64().unwrap_or(0.0)),
532 DynamicKernelArg::Usize(y.size),
533 ],
534 )
535 .map_err(|e| {
536 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
537 })?;
538
539 Ok(())
540 }
541
542 fn transfer_to_gpu_optimized(
544 &self,
545 gpu_block: &MemoryBlock<F>,
546 data: &ArrayView1<F>,
547 ) -> IntegrateResult<()> {
548 let context = self.context.lock().unwrap();
549
550 if data.len() > 10000 {
552 context
554 .transfer_async_host_to_device(&gpu_block.gpu_ptr, data.as_slice().unwrap())
555 .map_err(|e| {
556 IntegrateError::ComputationError(format!("GPU transfer failed: {e:?}"))
557 })?;
558 } else {
559 context
561 .transfer_host_to_device(&gpu_block.gpu_ptr, data.as_slice().unwrap())
562 .map_err(|e| {
563 IntegrateError::ComputationError(format!("GPU transfer failed: {e:?}"))
564 })?;
565 }
566
567 Ok(())
568 }
569
570 fn transfer_from_gpu_optimized(
572 &self,
573 gpu_block: &MemoryBlock<F>,
574 ) -> IntegrateResult<Array1<F>> {
575 let context = self.context.lock().unwrap();
576
577 let mut result = vec![F::zero(); gpu_block.size];
578
579 if gpu_block.size > 10000 {
581 context
583 .transfer_async_device_to_host(&gpu_block.gpu_ptr, &mut result)
584 .map_err(|e| {
585 IntegrateError::ComputationError(format!("GPU transfer failed: {e:?}"))
586 })?;
587 } else {
588 context
590 .transfer_device_to_host(&gpu_block.gpu_ptr, &mut result)
591 .map_err(|e| {
592 IntegrateError::ComputationError(format!("GPU transfer failed: {e:?}"))
593 })?;
594 }
595
596 Ok(Array1::from_vec(result))
597 }
598
599 fn get_or_optimize_kernel_config(
601 &self,
602 cache: &mut HashMap<String, KernelPerformanceData>,
603 kernel_name: &str,
604 problem_size: usize,
605 ) -> IntegrateResult<KernelConfiguration> {
606 if let Some(perf_data) = cache.get(kernel_name) {
608 if perf_data.last_optimized.elapsed() < Duration::from_secs(300) {
609 return Ok(KernelConfiguration {
611 block_size: perf_data.optimal_block_size,
612 grid_size: Self::calculate_grid_size(
613 problem_size,
614 perf_data.optimal_block_size.0,
615 ),
616 });
617 }
618 }
619
620 self.auto_tune_kernel(kernel_name, problem_size)
622 }
623
624 fn auto_tune_kernel(
626 &self,
627 kernel_name: &str,
628 problem_size: usize,
629 ) -> IntegrateResult<KernelConfiguration> {
630 let mut best_config = KernelConfiguration {
631 block_size: (256, 1, 1),
632 grid_size: Self::calculate_grid_size(problem_size, 256),
633 };
634 let mut best_time = Duration::from_secs(u64::MAX);
635
636 let block_sizes = [32, 64, 128, 256, 512, 1024];
638
639 for &block_size in &block_sizes {
640 if block_size > problem_size {
641 continue;
642 }
643
644 let config = KernelConfiguration {
645 block_size: (block_size, 1, 1),
646 grid_size: Self::calculate_grid_size(problem_size, block_size),
647 };
648
649 let execution_time =
651 self.benchmark_kernel_config(kernel_name, &config, problem_size)?;
652
653 if execution_time < best_time {
654 best_time = execution_time;
655 best_config = config;
656 }
657 }
658
659 Ok(best_config)
660 }
661
662 fn benchmark_kernel_config(
664 &self,
665 _kernel_name: &str,
666 _config: &KernelConfiguration,
667 problem_size: usize,
668 ) -> IntegrateResult<Duration> {
669 Ok(Duration::from_micros(100))
671 }
672
673 fn calculate_grid_size(problem_size: usize, blocksize: usize) -> (usize, usize, usize) {
675 let grid_size = problem_size.div_ceil(blocksize);
676 (grid_size, 1, 1)
677 }
678
679 fn advanced_gpu_error_estimate(
681 &self,
682 y1: &ArrayView1<F>,
683 y2: &ArrayView1<F>,
684 rtol: F,
685 atol: F,
686 ) -> IntegrateResult<F> {
687 let mut memory_pool = self.memory_pool.lock().unwrap();
689 let y1_gpu = memory_pool.allocate_temporary_vector(y1.len())?;
690 let y2_gpu = memory_pool.allocate_temporary_vector(y2.len())?;
691 let error_gpu = memory_pool.allocate_temporary_vector(y1.len())?;
692 drop(memory_pool);
693
694 self.transfer_to_gpu_optimized(&y1_gpu, y1)?;
696 self.transfer_to_gpu_optimized(&y2_gpu, y2)?;
697
698 let context = self.context.lock().unwrap();
700 context
701 .launch_kernel(
702 "error_estimate",
703 Self::calculate_grid_size(y1.len(), 256),
704 (256, 1, 1),
705 &[
706 DynamicKernelArg::Buffer(y1_gpu.gpu_ptr.as_ptr()),
707 DynamicKernelArg::Buffer(y2_gpu.gpu_ptr.as_ptr()),
708 DynamicKernelArg::Buffer(error_gpu.gpu_ptr.as_ptr()),
709 DynamicKernelArg::F64(rtol.to_f64().unwrap_or(0.0)),
710 DynamicKernelArg::F64(atol.to_f64().unwrap_or(0.0)),
711 DynamicKernelArg::Usize(y1.len()),
712 ],
713 )
714 .map_err(|e| {
715 IntegrateError::ComputationError(format!("Kernel launch failed: {e:?}"))
716 })?;
717 drop(context);
718
719 let error_vec = self.transfer_from_gpu_optimized(&error_gpu)?;
721 let error = error_vec.iter().fold(F::zero(), |acc, &x| acc.max(x));
722
723 let mut memory_pool = self.memory_pool.lock().unwrap();
725 memory_pool.deallocate(y1_gpu.id)?;
726 memory_pool.deallocate(y2_gpu.id)?;
727 memory_pool.deallocate(error_gpu.id)?;
728
729 Ok(error)
730 }
731
732 fn update_kernel_performance(
734 &self,
735 kernel_name: &str,
736 execution_time: Duration,
737 config: &KernelConfiguration,
738 ) -> IntegrateResult<()> {
739 let mut cache = self.kernel_cache.lock().unwrap();
740
741 let perf_data =
742 cache
743 .entry(kernel_name.to_string())
744 .or_insert_with(|| KernelPerformanceData {
745 avg_execution_time: execution_time,
746 execution_count: 0,
747 optimal_block_size: config.block_size,
748 memory_bandwidth_usage: 0.0,
749 compute_utilization: 0.0,
750 last_optimized: Instant::now(),
751 });
752
753 perf_data.execution_count += 1;
755 let alpha = 0.1; let old_avg = perf_data.avg_execution_time.as_nanos() as f64;
757 let new_time = execution_time.as_nanos() as f64;
758 let new_avg = old_avg * (1.0 - alpha) + new_time * alpha;
759 perf_data.avg_execution_time = Duration::from_nanos(new_avg as u64);
760
761 Ok(())
762 }
763}
764
765#[derive(Debug, Clone)]
767pub struct KernelConfiguration {
768 pub block_size: (usize, usize, usize),
770 pub grid_size: (usize, usize, usize),
772}
773
774impl<F: IntegrateFloat + GpuDataType> AdvancedGPUMemoryPool<F> {
775 pub fn new() -> IntegrateResult<Self> {
777 Ok(AdvancedGPUMemoryPool {
778 available_blocks: Vec::new(),
779 allocated_blocks: HashMap::new(),
780 total_memory: 0,
781 used_memory: 0,
782 fragmentation_ratio: 0.0,
783 defrag_threshold: 0.3,
784 block_counter: 0,
785 })
786 }
787
788 pub fn new_cpu_fallback() -> IntegrateResult<Self> {
790 Ok(AdvancedGPUMemoryPool {
791 available_blocks: Vec::new(),
792 allocated_blocks: HashMap::new(),
793 total_memory: 1024 * 1024 * 1024, used_memory: 0,
795 fragmentation_ratio: 0.0,
796 defrag_threshold: 0.3,
797 block_counter: 0,
798 })
799 }
800
801 pub fn allocate_solution_vector(&mut self, size: usize) -> IntegrateResult<MemoryBlock<F>> {
803 self.allocate_block(size, MemoryBlockType::Solution)
804 }
805
806 pub fn allocate_derivative_vector(&mut self, size: usize) -> IntegrateResult<MemoryBlock<F>> {
808 self.allocate_block(size, MemoryBlockType::Derivative)
809 }
810
811 pub fn allocate_temporary_vector(&mut self, size: usize) -> IntegrateResult<MemoryBlock<F>> {
813 self.allocate_block(size, MemoryBlockType::Temporary)
814 }
815
816 fn allocate_block(
818 &mut self,
819 size: usize,
820 block_type: MemoryBlockType,
821 ) -> IntegrateResult<MemoryBlock<F>> {
822 self.block_counter += 1;
823
824 if let Some(index) = self.find_suitable_block(size) {
826 let mut block = self.available_blocks.remove(index);
827 block.id = self.block_counter;
828 block.block_type = block_type.clone();
829 block.allocated_time = Instant::now();
830 block.usage_count += 1;
831
832 self.allocated_blocks
834 .insert(block.id, (block.size, block_type, block.allocated_time));
835 self.used_memory += block.size * std::mem::size_of::<F>();
836
837 return Ok(block);
838 }
839
840 let gpu_ptr = gpu::GpuPtr::allocate(size).map_err(|e| {
842 IntegrateError::ComputationError(format!("GPU allocation failed: {e:?}"))
843 })?;
844 let allocated_time = Instant::now();
845 let block = MemoryBlock {
846 id: self.block_counter,
847 gpu_ptr,
848 size,
849 allocated_time,
850 usage_count: 1,
851 block_type: block_type.clone(),
852 };
853
854 self.allocated_blocks
856 .insert(block.id, (size, block_type, allocated_time));
857 self.used_memory += size * std::mem::size_of::<F>();
858
859 Ok(block)
860 }
861
862 fn find_suitable_block(&self, _requiredsize: usize) -> Option<usize> {
864 for (index, block) in self.available_blocks.iter().enumerate() {
865 if block.size >= _requiredsize && block.size <= _requiredsize * 5 / 4 {
867 return Some(index);
868 }
869 }
870 None
871 }
872
873 pub fn deallocate(&mut self, blockid: usize) -> IntegrateResult<()> {
875 if let Some((size__, mem_type, timestamp)) = self.allocated_blocks.remove(&blockid) {
876 self.used_memory -= size__ * std::mem::size_of::<F>();
877
878 self.update_fragmentation_metrics();
884 if self.fragmentation_ratio > self.defrag_threshold {
885 self.defragment()?;
886 }
887
888 Ok(())
889 } else {
890 Err(IntegrateError::ValueError(format!(
891 "Block {blockid} not found"
892 )))
893 }
894 }
895
896 fn update_fragmentation_metrics(&mut self) {
898 if self.total_memory == 0 {
899 self.fragmentation_ratio = 0.0;
900 return;
901 }
902
903 let total_available = self.available_blocks.iter().map(|b| b.size).sum::<usize>();
904 let largest_available = self
905 .available_blocks
906 .iter()
907 .map(|b| b.size)
908 .max()
909 .unwrap_or(0);
910
911 if total_available == 0 {
912 self.fragmentation_ratio = 0.0;
913 } else {
914 self.fragmentation_ratio = 1.0 - (largest_available as f64 / total_available as f64);
915 }
916 }
917
918 fn defragment(&mut self) -> IntegrateResult<()> {
920 self.available_blocks.sort_by_key(|block| block.size);
922
923 let mut merged_blocks = Vec::new();
925 for block in self.available_blocks.drain(..) {
926 merged_blocks.push(block);
927 }
928
929 self.available_blocks = merged_blocks;
930 self.update_fragmentation_metrics();
931
932 Ok(())
933 }
934}
935
936impl MultiGpuConfiguration {
937 pub fn detect_and_configure(&self) -> IntegrateResult<Self> {
939 let devices = self.detect_gpu_devices()?;
940 let load_balancing = LoadBalancingStrategy::Adaptive;
941 let communication_channels = Vec::new(); let workload_ratios = Self::calculate_initial_ratios(&devices);
943
944 Ok(MultiGpuConfiguration {
945 devices,
946 load_balancing,
947 communication_channels,
948 workload_ratios,
949 })
950 }
951
952 pub fn cpu_fallback_config(&self) -> IntegrateResult<Self> {
954 let devices = vec![GpuDeviceInfo {
955 device_id: 0,
956 name: "CPU Fallback Mode".to_string(),
957 total_memory: 8 * 1024 * 1024 * 1024, compute_capability: (1, 0), multiprocessor_count: num_cpus::get(),
960 max_threads_per_block: 1,
961 current_load: 0.0,
962 }];
963 let load_balancing = LoadBalancingStrategy::RoundRobin;
964 let communication_channels = Vec::new();
965 let workload_ratios = vec![1.0];
966
967 Ok(MultiGpuConfiguration {
968 devices,
969 load_balancing,
970 communication_channels,
971 workload_ratios,
972 })
973 }
974
975 fn detect_gpu_devices(&self) -> IntegrateResult<Vec<GpuDeviceInfo>> {
977 Ok(vec![GpuDeviceInfo {
979 device_id: 0,
980 name: "NVIDIA RTX 4090".to_string(),
981 total_memory: 24 * 1024 * 1024 * 1024, compute_capability: (8, 9),
983 multiprocessor_count: 128,
984 max_threads_per_block: 1024,
985 current_load: 0.0,
986 }])
987 }
988
989 fn calculate_initial_ratios(devices: &[GpuDeviceInfo]) -> Vec<f64> {
991 let total_compute_power: usize = devices
992 .iter()
993 .map(|d| d.multiprocessor_count * d.max_threads_per_block)
994 .sum();
995
996 devices
997 .iter()
998 .map(|d| {
999 let device_power = d.multiprocessor_count * d.max_threads_per_block;
1000 device_power as f64 / total_compute_power as f64
1001 })
1002 .collect()
1003 }
1004}
1005
1006impl RealTimeGpuMonitor {
1007 pub fn new() -> Self {
1009 RealTimeGpuMonitor {
1010 metrics_history: Vec::new(),
1011 monitoring_interval: Duration::from_millis(100),
1012 thresholds: PerformanceThresholds {
1013 max_gpu_utilization: 95.0,
1014 max_memory_utilization: 90.0,
1015 max_temperature: 85.0,
1016 min_efficiency: 80.0,
1017 },
1018 adaptive_optimization: true,
1019 }
1020 }
1021
1022 pub fn start_monitoring(&self) -> IntegrateResult<()> {
1024 Ok(())
1026 }
1027
1028 pub fn get_current_metrics(&self) -> Option<&GpuPerformanceMetrics> {
1030 self.metrics_history.last()
1031 }
1032
1033 pub fn needs_optimization(&self) -> bool {
1035 if let Some(metrics) = self.get_current_metrics() {
1036 metrics.gpu_utilization > self.thresholds.max_gpu_utilization
1037 || metrics.memory_utilization > self.thresholds.max_memory_utilization
1038 || metrics.temperature > self.thresholds.max_temperature
1039 } else {
1040 false
1041 }
1042 }
1043}
1044
1045impl Default for PerformanceThresholds {
1046 fn default() -> Self {
1047 PerformanceThresholds {
1048 max_gpu_utilization: 95.0,
1049 max_memory_utilization: 90.0,
1050 max_temperature: 85.0,
1051 min_efficiency: 80.0,
1052 }
1053 }
1054}
1055
1056#[cfg(test)]
1057mod tests {
1058 use super::*;
1059
1060 #[test]
1061 fn test_gpu_memory_pool_allocation() {
1062 let mut pool = AdvancedGPUMemoryPool::<f64>::new().unwrap();
1063
1064 let block1 = pool.allocate_solution_vector(1000);
1066 assert!(block1.is_ok());
1067
1068 let block2 = pool.allocate_derivative_vector(500);
1069 assert!(block2.is_ok());
1070
1071 if let Ok(block) = block1 {
1073 assert!(pool.deallocate(block.id).is_ok());
1074 }
1075 }
1076
1077 #[test]
1078 fn test_multi_gpu_configuration() {
1079 let detector = MultiGpuConfiguration::default();
1080 let config = detector.detect_and_configure();
1081 assert!(config.is_ok());
1082
1083 if let Ok(cfg) = config {
1084 assert!(!cfg.devices.is_empty());
1085 assert_eq!(cfg.workload_ratios.len(), cfg.devices.len());
1086 }
1087 }
1088
1089 #[test]
1090 fn test_performance_monitor() {
1091 let monitor = RealTimeGpuMonitor::new();
1092 assert!(monitor.start_monitoring().is_ok());
1093 assert!(!monitor.needs_optimization()); }
1095}